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Abstract

This paper brings together approaches from the fields of NLP and psychometric measurement to
address the problem of predicting examinee proficiency from responses to short-answer questions
(SAQs). While previous approaches train on manually labeled data to predict the human ratings
assigned to SAQ responses, the approach presented here models examinee proficiency directly
and does not require manually labeled data to train on. We use data from a large medical exam
where experimental SAQ items are embedded alongside 106 scored multiple-choice questions
(MCQs). First, the latent trait of examinee proficiency is measured using the scored MCQs and
then a model is trained on the experimental SAQ responses as input, aiming to predict proficiency
as its target variable. The predicted value is then used as a “score” for the SAQ response and
evaluated in terms of its contribution to the precision of proficiency estimation.

1 Introduction

The automated scoring of Short Answer Questions (SAQs) has been a longstanding research area in both
psychometric measurement and NLP applications. Typically, a SAQ consists of a description of a prob-
lem followed by an open question which requires some form of a free short response by the test-taker. An
example of a SAQ testing medical knowledge is presented in Table 1. The task at hand is to score the re-
sponses given by the test-takers, either manually or automatically. What makes the problem challenging
is the fact that the answers, even the correct ones, tend to vary a lot in their expression and level of detail.
The educational measurement literature has shown that the manual scoring of SAQs requires significant
resources and often suffers from low rater agreement (Section 2.1). In NLP, the automated scoring of
SAQ responses is still far from being solved and requires large amounts of expensive expert-rated data
(Section 2.2). The lack of affordable and reliable SAQ scoring solutions perpetuates the assessment
field’s reliance on less informative but easy to score formats like Multiple Choice Questions (MCQs).

Despite the fact that the automated scoring of SAQs is a vibrant research area in both psychometrics
and educational NLP, there are almost no interdisciplinary efforts that capitalize on the strengths of both
fields (Section 2). In psychometrics, the majority of the effort is focused on assessing the reliability,
validity and fairness of the scoring procedures for measuring examinee proficiency, with low exposure
to state-of-the-art NLP techniques. By the same token, NLP studies utilize sophisticated language tech-
nology but do not evaluate the scoring systems in a way that answers the main question of “Does this
scoring method help with the more precise measurement of examinee proficiency?”.

This paper presents an interdisciplinary study on automated SAQ scoring positioned in the intersection
between NLP and psychometric measurement. Unlike previous NLP studies, the scoring method is eval-
uated on its ability to produce better assessment of examinee proficiency. As a step further, the proposed
approach does not rely on manually rated responses for training, instead utilizing information available
at the stage of the evaluation of new SAQs for their inclusion in standardized exams, as explained below.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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A previously healthy 26-year-old man is brought to the emergency department because of a tingling sensation in
his fingers and toes for 3 days and progressive weakness of his legs. He had an upper respiratory tract infection 2 weeks
ago. He has not traveled recently. He was unable to get up from bed this morning and called the ambulance. Temperature
is 37.3C (99.1F), pulse is 110/min, respirations are 22/min, and blood pressure is 128/82 mm Hg. Pulse oximetry on
room air shows an oxygen saturation of 99%. Physical examination shows weakness of all four extremities in flexion
and extension; this weakness is increased in the distal compared with the proximal muscle groups. Deep tendon reflexes
are absent throughout. Sensation is mildly decreased over both feet.
What is the most likely diagnosis?

Sample of correct answers: Guillain-Barré syndrome, acute immune-mediated polyneuropathy

Table 1: An example of a practice SAQ item

High-stakes standardized tests1 need to ensure that the items included in the test are not too easy or
too difficult for the intended population, and that each item contributes to the overall test score. For this
reason, any newly developed item is first embedded in a live exam without being scored and with the ex-
aminees not knowing that it is not going to be scored (a phase known as item pretesting). The examinees
are then scored on the live2 items and their level of proficiency is estimated using Item Response Theory
(IRT) modeling (Section 3). Once response data for a given pretest item has been collected (usually for
a whole annual cycle), its psychometric charateristics are computed and it is later used as a scored item
or discarded depending on its quality. Therefore, in the context of standardized testing: i) each newly
developed SAQ would first be embedded in a live exam as a pretest item, and ii) there would be an
examinee proficiency variable measured using their performance on live items.

In this study, we propose the use of proficiency as a dependent variable in a machine-learning model
which takes pretest SAQ responses as input and aims to predict proficiency as output. Notably, the pro-
ficiency is measured independently using the live items, while the model predicts it using the responses
to the pretest items. During the training phase, the model learns to map similar responses to one another
and identify patterns associated with the responses of high-proficiency students versus those of lower
proficiency students. The underlying hypothesis is that people with similar proficiency would provide
similar responses to the SAQs. The predicted proficiency for a given new response is then used as its
“score” and is evaluated in terms of its contribution to estimating the overall proficiency of the examinee
who gave the response to the experimental question. We use data from a large medical exam, where in
each form two pretest SAQs are presented alongside 106 scored MCQs.

Contributions The main contribution of this study is an approach for automated SAQ scoring in the
context of standardized testing that does not rely on manually labeled training data. The evaluation of
the results is done using psychometric approaches investigating whether or not the developed scoring
procedure improves the measurement of proficiency for the examinee who gave the response. Core
psychometric concepts that relate to NLP for automated scoring are explained in detail.

2 Related Work

This section describes the use of SAQs in testing, followed by studies on automated SAQ scoring.

2.1 Short-Answer Questions (SAQs)

While the format of open-ended questions was common at the beginning of the 20th century, by the
1950s, MCQs became the assessment tool of choice for many testing organizations. MCQs restricted
an examinee’s response set to a fixed number of options. This was quantitatively pleasing and lent it-
self naturally to an elegant and defensible set of mathematical measures. Statistics like item difficulty,
item reliability and examinee proficiency formed the core of the emerging discipline of psychometrics
(Gulliksen, 1950) and drove the wide use of MCQs in many assessments. Scoring MCQs was highly effi-

1Examples of well-known high-stakes exams include TOEFL (Test of English as a Foreign Language)
(https://www.ets.org/toefl), SAT (Scholastic Assessment Test) (https://collegereadiness.collegeboard.org/sat) and USMLE
(United States Medical Licensing Examination) (https://www.usmle.org/).

2“Live” items are ones that operationally scored, while ”experimental” or ”unscored” items are those being pretested
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cient and was less susceptible to bias than the expert-based scoring processes utilized in prior assessment
formats.

However, MCQs are not without their own drawbacks. Precisely because the examinee has been
limited to a fixed set of responses, test-taking strategies and cueing become an important consideration.
With regards to medical exams in particular (the exam domain used in this study), a patient does not
present to a doctor with a fixed set of possible diagnoses (Veloski et al., 1999; Newble et al., 1979).
In this context, SAQ items offer several benefits. They tend to be more difficult, reinforce long-term
retention, and students, knowing that they will be taking an SAQ assessment, prepare in a way that
facilitates more optimal learning (Sam et al., 2018; Pinckard et al., 2009). For these reasons and others,
SAQs are of particular interest for many testing organizations, even though the two core issues involved
in their scoring, cost and human bias, remain.

2.2 Automated SAQ scoring

The problem of SAQ scoring has received considerable attention, with several shared tasks and competi-
tions orgnaized in the past (e.g., a SemEval shared task (Dzikovska et al., 2013), or the ASAP 2 Kaggle
competition3). The task is to predict the human labels for each instance and, traditionally, this has been
done using n-grams (Heilman and Madnani, 2015) or a wide variety of linguistic features as in Tack
et al. (2017). Leacock and Chodorow (2003) use predicate-argument structure, pronominal reference,
morphological analysis and synonyms to rate the questions. Other approaches include semi-supervised
learning based on clustering, which are mainly effective for very short answers (single words or phrases)
but do not generalize well to longer responses (Zesch et al., 2015).

In addition to the variety of methods used for SAQ scoring, several other problems relating to other
aspects of the task have been investigated. Heilman and Madnani (2015) explore the effects on per-
formance of training sample size to help answer the question of how much data needs to be gathered
and labeled before automated scoring for a new prompt is deployed. Ramachandran and Foltz (2015)
tackle the problem of rubric coverage by generating reference texts from summarized top-scoring stu-
dent responses. Rudzewitz (2016) combines the task of SAQ scoring with that of plagiarism detection
showing that incorporating features from other domains (with lexical and semantic ones revealed as the
most informative) can improve the results. Willis (2015) use NLP to assist human raters in incrementally
developing a set of automatic marking rules, which can be further used for automatic scoring.

In all of these applications, the aim is to predict the human scores assigned to the responses. As the
ASAP 2 challenge puts it: “Your success depends upon how closely you can align your scores to those of
human expert graders” (https://www.kaggle.com/c/asap-sas). This framing of the problem
does not take into account the fact that human graders themselves may be biased or make errors. In other
words, these models may be useful to partially solve the problem of effort associated with SAQ scoring
but do not help with solving the problem of rater accuracy. In addition, the framing of the problem
as one of human label prediction still requires the labeling of a training set, which is an expensive and
time-consuming procedure, thus addressing the need for cost reduction only partially. As we discuss in
the next sections, the approach proposed in this study aims to address both of these gaps.

3 Data

An example SAQ is presented in Table 1. As can be seen, the responses consist of very short phrases (less
than 60 characters), hence the format is sometimes referred to as very-short-answer questions (VSAQ).

Item writing: The SAQs used in this study were directly derived from existing MCQs by removing
their answer options and slightly rewriting the lead in question (e.g., “Which of the following is the most
likely diagnosis?” is converted to “What is the most likely diagnosis?”). The item text for the initial
MCQs was developed by experienced item-writers following strict guidelines for content, information
structure and formatting. All MCQs were formerly pretested and met quality criteria for live use.

Item selection: When choosing MCQs to be converted to SAQs, concern was paid to a breadth of top-
ics (as opposed to choosing several items that covered the same diagnosis), difficulty, and discriminatory

3https://www.kaggle.com/c/asap-sas
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power. The latter two are common measures used in psychometrics, computed as follows:
i) Item difficulty: The difficulty of an item was defined by the proportion of its responses that are

correct, commonly referred to in the educational-testing literature as its P-value, calculated as follows:

Pi =

∑N
n=1 Un
N

,

where Pi is the P-value for item i, Un is the 0-1 score (incorrect-correct) on item i earned by examinee
n , and N is the total number of examinees in the sample. For example, a P-value of .3 means that the item
was answered correctly by 30% of the examinees. It is important that items that are too difficult or too
easy be filtered out, as they would not bring valuable information about examinee proficiency (Yaneva et
al., 2020). The criteria for the exclusion was a P-value below 0.4 and above 0.95 and was defined on the
basis of industry standards.

ii) Item discriminatory power or item biserial correlation (often referred to as Rb parameter in ed-
ucational testing), is the correlation between examinees’ responses on the given item and examinees’
total test score. The purpose of this metric is to ensure the quality of the item, where examinees who
perform better on the test overall, must be more likely to succeed on the item than those examinees who
performed worse. The crierion for the Rb parameter used in this study is that it had to be greater than
0.1, in order to exclude items which do not contribute to the overall test score.

Filtering on these criteria resulted in an initial pool of 150 MCQs. The next step was to conduct an
editorial review and have a subject matter expert answer the items in the new format, as explained below.

iii) Answer length: Of the 150 items, 30 were eliminated based on editorial review from experienced
item writers which indicated that answering these items would require a significantly longer response.
The rationale behind excluding those was to eliminate questions that would tests different skills such as
the ability to write well, which were not part of the construct of clinical knowledge.

iv) SAQ difficulty as determined by a subject matter expert: The remaining items were presented to a
subject matter expert who solved the questions in the SAQ format. This expert was an experienced physi-
cian and had no prior knowledge of the MCQ versions of the items. Based on the expert’s judgement,
items that were considered too difficult to answer without having an option set were excluded.

After following the elimination steps presented above, the final number of SAQ items included in the
study was 100. Data for those were collected for one full year (August 2018 through August 2019) and
amounted to 50,894 individual responses from 25,447 test-takers.

Exam administration: The data for the study were collected during the administration of Medicine
Clinical Science subject exam. This exam was developed at the National Board of Medical Examiners
and distributed to a large number of medical schools in the US and Canada4 to use as a subject exam
at the end of a semester. Students and faculty members were notified in advance that SAQs would be
included in some exam forms and were given ample time to prepare for the new format. The test takers
had no knowledge that these SAQ items were pretest items and approached them as scored ones. During
the exam, each test-taker saw 110 questions in total, four of which were experimental questions. These
experimental questions were presented in SAQ or MCQ format (two of each) such that no examinee
would see the two versions of the same item. The rest of the test comprised 106 MCQs, the responses to
which were scored and used to form the final grade for each examinee. The response field was limited
to a 60 character input and the following instructions were presented: Your answer should be brief and
should: respond directly to the question and only to the question (i.e., do not provide a rationale); be as
specific as possible; consist of no more than a few words (e.g., antibiotic therapy).

Proficiency estimation The responses given to the 106 live MCQs per form were first automatically
scored by mapping the letter of the selected option to the letter of the correct response for each examinee
and item. After that, the scores for the 106 MCQs were used to compute examinee proficiency.

We used one-parameter Rasch model, the most common application of IRT, to estimate examinee
proficiency (Rasch, 1960). Within the IRT framework, probability of a correct response on a given item is

4Accredited by the Liaison Committee on Medical Education (LCME)
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Figure 1: Hypothetical example of the relationship between probability of correct response for items A,
B, and C and proficiency

conceptualized as influenced by both examinee proficiency and item characteristics. More specifically, in
Rasch IRT model, probability of a correct response on an MCQ item is a function of examinee proficiency
and one item parameter - the difficulty of that item. The higher an examinee’s proficiency relative to the
difficulty of an item, the more likely the examinee to answer that item correctly. When examinee υ
applies their proficiency βυ to answer item ι of difficulty δι, the probability of a correct response (1) can
be expressed as follows:

P{Xυι = 1|βυ, δι} = exp(βυ - δι) / (1 + exp(βυ - δι))

Figure 1 is a hypothetical example of the relationship between probability of correct response for items
A, B, and C and proficiency. Within IRT framework, item difficulty is defined as the location on the pro-
ficiency scale where the chance of answering an item correctly is 50% (P=0.5). In our example, item
difficulties are -0.8. 0 and 0.8 for items A, B and C, respectively. Typically, the probability of correct
response is greater than 0.5 for examinees whose proficiency is above item difficulty. In our example,
an examinee with proficiency 1 is very likely to answer all 3 items correctly, while examinee with pro-
ficiency 0.3 is likely to correctly respond to items A and B only. In our study, examinee proficiency βυ
was obtained by Joint Maximum Likelihood Estimation5, an estimation process that iterates through data
for all items and all examinees in the sample. The estimation sample consisted of about 2K-4K examinee
responses to each MCQ item.

4 Method

This section presents the approach for automated prediction of examinee proficiency. First, various types
of embeddings are generated and compared (Section 4.1) in order to select the best-performing ones
for the main experiments. After that, several baselines are developed using the correct answer from the
MCQ version of the items as a rubric (section 4.2). Next, the proposed approach is presented in Section
4.3. Finally, the metrics used to compare different approaches can be found in Section 4.4.

4.1 Embedding Selection

We train various embedding models on medical and generic corpora in order to select those that perform
best. The models include BERT (Devlin et al., 2018), ELMo (Peters et al., 2018), GloVe (Penning-
ton et al., 2014), and Word2Vec (Mikolov et al., 2013). For BERT we compare the model-produced
pooled vectors that represent the whole phrase (henceforth “BERT pooled”), and the embedding vec-
tors of individual words, which can then be mean-pooled (henceforth “BERT embedding”). In terms of
domain-specific embeddings, we train BERT and ELMo on approximately 22,000,000 MEDLINE med-
ical abstracts6. For ELMo we used three different types of heads: the first layer (tokens), the last layer

5https://www.winsteps.com/index.htm
6https://www.nlm.nih.gov/bsd/medline.html



898

(lm), and the mean of the three LSTM layers (means). In addition, we experiment with the pre-trained
clinical BERT embeddings provided by Alsentzer et al. (2019) and train Word2Vec on the PubMed Cen-
tral Open Access database7 and clinical notes. In terms of generic corpora, we experiment with BERT
(whole word masking (wwm) configuration 8) and ELMo extracted from the 1B Word corpus (Chelba
et al., 2013), as well as GloVe (Pennington et al., 2014) (Wikipedia 2014 + Gigaword 5) and Word2Vec
(Mikolov et al., 2013) (Google News Corpus9). The embedding evaluation results are presented in Table
2 and discussed in Section 6.

4.2 Baselines

For automated scoring baselines, we experimented with mapping the examinee responses to the correct
answer to the item in its MCQ form (also known as MCQ key). This approach allows automated SAQ
scoring without the need of human rating but is limited to items that have an MCQ form or a correct
answer phrase used as a rubric. We also experiment with several methods to perform that match:

Exact match This is an exact match between the new instance and the MCQ key. If the new instance
matches an answer key, then it is considered correct, otherwise it is considered incorrect.

Exact match + Synonymy relation We use a heuristic to identify whether a response can be consid-
ered an equivalent to the MCQ key. The two are considered equivalent to each other if they are either a
typo of each other, or the customised edit distance between the two strings is zero. In the latter, the cost
of deletion of stop words10 is zero, the cost of replacing a word or a phrase with its WordNet (Miller,
1995) or UMLS (Unified Medical Language System) Meta-thesaurus (Schuyler et al., 1993) equivalent
is zero, and the cost of replacing a typo with its correct form is also zero. Such heuristic is designed to
be flexible and would determine that: “discontinue the simvastatin”, “stop statin” “discontinue simas-
tatin” and “discontinue simvastatin” are all equivalent, and similarly for “overnight polysomnography”
and “overnight sleep study”. The scoring is done as with the exact match approach.

Embedding similarity Each item was represented as a vector using mean pooling of all tokens. The
embedding similarity approach is based on the cosine similarity between the vector representation of a
new instance and an MCQ key. The assigned score is the cosine similarity between the two.

4.3 Predicting Examinee Proficiency from SAQ Responses

This subsection describes an approach to proficiency estimation from SAQ responses.
Model input and output The input for the model are the differences between the responses’ embed-

dings vectors and the correct answer embedding vectors. The model aims to predict the proficiency level
(model outputs) given the responses. We train the model on the first half of the responses together with
the proficiency estimates for each test-taker based on their performance on the 106 MCQs. The model
is then asked to predict proficiency scores for the test set (the remaining 50% of the data). Specifically,
given a response to a specific item, the model is asked to estimate the most likely proficiency level of
somebody who would produce such a response. This number (the most likely proficiency level) could
then be used as a “score” for that response, or used directly in the IRT equations.

Training and test split The somewhat unusual division of the data into training and test sets presented
here (50/50) is done with a specific practical consideration in mind. In practice, as the new items are first
embedded in the exam and administered, there would initially be very few responses. As the annual
cycle of the exam progresses and more data is accumulated, the data collected up to a certain point in
time forms the training set and is used to score the data coming after this temporal cutoff point (the test
set). Here, we present a conservative scenario where half of the data is used for training and the other half
for testing, which would allow for an implementation of the automated system sometime in the middle
of the annual cycle. While the exploration of the effects on training and test set sizes is not the focus

7https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
8https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_

A-16.zip
9https://news.google.com

10Stop words in our case include the generic stopwords, and domain specific stop words such as ”study”, ”level”, ”test”, etc.
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of this paper (see (Heilman and Madnani, 2015) for a study on this topic), it is conceivable that model
performance would improve as the year progresses and more training data becomes available.

What the model learns Conceptually, what the model aims to learn is how examinees of different
proficiency levels answer SAQs, so that an instance similar to the responses of examinees with high pro-
ficiency levels is scored high and vice-versa. Put differently, instead of using a human scorer to provide
the ground truth, the answers of the high-proficiency students from the training set provide a measure
of what are likely high-scoring responses and the answers of the students with lower proficiency levels
provide a measure of what are likely low-scoring responses. It is important to note that the answers from
the training set do not need to be scored by human raters; it is their relationship to the proficiency level
estimated from the 106 MCQs that is used to train the model and this relationship is later extrapolated
to the test set responses by virtue of their semantic similarity to the training set ones. In practical terms,
as the input to the model is a vector representing the difference between the response and the correct
answer, the problem is to learn how different dimensions in the vector representation influence the out-
puts, or in other words, their weights. This contrasts the embedding similarity approach, in which the
similarity is calculated under the assumption of equal dimension weights. To learn the weights of each
dimension of the embedding vectors we use the default-parameter RidgeCV regressor from the sci-kit
learn Python library (Pedregosa et al., 2011), which performs ridge regression with Generalized Cross
Validation (also known as efficient leave-one-out cross validation).

When training the model we experiment with two settings. In the first one, we train one model using
the responses to all items, and, as a result, we learn a set of weights for all items. In the second setting,
we train a model for each item, thus learning different sets of weights for different items.

4.4 Evaluation Metrics

This section presents commonly used metrics from the field of psychometrics for expressing the rela-
tionships between individual scores and proficiency, computed as follows:

Item-level correlation is represented as ri = pearsonr(scorei,j , θj), where scorei,j is the score of
the response of examinee j for item i and θj is the proficiency level of the examinee j, as measured using
106 operationally scored items. The correlation is calculated using all examinees js that responded to
the item i. A higher correlation indicates the item can contribute more to the scoring and vice versa.

Examinee-level correlation is represented as r = pearsonr(sum(scorei,j , scorek,j), θj), where the
scorei,j , and scorek,j are the scores of the responses of examinee j for the two experimental items i
and k. The higher the correlation, the more predictive power of the scores to the proficiency level. The
correlation is calculated using all examinees j.

We apply these two metrics to both the experimental MCQ items and the SAQ items. For the MCQ
items, the scores are either 0 (incorrect choice), or 1 (correct choice) for the two items that were presented
to the examinees. For SAQs, the “scores” are produced using the proposed method (Section 4.3).

5 Results

Table 2 shows that most embedding types perform in a similar way, with no statistically significant
differences between those with higher correlations. Best results were achieved by ELMo trained on
Medline clinical abstracts and BERT embeddings trained on Wikipedia + BookCorpus. Interestingly,
no clear pattern emerged with respect to the usefulness of domain-specific embeddings. While there
is no clear explanation for this lack of an effect, it may possibly be related to the size of the corpora
or it could mean that most of the variations found in the answers were everyday variations, rather than
medicine-specific ones (e.g., “drug side effects” and “effect of medication”). Based on these results,
the embeddings presented hereafter refer to the best performing embedding type, namely ELMo (token,
1024 dimensions) trained on Medline clinical abstracts. Next, the results for item-level correlations to
proficiency are presented in Table 3, while examinee-level correlations are presented in Table 4.

As can be seen from the item-level results (Table 3), the approach proposed in this study has the highest
mean correlation to proficiency (.26), which is higher than all baselines and compared to .21 for the MCQ
version of the items. Its SD (.072) is slightly higher compared to that of MCQ scores (.065). It is also
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Item level Examinee level
Embedding type Corpus Mean SD Mean SD
Bert wwm (embedding) Medline .19 .044 .23 .058
Bert wwm (pooled) Medline .17 .044 .20 .059
Bert wwm (embedding) Wikipedia + BookCorpus .19 .047 .23 .062
Bert wwm (pooled) Wikipedia + BookCorpus .13 .042 .17 .058
Clinical Bert (embedding) MIMIC-III v1.4 .13 .053 .16 .077
Clinical Bert (pooled) MIMIC-III v1.4 .18 .044 .22 .058
ELMo (512 dimensions) One Billion Word Benchmark .18 .039 .21 .052
ELMo lm (1,024 dimensions) Medline .18 .041 .22 .054
ELMo mean0 (1,024 dimensions) Medline .18 .04 .22 .054
ELMo token (1,024 dimensions) Medline .19 .039 .23 .054
GloVe (300 dimensions) Wiki 2014 + Gigaword 5 .17 .039 .20 .054
Word2Vec PMC (300 dimensions) PubMed Central OA .16 .042 .20 .054
Word2Vec PMC (600 dimensions) PubMed Central OA .16 .044 .20 .057
Word2Vec Generic (300 dimensions) Google news .17 .039 .20 .054

Table 2: Mean correlation and SD for various embedding types and training corpora. The results are
calculated across all tasks ( baselines + proficiency modeling) at both the item-level and the examinee-
level. In this experiment, we run the experiments on more settings than reported in this paper.

Method Mean STD Min 25% 50% 75% Max N

MCQ items .210 .065 .039 .179 .210 .253 .341 53,206

Automated Scoring Baselines
Exact match .104 .100 -.061 .028 .082 .175 .361 37,107*

Exact match + synonyms .103 .110 -.061 .006 .104 .191 .337 43,231*
Embedding similarity .198 .088 -.021 .154 .196 .263 .409 50,389

Proficiency modeling (using ELMo embeddings)
Joint model for all items .262 .084 .047 .219 .270 .319 .448 26,626

One model per item .267 .079 .059 .222 .265 .323 .457 26,626

Table 3: Results per item: Pearson correlation between various approaches and the examinee profi-
ciency metric. The column N represent the number of scored responses using each method. *: We
ignore items to which nobody responded either exactly as or synonymous to the MCQ key, as such
scores (all zeros) are not informative.

interesting to note that the embedding similarity approach performs almost as good as MCQ scores. In
terms of the coverage for the different approaches, in the matching-MCQ-key baseline, there are only 73
items (37,107 responses) for which at least one examinee responded with an exact match to the MCQ
key, and there are 83 items for which there exists at least one response that either exactly matches the
MCQ key, or is considered by the heuristic to be equivalent to the MCQ key (43,231 responses). The
embedding similarity approach covers the whole set of responses (50,389). The proficiency modeling
approach proposed by this study covered 26,626 responses due to having 50% of the responses in the
training set. However, once trained, the model can be applied to an unlimited number of new responses.

The examinee-level results (Table 4) reveal a similar pattern, where the proposed proficiency-modeling
approach provides a correlation of 0.316 compared to 0.261 for the MCQ scores approach. This result
refers to training one model per item and it outperforms the model trained on data from all items together
(0.288). This conclusion is in accordance with the results for item-level correlations.

6 Discussion

Probably the most important finding from this study is that, for our sample, SAQ “scores” assigned
through the proposed approach can contribute more to the precision of proficiency measurement than the
MCQ form of the same items (indicated by the higher correlation between the former to proficiency).
In addition, the method outperformed baselines relying on matching the response to a rubric (the MCQ
key), which is the approach of choice in most existing approaches to SAQ scoring. For the baselines,
the moderate success of matching the responses to a single key phrase is likely a consequence of the
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Method Examinees r

MCQ items 26603 0.261

Baselines
Exact match 13,371* 0.159
Exact match + synonyms 18,110* 0.154
Embedding Similarity 24,659 0.212

Proficiency modeling (ELMo)
Joint model for all items 12,918 0.288
One model per item 12,918 0.316

Table 4: Results per examinee: Pearson correlation between the sum of two scores per examinee and
proficiency. *: We ignore items to which nobody responded either exactly as or synonymous to the MCQ
key, as such scores (all zeros) are not informative.

shortness of our responses and is somewhat similar to the observation made by Zesch et al. (2015) that
semi-supervised clustering approaches work for very short but not for lengthy responses. It is therefore
possible that this approach may not generalize well over formats requiring longer responses and the
baseline results for those could be lower. Notably, the presented results are a product of a conservative
scenario where only 50% of the data is used for training. Overall, these preliminary results show that a
model which learns the associations of different responses to proficiency has the potential to improve the
precision of proficiency measurement, while also eliminating the need for labeled training data.

Validity: An interesting question related to the validity of this approach is the argument that the pro-
ficiency metric is developed based on MCQs, which may measure different kinds of skills compared
to SAQs. In fact, it is this hypothesis that ignited the interest in using SAQs in the first place. While
acknowledging that such subtle differences may exist, it is not far-fetched to assume that both formats
measure the generic construct of clinical skills knowledge. Proficiency was measured using 106 MCQs
with known psychometric characteristics and can therefore be regarded as a reliable metric of clinical
skill knowledge. It is also possible that the output would correlate better if proficiency is measured using
other SAQs rather than MCQs, but this remains to be tested empirically.

Limitations and operational feasibility: While offering better estimations of proficiency, the approach
has the drawback of having low interpretability which is an important prerequisite for high-stakes stan-
dardized exams. In addition, its relevance needs to be regularly assessed to ensure that there are no major
differences between the responses of different-year cohorts. With these caveats in mind, the approach
can be easily applied to other standardized exams. Since large-scale standardized tests typically require
that any new item is pretested, there will always be other items (in MCQ, SAQ or other format), which
can be used to measure the ground-truth proficiency. Once trained on the pretested data, the model can
be applied for scoring an unlimited number of new responses and the item can be used as a live one. The
method could also be useful for predicting examinee proficiency in formative assessments such as those
in Massive Open Online Courses (MOOCs), which do not offer manual scoring due to the high volume of
responses (in fact, they rarely use the SAQ format for the same reason). In these cases, high-proficiency
students could be defined through other criteria such as likelihood of course completion, quiz answers,
peer ratings of forum responses, etc. While this scenario would require research on defining proficiency
in the context of MOOCS, the proposed approach could be well suited to provide short-answer scoring
when manual labeling is not feasible.

It is important that the findings presented in this study are regarded as preliminary until a large-scale
evaluation is conducted across different samples of questions and examinees, as well as compared to
results from human scoring. The validity of the approach needs to be further tested with proficiency
measured using other SAQs. In spite of its limitations and the preliminary nature of the findings, this
study presented a proof of concept showing that pretest SAQ scoring through modeling proficiency is
a viable way to assign meaningful scores to new responses. These were shown to contribute to better
measurement of overall proficiency for the pretest items without relying on a labeled training set.
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7 Conclusion

This paper presented experiments towards modeling examinee proficiency as an alternative to the human
scoring of SAQs. First, an IRT proficiency metric was computed based on the test-takers’ performance on
106 MCQs. After that, the responses to SAQs were used as an input to a model aiming to predict exami-
nee proficiency. The results were compared to those achieved through MCQ scores and through several
automated-scoring baselines in terms of the correlation between the “scores” given by each method and
the overall examinee proficiency. The results indicated that the predicted proficiency for items in the test
set used as a response score for these items has a higher correlation to the proficiency metric at both the
item level and the examinee level compared to the MCQ scores and the automated scoring baselines.
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