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Abstract

We study annotation projection in text classification problems where source documents are pub-
lished in multiple languages and may not be an exact translation of one another. In particular,
we focus on the detection of unfair clauses in privacy policies and terms of service. We present
the first English-German parallel asymmetric corpus for the task at hand. We study and com-
pare several language-agnostic sentence-level projection methods. Our results indicate that a
combination of word embeddings and dynamic time warping performs best.

1 Introduction

The European Union considers cultural and linguistic diversity, and in particular multilinguality, as some
of its fundamental principles. So much so, that all the regulations and laws given by the Parliament are
published in all of EU’s twenty-four official languages. These could be an immense resource towards
transparency, egalitarianism, accountability and democracy, giving the EU citizen access to legislative
and policy proposals in their own and also in other languages (Steinberger et al., 2014). However, to
transform such resources into assets for the citizen, linguistic tools are needed, that can automatically
analyze textual sources and yield actionable information (Lippi et al., 2019a). Unfortunately, producing
the annotated corpora required to train such linguistic tools is, even for a single language, notoriously
expensive. Moreover, the vast majority of linguistic resources and tools focus on English. Likewise, the
workforce of professionals needed for annotating legal documents may not be readily available in each
language. We thus investigate methods for automatically transferring the annotations made on legal doc-
uments in a language with significant linguistic resources and domain experts, such as English, onto the
corresponding versions of the same documents in a target language, where such resources and expertise
may be lacking. Our ultimate goal is to use automatically generated annotations for training linguistic
tools for the target language without resorting to expert annotators in that language.This would leverage
the creation of classifiers that can leverage the linguistic resources available in the target language, to
analyze documents in that language.

We chose to focus on the detection of unfair clauses in online Terms of Service (ToS) and Privacy
Policies (PP), which are usually published in multiple languages. However, the domain of interest of our
study spans across many other types of legal texts. Other EU official documents published in multiple
languages include, for instance, EU Parliament laws and regulations, documents of the EU Court of
Justice, policy documents, documents for public consultations, and so on. Therefore, the potential import
of effective methods for facilitating cross-lingual legal text analysis is considerable. Reasons for focusing
on ToS and PP are the interest for such documents from a consumer protection perspective, especially
since the recent adoption of the European General Data Protection Regulation (GDPR), as well as the
availability of tools for the analysis of such documents. One such tool is CLAUDETTE (Lippi et al.,
2019b), a web server for the automatic detection of potentially unfair clauses in ToS. At the time of
writing, CLAUDETTE is only available for the English language. An effective method for cross-lingual
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annotation projection could extend its scope to a variety of languages other than English, without having
to resort to domain expertise in any of these languages.

To carry out the present study, we built the first English-German parallel corpus for the task at hand.
It turned out that the corpus is asymmetric, meaning a one-to-one sentence-by-sentence correspondence
between source and target document is not always guaranteed. This aspect makes the problem particu-
larly challenging, since we need to ensure a correct behaviour when a sentence does not appear in one
of the documents or it has been integrated in another sentence: a property of sentence alignment called
robustness (Simard and Plamondon, 1998). For example, we found source-document sentences corre-
sponding to multiple target-document sentences, as well as significant rephrasing, resulting in the same
sentence being annotated differently in the two documents.

The solution we propose makes use of an automated translation of the source document into the target
document, obtained via a third-party tool, of a sentence-wise dissimilarity metric, and of a method for
finding an alignment between warped time series. We evaluate performance with several combinations
of dissimilarity scores, with or without dynamic time warping. Our results indicate that the best perfor-
mance is achieved by a combination of word embedding-based dissimilarity and dynamic time warping.

The main novelty of our study lies in the confluence of three aspects: the projection is performed at
sentence-level; the multi-lingual corpus is asymmetric; and the proposed methods are language-agnostic.

Sections 2 and 3 formalize the problem and describe the architecture of our solution; 4 and 5 present
corpus and experiments; 6 discusses related work in the areas of sentence alignment and annotation
projection; 7 concludes.

2 Problem Definition

Our problem is transferring the knowledge provided by some experts and encoded in the form of doc-
ument annotations in a source language, into a target language. Annotations consist of tags attached to
sentences in a collection of documents. Our approach is based on the projection of annotations (Yarowsky
et al., 2001) between the two languages. Henceforth we will use English (E) and German (G) as source
and target, respectively.

The input is defined by three resources:

DE) the annotated English version of the source document;

DG) the corresponding German version of the same document, which is the target to be annotated;

Dt
G) the automated translation of DG into English.1

The goal is to find a correspondence between the sentences e1, . . . , en in DE and the sentences
g1, . . . , gm in DG via the automatically translated sentences gt1, . . . , g

t
n. In this way, the original an-

notations (i.e., the labels) `1, . . . , `n associated with the sentences in DE can be transferred (projected)
from the English document into a sequence of corresponding labels `′1, . . . , `

′
m in the target. All the

correspondences are thus evaluated among pairs of English sentences.
We shall remark that our setting is asymmetrical, therefore owing to the different way the content of

documents may be rendered in different languages, n may differ from m.
Although our experimental results are limited to the English/German language pair, the approach

itself is language-agnostic. In particular, it does not rely on any language-specific features. For the same
reason, we consider automatic translation as a service, and not as a variable in the experimental study.

3 Projection Architecture

Our methodology for annotation projection is two-fold. The first step is the computation of a set of
matches between each sentence of the translated target document, Dt

G, and one or more sentences of
the source document DE . Each sentence of Dt

G is thus labeled using the labels of the corresponding
sentences of DE , if any. The second step amounts to transferring the labels from Dt

G to the target

1The choice to translate into English is arbitrary. One could equally choose to rely on translating DE into German.
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Figure 1: Projection between a source document DE in English and a target DG in German. Automated translation is used to
obtain a translated version of DG called Dt

G, so that labels attached to sentences in DE can be mapped onto those in DG.

document DG, which is straightforward, since by construction there is a perfect match between DG

and Dt
G. For the computation of matches, we considered four different procedures, all amenable to

performing projection into German or into English.
The simplest procedure, which we take as a baseline, Pt, is illustrated in Figure 1. It consists in

computing the dissimilarity between any two sentences from the two documents, by simply considering
them as strings of symbols, and then matching each non-annotated sentence of one document with the
least dissimilar sentence in the other one. A similar procedure, Pe, requires creating a neural embedding
for each sentence and then computing the dissimilarities between embeddings. These procedures create a
relation between source and target sentences: each target sentence is associated with one source sentence,
whereas each source sentence can be associated with any number of target sentences (possibly none).

In the case of online ToS and PP written in different languages, it is not surprising to observe a high
degree of parallelism between the source and the target documents. Therefore, it is fair to assume that in
most cases the sentences will appear in the source document in roughly the same order as their matching
counterparts appear in in the target document.2 To exploit this property, we design two additional pro-
cedures relying on Dynamic Time Warping (Kruskall, 1983; Salvador and Chan, 2007) to compute the
match: Pt+DTW for textual input data, and Pe+DTW for embedded input sentences.

3.1 Dissimilarity between sentences

Sentence dissimilarity can be measured in many ways (Gomaa and Fahmy, 2013). A first family of
methods consists in variants of the the so-called classic edit-distance, whereby dissimilarity is com-
puted as the number of operations (insertion, deletion, substitution of symbols) needed to transform one
string into another. For this work, we considered the Hamming (1980), Levenshtein (1966), Damerau-
Levenshtein (Damerau, 1964), and Needleman-Wunsch (Needleman and Wunsch, 1970) dissimilarities.
With the exception of the Hamming distance, all these dissimilarities yield a heavy computational foot-
print. Moreover, they must be computed for each sentence pair {a, b}, independently of what may be
known of other pairs. In other words, there is no easy reuse of partial results, which adds to the compu-
tational footprint. This aspect considerably limits the application of these metrics in our setting, where
each sentence needs comparing with potentially many other sentences. Other methods are based on
token-based scores. Of those, we consider the Jaccard (1912) distance, based on the number of words in

2A detailed analysis on a sample of our data (800 sentences) showed that sentence inversion is indeed infrequent in our
corpus. In fact, it didn’t occur even once in the data we analyzed.
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common. Finally, there are methods based on compression. Among them, we selected the Normalized
Compression Dissimilarity (NCD), which amounts to compressing the two sentences, first individually
and then together, and then comparing the size of the compressed data.3 Jaccard and NCD both require
computing intermediate results (values or representations) which are independent of one of the sentences.
Storing such results yields a significant reduction in the computational footprint. All of the above meth-
ods can be applied to sentences encoded as strings of symbols, as in Pt and Pt+DTW . In the sequel we
will describe dissimilarity measures used with sentence embeddings, as in Pe and Pe+DTW .

3.2 ELMo embeddings
Word embeddings are a way to associate a numerical vector to each word in a corpus, typically computed
through sub-symbolic techniques. Usually, these embeddings are learned through a computationally
demanding training process based on a very large corpus. Such learned representations embed many
different aspects of the entity they represent, that can be used as features for other tasks. Aditionally, pre-
trained embeddings yield a lightweight computational footprint, which makes them particularly suitable
when the available computational resources are limited. Moreover, pre-training is especially effective
when working with small corpora, which cannot by themselves encode a rich language model.

ELMo (Peters et al., 2018) embeddings are produced by exploiting a bi-directional language model,
which consists in a neural network trained to predict a word in a sentence by looking at the surrounding
words in the sentence. Thus, the representation provided by an ELMo word embedding is able to capture
the context of each word. Given all the embeddings of the words in a sentence, a compact representation
of that sentence can be obtained, for instance, as their average.

To measure the dissimilarity between embeddings we considered the cosine dissimilarity (Kenter and
de Rijke, 2015) and the Bray-Curtis dissimilarity (Bray and Curtis, 1957). The cosine dissimilarity
between two numerical vectors is obtained by subtracting the cosine of the angle between the two vectors
from 1. The Bray-Curtis dissimilarity between two numerical vectors a and b is a normalized version of
the Manhattan distance, as it is computed as the sum over the absolute differences between elements aj
and bj , divided by the sum over the elements computed for each vector, separately.

3.3 Dynamic Time Warping
Dynamic Time Warping (DTW) and its more efficient approximation Fast DTW (FTDW) enable finding
an alignment and evaluating a numerical dissimilarity between time series that may have been warped
(i.e., stretched or shrunk) along the time axis (Salvador and Chan, 2007). DTW measures the dissimilar-
ity between pairs of elements of the two series to create a matrix. Each element of the matrix represents
a matching between these elements, and its value represents their dissimilarity, or cost, of the matching.
The algorithm computes the cheapest path from one end to the other of the cost matrix. The alignment
between the two series is given by the cells in the path, while the dissimilarity measure is the cost of
the path. DTW guarantees to find an optimal alignment with quadratic complexity with respect to the
length of the time series.4 FDTW is a popular, linear-complexity approximation of DTW, which does
not guarantee optimality, but increases the chance of finding a good match, by iteratively computing con-
strained approximate paths. Instead of computing the full cost matrix from the beginning, FDTW first
computes coarse versions of the time series by aggregating adjacent elements. This procedure is iterated
to obtain many versions of the same time series at different resolutions. DTW is then applied to the
smallest-resolution time series, to compute a coarse cost map and a path across it. Then, a constrained
DTW is applied to the pair of time series with a larger resolution, using the path already computed to
guide the creation of the cost map: only the costs of the cells which correspond to the neighbourhood of
the previous path are computed, by imposing constraints on the path for this level. Finally, a constrained
DTW is applied to the full-resolution time series, providing the final path and the dissimilarity score.

Both DTW and FDTW can thus be used to determine a many-to-many match between the elements
of the two sequences, guaranteeing that each element of either sequence is matched with at least one

3The entropy of the sequence was used to measure compression.
4Complexity can be reduced by giving up optimality and imposing constraints on the alignments, for example by forbidding

the elements of a sequence from having all the same match with a single element. We do not apply such approximations.
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ToS ENG GER
Sentences 1,323 1,481

Tags 153 189
arbitration 〈a〉 6 10

unilateral change 〈ch〉 34 37
content removal 〈cr〉 18 23

jurisdiction 〈j〉 14 15
choice of law 〈law〉 15 15

limitation of liability 〈ltd〉 26 42
inclusion of consent to PP 〈pinc〉 2 2

unilateral termination 〈ter〉 28 32
contract by using 〈use〉 10 13

PP ENG GER
Sentences 768 855

Tags 266 351
data used for advertising 〈ad〉 25 30

data collected not form data subject 〈basis〉 45 55
data transferred to authorities 〈cat〉 97 127

data transferred to other users 〈source〉 29 37
data transferred to processors 〈ta〉 5 7
data transferred to controllers 〈tc〉 36 50

categories of data being collected 〈tpr〉 12 21
basis for processing 〈tu〉 17 24

Table 1: Composition of ToS and PP subsets.

element of the other sequence. It is worthwhile noticing that, in aligning the two series, these algorithms
maintain the order of the series’ elements. Given four elements a1, a2, b1, b2 belonging to time series A
and B, such that a1 < a2 in A and b1 < b2 in B, if DTW determines (a1, b2) to be a match, then it can
also determine (a1, b1) or (a2, b2) to be a match, but not (a2, b1) because that would be incompatible
with (a1, b2). As a final remark, DTW only needs a measure of pairwise element dissimilarity, whereas
FDTW also needs an aggregation function between adjacent elements, such as an average. Since such
function is difficult to define for textual data, in Pt+DTW we will use the original DTW algorithm.
Conversely, in Pe+DTW we will make use of FDTW, aggregating adjacent embeddings by computing
their average. In the rest of this work we will not distinguish between the two algorithms, and we will
address both as DTW.

4 Dataset

The English-German corpus created for this task includes ToS and PP: two types of documents employ-
ing very different languages and drafting techniques. Table 1 shows the distribution of unfair clauses
in the corpus. The documents were sourced from the CLAUDETTE training corpus,5 and the German
versions were annotated by a legal expert fluent in English and German. The dataset described here, as
well as the code used in the experiments, are publicly available.6

4.1 Subsets
The terms of service (ToS) set consists of 5 contracts used by online service providers: Box.com, Garmin,
Grindr, Linkedin and MyHeritage. It includes 2,808 sentences and 342 tags identifying 27 classes,
divided into 9 categories, as described by Lippi et al. (2019b). The data privacy set (PP) comprises
privacy policies from Dropbox, Facebook, Supercell, Tumblr and Twitter. It includes 1,623 sentences
and 617 tags identifying 21 classes, divided into 8 categories, as described by Contissa et al. (2018).

Annotations also indicate the degree of unfairness. For example, ltd3 means high degree of un-
fairness on grounds of limitation of liability (e.g., in the case of damages caused by gross negligence),
whereas ltd1 indicates a fair clause (e.g. it does not exclude the provider’s liability).

4.2 Discrepancies
We found that discrepancies between the English and the German documents usually pertain to the
sentence structure and, aside from convenience of reading, appear to have no justification. Example 4.1
shows how the same information, contained in one clause in the English version (potentially unfair
content removal and unilateral termination of contract), requires a manual split of the categories when
transferred to the official German counterpart.

Example 4.1 (Box.com, line 40).
〈cr2〉〈ter2〉 We reserve the right to delete or disable Content alleged to violate copyright laws or these
Terms and reserve the right to terminate the account(s) of violators. 〈/cr2〉〈/ter2〉

5http://claudette.eui.eu
6https://bitbucket.org/a-galaxy/cross-lingual-annotation-projection-in-legal-texts

http://claudette.eui.eu
https://bitbucket.org/a-galaxy/cross-lingual-annotation-projection-in-legal-texts
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〈cr2〉 Wir behalten uns das Recht vor, Inhalte zu löschen oder zu deaktivieren, die vorgeblich gegen
Urheberrechtsgesetze oder diese Bedingungen verstoßen. 〈/cr2〉 〈ter2〉 Zusätzlich behalten wir uns das
Recht vor, den/die Account(s) des Beschuldigten zu sperren. 〈ter2〉

Example 4.2 instead shows one sentence in the English version, pertaining to the use of third-party
subcontractors as data processors, corresponding to two sentences in German. Since the message con-
tained in both still fulfils the criteria for the same tag, the annotation used needs to be manually copied
to the neighboring sentence.

Example 4.2 (PP Tumblr, line 112).
〈tpr2〉 Information Shared with Our Agents in Order to Operate and Improve the Services: In some cases,
we share information that we store (such as IP Addresses) with third parties, such as service providers,
consultants, and other agents (”Agents”), for the purposes of operating, enhancing, and improving the
Services, and developing new products and services. 〈tpr2〉
〈tpr2〉 Daten, die mit unseren Beauftragten ausgetauscht werden, um die Dienste zu betreiben und zu
verbessern: In manchen Fällen geben wir von uns gespeicherte Daten (beispielsweise IP-Adressen) an
Dritte wie Dienstanbieter, Berater und andere Beauftragte, (”Beauftragte”), weiter. 〈/tpr2〉 〈tpr2〉
Dies geschieht zum Zwecke des Betreibens, der Erweiterung und Verbesserung der Dienste sowie zur
Entwicklung neuer Produkte und Dienste. 〈tpr2〉

The presence of such discrepancies makes projection a particularly challenging task, and affects per-
formance evaluation, as explained in Section 5.

5 Experimental Results

We performed projection as a fully unsupervised process. To translate the documents from German
to English we used Apache Joshua, a standalone tool that poses no usage restrictions. To com-
pute the dissimilarity measures described in Section 3.1 between the DE and Dt

G we used the Python
textdistance library. To create the embeddings of the source sentences and of the translated target
sentences, we use the pre-trained ELMo model available on TensorFlowHub, which follows Peters et al.
(2018), with an embedding size of 1024, and create sentence embeddings by average of word embed-
dings. The corpus used for pre-training is 1B Word benchmark (Chelba et al., 2014), which includes
a variety of sources in English such as news commentaries and parliamentary debates. To compute the
distance between embedding vectors we used the SciPy library (Virtanen et al., 2020).

After obtaining the projected labels for DG, we evaluated the performance by comparing such pro-
jected labels with the original golden annotations. In order to measure the performance, we considered
the task as a multi-label classification problem on the sentences of the target documents. Tables 2 and 3
report F1 scores, precision and recall associated with each approach. These scores are computed with no
distinction between different documents. The F1-micro score is computed considering the total number
of true positives, false positives, and false negatives, without making any distinction between classes.
The weighted score is computed as a weighted average between the F1 scores obtained for each class,
where the weight is given by the number of times the label appears in the ground truth. The macro score
is obtained with a similar procedure, without using different weights, but considering all the classes alike.

We shall remark that, in principle, the task does not guarantee that an F1 equal to 1 is always achiev-
able, due to possible discrepancies between the two sets of labels in the original English and German
corpora. With reference to Example 4.1, even if the English sentence had been correctly associated with
both German sentences, each of the latter would inherit both tags of the source language, thus resulting
in a false positive for what concerns the evaluation metrics.

Table 2 compares the results obtained by the baselines and the use of ELMo embeddings without
DTW. The strongest baseline is Needleman-Wunsch, which is largely outperformed by the use of the
embeddings. Indeed, embeddings improve the F1 scores by about 0.20, especially due to increased
precision. Moreover, the Bray-Curtis dissimilarity performs slightly better than the cosine one.

In Table 3 we report results with DTW, which improves the performance for both the text-based and
the embedding-based approaches. The Needleman-Wunsch dissimilarity receives a minor boost of about
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Table 2: Evaluation of projection on the whole dataset, using different dissimilarity functions, without the use of DTW.

Pt Pe

Hamming Levenshtein Damerau-
Levenshtein

Needleman-
Wunsch Jaccard NCD Cosine Bray-

Curtis
F1-macro 0.21 0.54 0.50 0.59 0.41 0.18 0.76 0.77
F1-micro 0.25 0.58 0.59 0.62 0.47 0.22 0.80 0.81
F1-weighted 0.25 0.58 0.58 0.62 0.48 0.22 0.80 0.80
Precision 0.26 0.62 0.63 0.63 0.48 0.20 0.86 0.86
Recall 0.24 0.55 0.55 0.61 0.45 0.23 0.75 0.75

Table 3: Evaluation of projection on the whole dataset, using different dissimilarity functions, with the use of DTW.

Pt+DTW Pe+DTW

Hamming Levenshtein Damerau-
Levenshtein

Needleman-
Wunsch Jaccard NCD Cosine Bray-

Curtis
F1-macro 0.78 0.79 0.79 0.70 0.78 0.74 0.81 0.82
F1-micro 0.82 0.83 0.83 0.72 0.83 0.79 0.86 0.86
F1-weighted 0.82 0.83 0.83 0.72 0.83 0.79 0.86 0.86
Precision 0.90 0.91 0.91 0.68 0.89 0.84 0.92 0.93
Recall 0.76 0.77 0.77 0.76 0.77 0.75 0.80 0.80

0.10 points. On the contrary, Hamming and NCD dissimilarities improve dramatically, outperform-
ing Needleman-Wunsch and reaching results similar to Levenshtein and Damerau-Levenshtein. The
embedding-based approach (Pe) still yields the better results with respect to Pt, although with a smaller
margin. In spite of the small margin, embedding-based approaches offer a dramatic gain in terms of
computational footprint. Processing our whole corpus by the embedding-based method required less
than a minute, while the Pt methods required several hours.

We have also observed that all the methods perform better on PPs than on ToSs, especially with respect
to precision. We speculate that the reason for that may the different distribution of the labels between
the English and German documents, which is more pronounced in ToS than in PP. Table 4 reports a
comparison between the best methods for each approach on ToS and PP.

Finally, Figure 2 summarizes the F1-weighted scores obtained for each different category in the setting
without DTW, in ToS and PP, respectively. The plot shows that the embedding-based approaches con-
sistently outperform the other dissimilarity scores. It is noteworthy that the categories of ToS in which
we perform best and worst are the ones with less data points. A meaningful qualitative analysis should
not focus on those two classes but rather sample on the whole dataset. We will further investigate these
differences in our future work.

One issue worth consideration is the impact of the translation service on the overall performance. We
have conducted preliminary experimentation using professional tools such as Google Translate. We did
notice a performance improvement overall. However, the relations between the performance of Pt, Pe,
Pt+DTW and Pe+DTW are unchanged.

Table 4: Comparison of the various approaches on the two corpora.

Pt Pe Pt+DTW Pe+DTW

ToS PP ToS PP ToS PP ToS PP
F1-macro 0.52 0.66 0.70 0.84 0.73 0.85 0.75 0.88
F1-micro 0.54 0.67 0.76 0.83 0.81 0.84 0.82 0.88
F1-weighted 0.54 0.66 0.75 0.83 0.80 0.84 0.82 0.88
Precision 0.50 0.73 0.81 0.89 0.87 0.93 0.87 0.96
Recall 0.58 0.62 0.71 0.77 0.75 0.77 0.78 0.81
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Figure 2: F1-weighted scores per each different category, achieved for ToS (top) and PP (bottom) without the use of DTW.

6 Related Works

Our work is closely related to two research strands, namely sentence alignment and annotation projection.
The sentence alignment task is addressed in the work of Simard and Plamondon (1998) by defining a

“corridor of alignment” based on global information. Basically, a candidate matching between sentences
takes into account the position of the sentences inside each document. Then, corresponding words are
matched, and this local information is further exploited to align full sentences following an ordered
one-to-one relationship. This is somehow similar to our approach based on DTW, although we directly
operate at the sentence level. To address the task of aligning documents in which sentences do not appear
in the same order, Zamani et al. (2016) present an approach based on Integer Linear Programming, while
Quan et al. (2018) propose instead an approach based on the length of the sentences to create one-to-one
matches. Other examples of alignement between parallel corpora can be found in (Santos, 2011). With
respect to these works, our task is different, since we do not aim for the perfect alignment of words, or
paragraphs, but we are interested only in a faithful projection of labels.

The idea of projecting annotations between two parallel corpora in different languages, to enable the
construction of a machine learning model in both languages, is firstly framed in (Yarowsky et al., 2001).
The authors there address various word-level NLP tasks. Interestingly, they address the problem of noisy
projection by using the uncertainty level given by the alignment model. The same problem is addressed
by Fossum and Abney (2005) by exploiting multiple sources for the same target document. Projection
has been used also for argumentation mining (Eger et al., 2018; Rocha et al., 2018), to create training data
for machine learning models for low-resource languages. In particular, Eger et al. (2018) argue against
the necessity of human-translated parallel corpora as a resource, since they obtain comparable results
using machine translated parallel documents. In contrast with these approaches, which use projected
labels for supervised training, in the work by Das and Petrov (2011) the projected labels are used as
features for unsupervised training. Projection has also been used by Bentivogli and Pianta (2005) to
create a parallel version of an existing corpus. The projection of structural information between parallel
documents is tackled by Bamman et al. (2010), where alignment is performed firstly sentence-wise (1-1)
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and then word-wise.
None of the reviewed approaches is directly applicable to our setting. The works of Das and Petrov

(2011), Moore (2002), Quan et al. (2018), and Zamani et al. (2016) are all based on symmetric corpora,
while imposing a 1-1 alignment is not possible in our domain. Bamman et al. (2010), Bentivogli and
Pianta (2005), Eger et al. (2018), Fossum and Abney (2005), and Yarowsky et al. (2001) all address
word-level alignment instead of sentence level-alignment. These methods cannot be extended to address
sentence-level alignment without introducing an element of subjectivity, for instance, in resolving con-
flicts of words matched across different sentences. Finally, Simard and Plamondon (1998) rely on the
language-dependent concept of “cognate” words, which is applicable only to selected language pairs,
while our approach is language-agnostic.

Besides projection, other approaches can be used to apply machine-learning methods for low-resources
languages. Direct transfer (Zhang et al., 2016) consists of exploiting features which are shared across
the languages, such as multilingual word embeddings, and then training a model on the labelled corpus,
so as to use it directly on the test data, without any need of parallel corpora or projection. While this
approach may seem less noisy than projection, in Eger et al. (2018) direct transfer approaches have
achieved worse performance. Other works (Cotterell and Heigold, 2017; Kim et al., 2017) have made
use of weak supervision, a mixture of supervised and unsupervised learning, which requires a setting
where a few labelled documents of the target language are available. Finally, another approach consists
in the cross-lingual transfer/alignment of word embedding spaces (Xu et al., 2018; Lample et al., 2018),
where a mapping between the word embeddings of the source and the target language is first learned;
then, word embeddings in the target language are mapped into the ones in the source language word, so
that they can be finally fed into any model trained on the source language documents.

For what concerns other methods to asses the distance between two sentences, Gomaa and Fahmy
(2013) present an extensive survey from which we have selected the most common and significant algo-
rithms. Mueller and Thyagarajan (2016) and He et al. (2015) train neural model to assess the distance
between two sentence, but this approach is applicable only to languages where a dataset of sentence
distances is available. Finally, Lopez-Gazpio et al. (2019) and Chen et al. (2018) involve the training of
advanced neural models and require a large database for training, thus do not suit our setting, since ours
is not a learning-based approach.

7 Conclusion

We devised and compared several methods for annotation projection. The motivation behind this study
stemmed from our long-term goal of extending the scope of existing classification systems of legal texts,
currently available only in English, so as to have them work with a variety of languages, without having
to resort to legal experts in such languages. We studied the performance of a number of alternative
methods for text encoding, measuring sentence dissimilarity, and integrating sequence information in the
alignment problem.

We tested several possibilities with an English-German corpus created by legal experts in the two lan-
guages, and interpreted the results as an indication that a combination of word embeddings and dynamic
time warping seems most effective. This is fortunate since the methods involved in such a combination
also yield a much smaller computational footprint compared to other methods we have investigated.

These results pave the way to several directions for future research. One of them is architectural. As
we remarked when we defined the problem, our approach could be implemented by relying on automated
translations of source documents to the target language or vice versa. In our study, we arbitrarily opted for
the second alternative. We thus plan to implement the option we have not yet considered, and measure its
performance in comparison to the results we obtained so far. Moreover, we plan to make an experimental
comparison between the results obtained with a tool for legal text analysis trained to work on a target
language using the approach presented here, and the results obtained by translating the query document
and performing the analysis with the original tool. We speculate that answers to the above questions
may depend partly on the task, partly on the availability and quality of language resources and tools
in different languages. Finally, another direction worth of investigation is the use of state-of-the-art
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sentence embeddings, such as Sentence-BERT (Reimers and Gurevych, 2019) and Universal Sentence
Encodings (Cer et al., 2018).

In conclusion, we shall remark that although our analysis has focussed on a specific set of legal docu-
ments, cross-lingual annotation projection in legal texts has, in fact, a much wider import. In the longer
run we would like to apply this method to other areas of cross-lingual legal text analysis, with the ulti-
mate purpose of contributing positively to the relations between citizens and institutions across nations
characterized by linguistic and cultural diversity and united under a common institutional framework.
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André Santos. 2011. A survey on parallel corpora alignment. In MI-STAR, pages 117–128, Braga, Portugal,
January.

Michel Simard and Pierre Plamondon. 1998. Bilingual sentence alignment: Balancing robustness and accuracy.
Machine Translation, 13(1):59–80, Mar.

Ralf Steinberger, Mohamed Ebrahim, Alexandros Poulis, Manuel Carrasco-Benitez, Patrick Schlüter, Marek Przy-
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