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Abstract

Due to the compelling improvements brought by BERT, many recent representation models
adopted the Transformer architecture as their main building block, consequently inheriting the
wordpiece tokenization system despite it not being intrinsically linked to the notion of Transform-
ers. While this system is thought to achieve a good balance between the flexibility of characters
and the efficiency of full words, using predefined wordpiece vocabularies from the general domain
is not always suitable, especially when building models for specialized domains (e.g., the medical
domain). Moreover, adopting a wordpiece tokenization shifts the focus from the word level to the
subword level, making the models conceptually more complex and arguably less convenient in
practice. For these reasons, we propose CharacterBERT, a new variant of BERT that drops the
wordpiece system altogether and uses a Character-CNN module instead to represent entire words
by consulting their characters. We show that this new model improves the performance of BERT
on a variety of medical domain tasks while at the same time producing robust, word-level, and
open-vocabulary representations.

1 Introduction

Pre-trained language representations from Transformers (Vaswani et al., 2017) have become arguably
the most popular choice for building NLP systems1. Among all such models, BERT (Devlin et al., 2019)
has probably been the most successful, spawning a large number of new improved variants (Liu et al.,
2019; Lan et al., 2019; Sun et al., 2019; Zhang et al., 2019; Clark et al., 2020). As a result, many of the
recent language representation models inherited BERT’s subword tokenization system which relies on a
predefined set of wordpieces (Wu et al., 2016), supposedly striking a good balance between the flexibility
of characters and the efficiency of full words.

While current research mostly focuses on improving language representations for the default “general-
domain”, there seems to be a growing interest in building suitable word embeddings for more specialized
domains (El Boukkouri et al., 2019; Si et al., 2019; Elwany et al., 2019). However, with the growing
complexity of recent representation models, the default trend seems to favor re-training general-domain
models on specialized corpora rather than building models from scratch with a specialized vocabulary (e.g.,
BlueBERT (Peng et al., 2019) and BioBERT (Lee et al., 2020)). While these methods undeniably produce
good models 2, a few questions remain: How suitable are the predefined general-domain vocabularies
when used in the context of specialized domains (e.g., the medical domain)? Is it better to train specialized
models with specialized subword units? Do we induce any biases by training specialized models with
general-domain wordpieces?

In this paper, we propose CharacterBERT, a possible solution for avoiding any biases that may come
from the use of a predefined wordpiece vocabulary, and an effort to revert back to conceptually simpler
word-level models. This new variant does not rely on wordpieces but instead consults the characters of

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1See the leaderboard of the GLUE benchmark.
2See the baselines from the BLUE benchmark.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://gluebenchmark.com/leaderboard
https://github.com/ncbi-nlp/BLUE_Benchmark/#baselines
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each token to build representations similarly to previous word-level open-vocabulary systems (Luong and
Manning, 2016; Kim et al., 2016; Jozefowicz et al., 2016). In practice, we replace BERT’s wordpiece
embedding layer with ELMo’s (Peters et al., 2018) Character-CNN module while keeping the rest of
the architecture untouched. As a result, CharacterBERT is able to produce word-level contextualized
representations and does not require a wordpiece vocabulary. Furthermore, this new model seems better
suited than vanilla BERT for training specialized models, as evidenced by an evaluation on multiple tasks
from the medical domain. Finally, as expected from a character-based system, CharacterBERT is also
seemingly more robust to noise and misspellings. To the best of our knowledge, this is the first work that
replaces BERT’s wordpiece system with a word-level character-based system.

Our contributions are the following:

• We provide preliminary evidence that general-domain wordpiece vocabularies are not suitable for
specialized domain applications.

• We propose CharacterBERT, a new variant of BERT that produces word-level contextual representa-
tions by consulting characters.

• We evaluate CharacterBERT on multiple specialized medical tasks and show that it outperforms
BERT without requiring a wordpiece vocabulary.

• We exhibit signs of improved robustness to noise and misspellings in favor of CharacterBERT.

• We enable the reproducibility of our experiments by sharing our pre-training and fine-tuning codes.
Furthermore, we also share our pre-trained representation models to benefit the NLP community3.

This work has only focused on the English language and the medical (clinical and biomedical) domain.
The generalization to other languages and specialized domains is left to future work.

2 General-Domain Wordpieces in Specialized Domains

Since many specialized versions of BERT come from re-training the original model on a set of specialized
texts, we carry out a couple of preliminary experiments to gauge the effect of using a general-domain
wordpiece vocabulary in a specialized domain. Here we focus on the medical domain for which we
learn4 a new wordpiece vocabulary using MIMIC-III clinical notes (Johnson et al., 2016) and PMC OA5

biomedical article abstracts. We then process a sample (1M tokens) of the medical corpus with either the
medical vocabulary or BERT’s original vocabulary and examine the difference.

Looking at the frequency of splitting an unknown token into multiple wordpieces (cf. Figure 1) we see
that the medical vocabulary produces overall less wordpieces than the general version, both at occurrence
and type levels. Moreover, we see that ≈ 13% of occurrences are never split as they are already part of
the medical vocabulary but are decomposed into two or more wordpieces by the general vocabulary.

Reference Medical Vocabulary General Vocabulary

paracetamol [paracetamol [para, ce, tam, ol]
choledocholithiasis [choledoch, olithiasis] [cho, led, och, oli, thi, asi, s]
borborygmi [bor, bor, yg, mi] [bo, rb, ory, gm, i]

Table 1: Comparison of the tokenization of specific medical terms by vocabularies from different domains.

When looking closer at the quality of the produced wordpieces (cf. Table 1), we see that in addition
to producing fewer subwords, the specialized vocabulary also seems to produce more meaningful units
(e.g. “choledoch” and “olithiasis”). These preliminary analyses show that the choice of a vocabulary

3Our models and code are available at: https://github.com/helboukkouri/character-bert.
4We use the open-source implementation in SentencePiece.
5PubMed Central Open Access.

https://github.com/helboukkouri/character-bert
https://github.com/google/sentencepiece
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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Figure 1: Comparison of the tokenization of a medical corpus by vocabularies from different domains.

affects the quality of the tokenization which may in turn induce biases in downstream applications of
the representation model. To avoid such biases, and in an effort to revert back to more convenient and
conceptually simpler word-level models, we propose CharacterBERT, a wordpiece-free variant of BERT.

3 CharacterBERT

CharacterBERT is similar in every way to vanilla BERT but uses a different method to construct initial
context-independent representations: while the original model consults its vocabulary to split unknown
tokens into multiple wordpieces then embeds each unit independently using a wordpiece embedding
matrix, CharacterBERT uses a Character-CNN module (Peters et al., 2018; Jozefowicz et al., 2016) which
consults the characters of a token to produce a single representation (see Figure 2).

Figure 2: Comparison of the context-independent representation systems in BERT and CharacterBERT.
In this illustration, BERT splits the word “Apple” into two wordpieces then embeds each unit separately.
CharacterBERT produces a single embedding for “Apple” by consulting its sequence of characters.
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3.1 Character-CNN: Building Word Representations From Characters

We use the Character-CNN that is implemented as part of ELMo’s architecture. This module constructs
context-independent token representations through the following steps:

1. Each token is converted into a sequence of characters6 with a maximum sequence length of 50.

2. A lookup is performed for each character, producing a sequence of 16-d embeddings.

3. The character embedding sequence is fed to multiple 1-d CNNs (LeCun et al., 1989) with different
filters7. The output of each CNN is then max-pooled across the character sequence and concatenated
with other CNN outputs to produce a single representation.

4. The CNN representation then goes through two Highway layers (Srivastava et al., 2015) that apply
non-linearities with residual connections before being projected down to a final embedding size
which we chose to be coherent with BERT’s 768-dimensional wordpiece representations.

As with BERT, we add the token embedding (here, the Character-CNN representation) to position
and segment embeddings before feeding the resulting context-independent representation to several
Transformer layers. Since CharacterBERT does not split tokens into wordpieces, each input token is
assigned a single final contextual representation by the model.

3.2 Pre-training Procedure

Like BERT, our model is pre-trained on two tasks: a Masked Language Modelling task (MLM) and
a Next Sentence Prediction task (NSP). The only difference lies in the MLM task where instead of
predicting single wordpieces, we predict entire words. This natural consequence of handling words instead
of wordpieces is somewhat related to recent work on Whole Word Masking which has been shown to
improve the quality of BERT models8 (Cui et al., 2019).

4 Experiments

We compare BERT and CharacterBERT on multiple medical tasks to evaluate the impact of using a
Character-CNN module instead of wordpieces. In an attempt to dissociate this impact from any other
effects that may be related to training models in our own specific settings, we train each CharacterBERT
model alongside a BERT counterpart in the exact same conditions.

4.1 Model Settings

We base our models on the “base-uncased” version of BERT, which uses 12 Transformer layers with
12 attention heads and produces 768-d representations from uncased texts. This version has ≈ 109.5M
parameters and the corresponding CharacterBERT architecture has ≈ 104.6M parameters. It is interesting
to note that using a Character-CNN actually results in a smaller overall model despite using a seemingly
complex character module. This is because BERT’s wordpiece matrix has ≈ 30K × 768-d vectors while
CharacterBERT uses smaller 16-d character embeddings with mostly small-sized CNNs.

We pre-train four different models to simulate the usual situation where BERT is first pre-trained on a
general corpus before being re-trained on a set of specialized texts:

BERTgeneral: a general-domain model obtained by pre-training BERT on a general corpus. It uses the
same architecture and wordpiece vocabulary as BERT (base, uncased).

CharacterBERTgeneral: a general-domain model obtained by training CharacterBERT on a general
corpus. Besides the Character-CNN, it uses the same architecture as BERTgeneral.

6In practice, the tokens are encoded in UTF-8 and all characters including non-ascii symbols are converted into bytes. This
allows us to keep a small byte vocabulary of size 256 to which we add a few special symbols for a total of 263.

7We use seven 1-d CNNs with the following filters: [1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512] and [7, 1024].
8Google updated their repository with Whole Word Masking models that improve over the original BERT.

https://github.com/google-research/bert
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BERTmedical: a medical model obtained by re-training BERTgeneral on a medical corpus.

CharacterBERTmedical: a medical model obtained by re-training CharacterBERTgeneral on a medical
corpus. This is the Character-CNN analog of BERTmedical.

4.2 Pre-training Phase

4.2.1 Corpora
The original BERT was pre-trained on English Wikipedia and BooksCorpus (Zhu et al., 2015). Since the
latter is not publicly available anymore, we replace it with OpenWebText (Gokaslan and Cohen, 2019)
to train our general-domain models. We also build a specialized corpus from MIMIC-III and PMC OA
abstracts to train our medical-domain models (see Table 2).

Corpus Composition # documents # tokens

General
Wikipedia (EN) 5.99× 106 2.14× 109

OpenWebText 1.56× 106 1.28× 109

Medical
MIMIC-III 2.09× 106 5.05× 108

PMC OA abstracts 2.33× 106 5.22× 108

Table 2: Statistics on pre-training corpora.

4.2.2 Pre-training Setup
We train each model using 16 Tesla V100-SXM2-16GB GPUs and following the implementation and
parameters in the NVIDIA codebase9. Each complete pre-training phase consists of two steps:

Step 1 3,519 updates with a batch size10 of 8,192 and a learning rate of 6.10−3 on sequences of size 128.

Step 2 782 updates with a batch size of 4,096 and a learning rate of 4.10−3 on sequences of size 512.

All models are optimized using LAMB (You et al., 2019) with a warm-up rate and weight decay of 0.01.

4.3 Evaluation Phase

4.3.1 Tasks
All models are evaluated on five medical tasks after adding task-specific layers (Devlin et al., 2019).

Medical Entity Recognition We evaluate our models on the i2b2/VA 2010 (Uzuner et al., 2011) clinical
concept extraction task which aims to extract three types of medical concepts: PROBLEM (e.g.
“headache”), TREATMENT (e.g. “oxycodone”), and TEST (e.g. “MRI”).

Natural Language Inference We also evaluate on the clinical natural language inference task MEDNLI
(Romanov and Shivade, 2018) that aims to classify sentence pairs into three categories: CONTRA-
DICTION, ENTAILMENT, and NEUTRAL.

Relation Classification For more variety, we also evaluate on two biomedical relation classification tasks:
ChemProt (Krallinger et al., 2017) from the BioCreative VI challenge and DDI (Herrero-Zazo et al.,
2013) from SemEval 2013 - Task 9.2. The goal of ChemProt is to detect and classify chemical-protein
interactions as ACTIVATOR (CPR:3), INHIBITOR (CPR:4), AGONIST (CPR:5), ANTAGONIST (CPR:6),
or SUBSTRATE (CPR:9). The goal of DDI is to detect and classify drug-drug interactions into the
following categories: ADVISE (DDI-advise), EFFECT (DDI-effect), MECHANISM (DDI-mechanism),
and INTERACTION (DDI-int).

9More specifically, we adapt these scripts to our needs.
10We use gradient accumulation for larger batch sizes.

https://biocreative.bioinformatics.udel.edu/resources/corpora/chemprot-corpus-biocreative-vi/
https://www.cs.york.ac.uk/semeval-2013/task9/
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
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Sentence Similarity Finally, we also evaluate our models on the clinical sentence similarity task Clini-
calSTS (Wang et al., 2018a) from BioCreative/OHNLP Challenge 2018, Task 2 (Wang et al., 2018b).
The goal here is to produce similarity scores for sentence pairs that correlate with the gold standard.

We provide examples for each task in Figure 3 and report the number of examples in Table 3.

i2b2 MEDNLI ChemProt DDI ClinicalSTS

Train 24,757 11,232 19,460 18,779 600
Val. 6,189 1,395 11,820 7,244 150
Test 45,404 1,422 16,943 5,761 318

Table 3: Number of examples of each evaluation task.

Figure 3: Examples from each evaluation task.

4.3.2 Evaluation Setup
Given all the pre-trained models, the evaluation tasks, and a set of random seeds i ∈ 1..10:

1. We choose a pre-trained model, an evaluation task, and a random seed i then run 15 training epochs
with batches of size 32.

2. At each epoch, we evaluate the model on a validation set that is either given or computed as 20% of
the training set. According to the validation performance, we save the best model.

3. After completing all training epochs, we load the best model and evaluate it on the test set.

4. We repeat the whole process for all seeds to compute a final performance as mean ± std.

In addition to being useful for measuring model variability, fine-tuning 10 versions for each model
also enables us to build ensembles. In fact, by using a majority voting strategy, we are able to combine
the predictions from each seed into a single ensemble model11. In practice we do not use all seeds at
once: we exclude a single seed, build an ensemble then repeat this process to get 10 ensembles for each
model setting which can be used to compute a final ensemble performance as mean ± std. All fine-tuning
experiments are run on a single Tesla V100-PCIE-32GB and are optimized using the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 3e-5, a warm-up ratio of 0.1, and a weight decay of 0.1.

11For ClinicalSTS, we use the average predicted score instead of a majority class since the targets are continuous.
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5 Results and Discussion

5.1 Speed Benchmark
5.1.1 Pre-training
Using the setup detailed in Section 4.2.2, training a single BERT through Steps 1 and 2 takes around
26.5 hours for BERT and 55 hours for CharacterBERT even though both architectures have about the
same number of parameters. This large gap in pre-training speed is partly due to the Character-CNN
being slower to train as it is more complex than the original wordpiece embedding matrix. However, the
main reason for the slower pre-training is that we are not able to use a very specific trick during Masked
Language Modelling. In fact, BERT shares the parameters of its wordpiece embedding matrix with the
MLM output layer, which allows it to train faster. In our case, since we do not use wordpieces, we build a
temporary vocabulary from the top 100K tokens in the training corpus and use them as targets for MLM12.
We expect that improved pre-training speed can be achieved using Noise Contrastive Estimation (Mnih
and Kavukcuoglu, 2013) or similar methods. However, such optimizations are left for future work.

5.1.2 Fine-tuning
In addition to pre-training speed, we also report the fine-tuning speed both at training and inference time.

Figure 4: Training/inference speed comparison.

Figure 4 shows that CharacterBERT is much less at a disadvantage when it comes to fine-tuning (19%
slower on average instead of 108%). However, in the specific case of the DDI task, CharacterBERT is
actually 14% faster than BERT. This exceptional behavior may be due to the presence of many domain-
specific terms that are split into multiple wordpieces, thus increasing the input size with BERT. In fact,
since our model works at the word level, the input size is stable and data batches may be processed faster
than with BERT. At inference time, CharacterBERT is slightly faster than BERT as the Character-CNN is
not as slow during inference as it is during optimization.

5.2 Reproducing Vanilla Models
We report the performance of BERT(base, uncased) as well as BlueBERT(base, uncased) (Peng et al.,
2019), a medical model pre-trained on MIMIC-III and PubMed abstracts13. Including these results allows
us to evaluate the quality of our pre-training procedure. Figure 5 shows that BERTgeneral performs slightly
worse than the original BERT despite using exactly the same architecture. However, this difference
is small and can be attributed to either the different general-domain corpora (OpenWebText instead of
BooksCorpus) or to differences in pre-training parameters (number of updates, batch size...). Moreover,
we see that BERTmedical performs at the same level as BlueBERT, sometimes outperforming the latter
substantially (≈ +4 F1 on ChemProt), which allows us to safely assume our pre-training procedure to be
correct.

5.3 Ensembles and Model Selection
We can see from Figure 5 that ensembles (orange bars) clearly improve over single models (blue bars).
While not surprising per se, it is worth noting that these ensembles were produced using a naive majority
voting strategy which can easily be applied as a post-processing step. Moreover, we see that the test

12Please note that this also means that we never mask tokens that are not within the top 100K most frequent tokens.
13Note that BlueBERT is trained on PubMed abstracts while our medical models are trained on PMC OA abstracts.
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Figure 5: Comparison of pre-trained models when fine-tuned on several medical tasks. For each model,
the test performance of 10 random seeds is expressed as mean ± std and is shown in blue for single
models and orange for ensembles. The performance of the best validation seed is shown in red.

results of the best validation model (red symbol) are always below those of the ensembles’ performance.
Finally, we note that ensembles have substantially lower variances compared to single models, which
makes them more reliable for comparisons.

5.4 BERT vs. CharacterBERT: How Significant Is the Difference?
Figure 5 shows that CharacterBERT often improves over a vanilla BERT. In particular, our medical model
improves over the ensemble performance of BERTmedical by ≈ 1.5 points on ChemProt, ≈ 2 points on
DDI, and ≈ 0.5 points on MEDNLI and i2b2. However, we see that CharacterBERTmedical performs
worse than BERT in the specific case of ClinicalSTS and suffers from a surprisingly high variance. Since
the ClinicalSTS dataset is also very small compared to the other datasets, these results should be taken
with care even if the difference with BERT seems to be significant according to Figure 6. Results with
general-domain models seem to also be in favor of CharacterBERT. However, these differences may not
be substantial.

To provide a more rigorous evaluation of the statistical significance of our results, we perform Almost
Stochastic Order tests (ASO) (Dror et al., 2019) for each pair of models. ASO tests aim to determine
whether a stochastic order exists between two models based on their respective sets of evaluation scores.
In practice, given the 10 single model scores of two chosen models A and B, the method computes a
test-specific value ε that indicates how far model A is from being significantly better than model B. This
distance ε is equal to 0 when model A � B, 1 when B � A, and 0.5 when no order can be determined.
Figure 6 shows the values of ε for all model pairs on each task. Looking at the average significance matrix,
we can see that CharacterBERTgeneral improves over its BERT counterpart (cell [d,c]). Moreover, we see
that the overall best model is CharacterBERTmedical as evidenced by the bottom blue row (cells [f,a] to
[f,e]), which further validates that our model indeed improves over vanilla BERT.

5.5 Robustness to Noise and Misspellings
We want to investigate whether CharacterBERT is more robust to noise and misspellings than BERT. For
that purpose, we create noisy versions of the MEDNLI corpus where, given a noise level of X%, we
transform each token with the same probability into a misspelled version either by removing, adding,
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Figure 6: Statistical significance: Minimal distance ε for Almost Stochastic Order at level α = 5%. Blue
cells mean that the left model is significantly better than the bottom model. Red cells mean the opposite.

replacing a single character or swapping two consecutive characters. We conduct experiments where noise
is added to the test set only as well as experiments adding noise to the train/dev/test splits.

Figure 7: Comparing BERT and CharacterBERT on noisy (misspelled) versions of MEDNLI test.

Figure 7 shows the results for BERTmedical and CharacterBERTmedical with various noise levels. We see
that the latter is indeed more robust to misspellings as evidenced by the slower decrease in performance
compared to BERT. In particular, when a noise level of 40% is applied to the test set only, CharacterBERT
is ≈ 5 F1 higher than BERT whereas the original difference between the two models was < 1 F1.
Experiments adding noise to all splits show that both models can learn to be more robust, however,
CharacterBERT remains at an advantage.

5.6 Discussion and Future Work

Overall CharacterBERT seems to either perform at the same level or improve over BERT. This is especially
true for the specialized versions and is further validated by the ASO tests. The new variant also seems to be
more robust to misspellings while at the same time producing word-level open-vocabulary representations.
This improved robustness is desirable since BERT seems to be sensitive to misspellings (Pruthi et al.,
2019; Sun et al., 2020). On the downside, CharacterBERT is slower to pre-train, although not as slow to
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fine-tune and even slightly faster at inference time. Future work may apply a Character-CNN to recent
Transformer-based models (Lan et al., 2019; Sun et al., 2019), optimize the pre-training architecture to
improve its speed, or explore any other advantages of a character-level system over wordpieces.

6 Conclusion

The overall strategy when building specialized versions of BERT seems to be re-training the original
model on a specialized corpus. This implies keeping a general-domain wordpiece vocabulary that may
not be suited for the domain of interest. Our main contribution is CharacterBERT, a variant of BERT that
drops the wordpiece system altogether in favor of a Character-CNN. This module represents tokens by
consulting their characters, allowing our model to produce word-level open-vocabulary representations.
We evaluate CharacterBERT and show that it globally outperforms BERT when specialized for the medical
domain while at the same time being more robust to misspellings.
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A Appendices

A.1 Detailed Test Scores
Figure 8 provides numerical evaluation scores for the models displayed in Figure 5. To give a better idea
about the distribution of model scores, these are reported as first, second (median), and third quartiles.

Figure 8: Performance of our pre-trained models when fine-tuned on five different medical tasks. Two
baselines are included: BERT (Devlin et al., 2019) using the “base-uncased” architecture, and BlueBERT
(Peng et al., 2019) a medical BERT that is the result of re-training the former model on MIMIC-III and
PubMed abstracts. Legend: Qi = i-th quartile, E = ensemble, S = single model.
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