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Abstract

Abstractive summarization at controllable lengths is a challenging task in natural language pro-
cessing. It is even more challenging for domains where limited training data is available or
scenarios in which the length of the summary is not known beforehand. At the same time, when
it comes to trusting machine-generated summaries, explaining how a summary was constructed
in human-understandable terms may be critical. We propose Multi-level Summarizer (MLS), a
supervised method to construct abstractive summaries of a text document at controllable lengths.
The key enabler of our method is an interpretable multi-headed attention mechanism that com-
putes attention distribution over an input document using an array of timestep independent se-
mantic kernels. Each kernel optimizes a human-interpretable syntactic or semantic property.
Exhaustive experiments on two low-resource datasets in English language show that MLS out-
performs strong baselines by up to 14.70% in the METEOR score. Human evaluation of the sum-
maries also suggests that they capture the key concepts of the document at various length-budgets.

1 Introduction

Great progress has been made in recent years on abstractive summarization of text documents. Among
existing works, sequence-to-sequence networks with attention (Gehring et al., 2017; Liu et al., 2018a)
have been one of the clear front-runners. Being able to constrain the length of a summary while preserv-
ing its desirable properties has many real-world applications. One such application is content optimiza-
tion for variable screen-sizes. Online content creators such as news portals, blogs, and advertisement
agencies with audiences on multiple platforms customize their content based on display-area for best ex-
perience. However, there has not been much work on summarization at controllable lengths until recently.
High variance in screen-sizes often require extensive human supervision to perform these modifications.
As most sequence-to-sequence networks (Rush et al., 2015; Nallapati et al., 2016) do not enforce the
length of a summary, for scenarios as mentioned above, one may need to employ an ensemble of net-
works to cover all possible lengths. There are two major challenges in following this approach for real-
world applications. First, training sequence-to-sequence networks is a resource-intensive task (Strubell
et al., 2019). To train a network for generating summaries budgeted at length b, we need a parallel corpus
of text documents and their gold-standard summaries at length b. Constructing a large enough corpus
with summaries budgeted at b,∀b ∈ (0, 1) may not be possible and/or cost-efficient for a number of do-
mains. This is one of the main reasons why most existing works on abstractive summarization evaluate
their model on large-scale news corpus datasets (Nallapati et al., 2016; Hermann et al., 2015), leaving
out a number of important but low-resource domains (Magooda and Litman, 2020; Parida and Motlicek,
2019) where the number of available training documents is limited. Second, the range of possible length-
budgetsR(b) may not always be known beforehand. In many scenarios, it can be known as late as during
run-time. Therefore, we formalize the summarization task addressed in this paper as follows.

Problem Definition: Given a document S of length N (tokens) and a maximum token budget of b,
we aim to construct an abstractive summary sb that satisfies the following conditions, C1: information
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Input text
police are hunting a man aged between 50 and 60 suspected of robbing a bank in broad daylight and running off
with £3,000 in cash. the robbery took place at 12.30pm at a lloyds bank branch in fairwater, cardiff, police said. detectives
have issued cctv images of the suspect, who is 50 to 60, 5ft 9in to 6ft and was wearing black clothing. the white male
suspect, who has greying black hair and wore glasses, was captured on camera inside the bank. detectives said no
one was injured during the robbery and they were ‘confident’ the public would be able to identify the suspect. detective
sergeant andy miles, from fairwater cid, said: ‘inquiries are continuing to identify the culprit. the cctv is clear and i am
confident that members of the public will know his identity...’. (truncated)

Summary at compression budget = 1
2

police are hunting a man aged between 50 and 60 suspected of robbing a bank in broad daylight and running off with
£3,000 in cash. the robbery took place at 12.30pm at a lloyds bank branch in fairwater, cardiff, police said. the white male
suspect, who has greying black hair and wore glasses, was captured on camera inside the bank. detectives have issued cctv
images of the suspect, who is 50 to 60, 5ft 9in to 6ft and was wearing black clothing. detective sergeant andy miles, from
fairwater cid, said: ‘inquiries are continuing to identify the culprit.

Prototype Summary
robbery took place at 12.30pm at a lloyds bank branch in fairwater , cardiff. detectives have issued cctv images of the suspect
, who is 50 to 60. detective sergeant andy miles , from fairwater cid , said : ’ inquiries are continuing to identify the culprit.

Figure 1: MLS expands the highlighted sentences in the prototype summary to the boldfaced tokens in
the input text to construct a summary budgeted at half-length of the input text

redundancy is minimized in sb; C2: coverage of the major topics of S is maximized in sb; C3: length
of sb is maximal within the specified budget b without adversely affecting the conditions C1 and C2 i.e.,
|sb| ≤ b& @sc such that |sb| < |sc| ≤ b. C1 and C2 ensure that the properties of a high-quality summary
is preserved in sb, whereas C3 ensures that sb is the largest possible summary that can be constructed
within budget b without compromising its quality. Note that C1 and C2 are seemingly contradictory to
each other as the length of the summary increases. Our goal is to find the optimal tradeoff.

Early works on incremental summarization (Buyukkokten et al., 2001; Yang and Wang, 2003)
leveraged structural tags supported by document markup languages to generate summaries at various
lengths, thus imposing a serious constraint on the document formats (e.g. XML, HTML) that come under
the purview of such methods. Incremental sampling of sentences based on a salience score (Otterbacher
et al., 2006; Campana and Tombros, 2009) can partially solve this problem by constructing extractive
summaries of the input document. We show in Section 3 that these sampling-based methods often
fail to preserve the desirable properties of a high-quality summary. Among recent works, (Kikuchi
et al., 2016) were the first to propose a supervised method for controlling length during abstractive
summarization. Their work was later extended by (Fan et al., 2017) who introduced the length of a
summary as an input to the network. However, instead of exact input, they approximate the length to
a predefined value-range, often failing to adhere to the allocated budget in a number of cases. (Liu
et al., 2018b) address this issue by proposing a convolutional encoder-decoder network, introducing
the desired summary length as an input to the initial state of the decoder. We compare and report its
performance on two datasets in our experimental setup in Section 3.

Unfortunately, when it comes to interpreting1 these models i.e. how the summaries came to be, the
answer still remains illusive. Explaining how a machine-generated summary was constructed, has be-
come a necessity under the newly introduced General Data Privacy Regulation Act (ITGP, 2017), espe-
cially for applications in enterprise (Sarkhel and Nandi, 2019; Keymanesh et al., 2020) and biomedical
domain (Moradi and Ghadiri, 2018; Sarkhel et al., 2018). Some recent efforts have proposed using in-
terpretable heatmaps (Baan et al., 2019) generated from the attention distribution over an input sequence
for interpreting model behaviour. However, they are still quite limited (Jain and Wallace, 2019) in con-
sistently explaining all aspects of a neural summarizer. This leaves a gap in the ongoing efforts (Song et
al., 2020a; Song et al., 2020b) to generate abstractive summaries that are guided by human-interpretable
semantic/syntactic qualities. Briefly, the main goal of attention mechanism in a encoder-decoder net-
work is to assign a softmax score to every encoder hidden state (based on its relevance to the token

1“the ability to explain or to present in understandable terms to a human”, (Doshi-Velez and Kim, 2017)
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being decoded) and amplify those that are assigned high scores through a weighted average. Source-
target attention (Nallapati et al., 2016) relies on another sequence for computing these scores, whereas
self-attention (Vaswani et al., 2017; Paulus et al., 2018) operates over the elements in the current input
sequence. A multi-headed attention mechanism allows a neural model to speed up training by enabling
parallelization across timesteps. The number of operations in the computation of self-attention, however,
scales quadratically with input length, making it a computationally expensive operation for long input
sequences. Training such a network for a summarization task would require a large parallel corpus of
input documents and their corresponding gold-standard summaries budgeted at b. The role of some of
the attention-heads during abstractive summarization is also not transparent (Baan et al., 2019). To ad-
dress these, we replace self-attention with a lightweight, interpretable alternative. Instead of projecting
each input sequence multiple times2 at every timestep, we encode an input sequence only once, using
a timestep-independent kernel ( ~Q) learned in an unsupervised or distantly supervised way from the in-
put document. Each kernel has a human-interpretable syntactic/semantic role. Every attention-head in
this multi-headed mechanism computes an attention distribution over the input sequence using a unique
kernel ~Qi, recycling it at every timestep. Compared to self-attention, our proposed attention mechanism
scales linearly with the input sequence length and leverages significantly less number of trainable param-
eters. As we will show in Section 3, this allows us to train our network on limited training samples in
low-resource datasets.

Figure 2: An overview of MLS architecture. The PG-Network (left)
constructs a prototype summary sp from the input document. The
Pointer-Magnifier network (right) constructs the length-constrained
summary from sp using interpretable sentence-level attention

We propose MLS – a
supervised method to gen-
erate abstractive summaries
at arbitrary lengths in this
paper. It computes a length-
constrained summary sb
budgeted at length b by
soft-switching between a
copy and expand operation
over a prototype summary sp
constructed from the doc-
ument. The key enabler
in this process is an in-
terpretable, multi-headed
attention mechanism. We
develop a length-aware
encoder-decoder network,
called the Pointer-Magnifier
network that leverages this

attention mechanism to construct summaries within a specified length. We train our network on
limited training samples from two cross-domain datasets: the MSR-Narrative (Ouyang et al., 2017) and
Thinking Machines dataset (Brockman, 2018). Exhaustive evaluation on a range of success metrics
shows that MLS performs competitively or better against strong baseline methods. Subsequent human
evaluation of summaries generated by MLS suggests that they accurately capture the main concepts of
the input document. To summarize, some of the major contributions of this work are as follows:

• We propose MLS, a supervised approach to generate abstractive summaries of a text document at
controllable lengths.

• We develop a length-aware encoder-decoder network that leverages an interpretable, multi-headed
attention mechanism to construct length-constrained summaries.

• Experimental results on two cross-domain datasets show that trained on limited training samples,
MLS was able to generate summaries that are coherent and captured the key concepts of a document.

2one time each to compute the query, key and value matrix (Vaswani et al., 2017) from the input sequence
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2 Proposed Methodology

MLS constructs a length-constrained summary of a document in two steps. First, it derives a prototype
summary sp from the document, covering its major concepts. Then, it expands or shortens it, depending
on the length-budget to create the final summary. We employ a pair of encoder-decoder networks at both
steps. For the first step, we extend the PG-network (See et al., 2017). We develop a length-aware encoder-
decoder network for the second step. We describe both steps in greater detail in the following sections.

2.1 Generating the Prototype Summary
We extend PG-Network by (See et al., 2017) to construct the prototype summary sp of a document. We
tokenize the document and feed it to the encoder network sequentially. As the encoder hidden states are
updated, the decoder network constructs the prototype summary one token at a time by soft-selecting
between tokens in the input document and an external vocabulary. The decoding process is guided by an
attention distribution3 computed over the input document and the external vocabulary. An overview of
this network is shown in Fig 2. We point the readers to the work by See et al. for more background on
this network. An example prototype summary is shown in Figure 1. Contrary to existing prototype-text
guided summarization methods (Liu et al., 2019; Saito et al., 2020), we do not specify the length of the
prototype summary as an input of the network, rather infer it by outputting tokens until the EOS token
is produced. We discuss the training and parameter settings of the network used in our experiments in
Section 2.3. It is worth mentioning here that one of the main reasons to select the PG-Network as our
architecture of choice for this step is due to its capability to construct a summary by looking up a learned
language model. Other networks with similar capabilities can also be used, as this step has a transitive
effect on the next phase of our approach.

2.2 Constructing the Length-Constrained Summary
To construct a summary within length-budget b, we develop the Pointer-Magnifier network: a length-
aware, interpretable, encoder-decoder network. An overview of the network is shown in Fig. 2. It
consists of a multiplex layer, an encoder (yellow rectangles) layer and a decoder (green rectangles) layer.
The encoder layer takes the prototype summary constructed in the previous step as input. The decoder
layer outputs the final summary. We describe each layer in detail below.

A. The Multiplex Layer and Interpretable Kernels: In an effort to build a transparent network,
we embody three qualitative properties that are associated with a high-quality summary in our network.
A high-quality summary, (1) maximizes the coverage of the major topics (Φ1) and (2) keywords (Φ2)
appearing in the input document, while (3) minimizing the amount of redundant information (Φ3). We
encode each property using a semantic kernel ( ~Qi), learned using an unsupervised or distantly supervised
way from the input document itself. Every kernel plays a unique, human-interpretable syntactic/semantic
role in constructing the final summary. One of the key components in this process is the multiplex
layer M. Physically, it is a nested matrix of dimensions 3 × 3 shared between the encoder and decoder
layer. Each row in M contains the following information: (a) a distance-metric (disti), (b) a scalar
value (wi), and (c) a semantic kernel ( ~Qi), where −1 ≤ wi ≤ 1,∀i & Σ3

i wi = 1. During inference, each
of these kernels measures the contribution of every sentence in the prototype summary towards optimiz-
ing one of the properties Φi, 1 ≤ i ≤ 3, mentioned above. wi represents the relative weight assigned to
the property Φi in constructing the final summary. We compute the kernels as a preprocessing step.

Defining the Kernels: To encode the property φ1, we define ~Q1 as a matrix of dimensions 3 × 300,
where each row of ~Q1 represents one of the three most dominant topic vectors of the input document
as a 300-dimensional vector. We use an unsupervised LDA-based model (Blei et al., 2003) to derive
these topic vectors. Symmetric KL-divergence is used as the distance metric (dist1). Similarly, we
encode the property φ2 as a single dimensional vector ~Q2 of length 50, where each vector component
represents the relative frequency of one of the 50 most frequent keywords in the input document. We
use RAKE (Rose et al., 2010), a publicly available library to identify the keywords of a document.

3we closely followed the official implementation at: https://github.com/abisee/pointer-generator
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Symmetric KL-divergence is used as the distance metric (dist2). Finally, we encode φ3 as a matrix ~Q3

of dimensions p × 300, where the ith row of ~Q3 represents an embedding of the ith sentence in the
input document. We compute the embedding vector of each sentence using a pretrained model (Le and
Mikolov, 2014) on English Wikipedia corpus. Cosine similarity is used as the distance metric (dist3).
Our choice of unsupervised/distantly supervised kernels reflects our motivation (see Section 1) to
leverage a limited number of training samples from the experimental dataset to construct the final
summary. We discuss the role played by each semantic kernel ( ~Qi), distance metric (disti), and
weight (wi) in constructing the final summary from sp in the following section.

Figure 3: The Encoder layer consists of 3 parallelly stacked
encoder-blocks

B. The Encoder Layer: The
encoder layer consists of 3 par-
allelly stacked encoder-blocks.
Each encoder-block (see Fig. 3)
contains an embedding layer
and a local-attention layer. At
every timestep t, a sentence
from sp is fed into the embed-
ding layer of each of the three
encoder-blocks. It computes a
fixed-length embedding (~Vi) of
the sentence and propagates it to
the local-attention layer. Each
encoder-block in our network is
mapped to a unique triplet ( ~Qi,
disti, wi) in the multiplex layer.
To compute local-attention (ci) attributed to a sentence in sp by the ith encoder-block, we embed it in
the same semantic space as ~Qi and compute its distance from ~Qi in that encoding space (Eq. 1).

~Ct,i =
1

r
Σr
j=1 disti(

~Vi, ~Qi
T

[j]) (1)

ci =
1

ni
Σni
j=1(

~Ct,i[j]) (2)

In Eq. 1, ~Qi represents a kernel of dimensions r × ni and ~Vi represents an embedding vector of
length ni. The embedding layer represents each sentence in sp in the same encoding space as the ker-
nel ~Qi associated with that block. We compute the local-attention ci by taking a column-wise average of
the distance-matrix ~Ct,i (Eq. 2). The kernel ~Qi is reused for all the sentences fed to the ith encoder-block.
The distribution [c1, c2...] obtained this way is then normalized to derive the local-attention distribu-
tion ~Ci over sp. The final attention distribution ( ~A) over sp at timestep t is computed by normalizing the
weighted average (Eq. 3) of local-attention distributions computed by each attention-head.

~A∗ = norm(
1

m
Σm
i ( ~Ci · wi)) (3)

It is worth noting here that attributing each encoder-block with a distinct attention-head ensures that
there is a dedicated pathway to compute local attentions for every encoder-block. This allows us to
parallelize the network and speed-up the decoding process when constructing the final summary.

C. The Decoder Layer: Similar to the encoder, the decoder layer also consists of 3 parallelly stacked
decoder-blocks. Each decoder-block contains an embedding layer and a local-attention layer. Param-
eters of the i-th encoder-block and i-th decoder-block are shared. We construct a length-constrained
summary sb of the input document by processing each sentence in sp sequentially. Depending on the
remaining length-budget at each timestep, the final summary is constructed by soft-switching between
a copy and expand operation. This process is guided by a sentence-level attention distribution (Eq. 3)
computed over sp. If the copy operation is selected, a sentence from sp is copied into the final summary,
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whereas the expand operation replaces a sentence with similar content from the input document in sb.
The original ordering of sentences is preserved.

The Copy Operation: The probability of copying a sentence s from the prototype summary that has
not been included in the final summary (sb) till timestep t into sb is defined as follows: Pc(s) = ~A t[s],
where ~A t represents a sentence-level attention distribution over sp at timestep t. Initialized as ~A∗

(Eq. 3), we update the attention distribution at each timestep after a copy or expand operation. If
s∗ = argmax(Pc(s)) represents the sentence copied into sb at timestep t, we update the attention
distribution by zeroing out the probability of s∗ in ~At and renormalizing the resulting distribution.

The Expand Operation: If the length of our prototype summary (sp) is less than the length-budget b,
MLS can choose to expand a set of sentences from sp. For each sentence s ∈ sp, we define its expansion-
set E(s) as the sentence n-gram that is most similar to s in the input document. We determine the
expansion-set E(s) of a sentence s by using beam-search over all n-grams in the input document that are
yet to be included in the final summary. Our search objective being maximizing score(E) = sim(s, E)×
overlap(s, E). The first term in score(E) denotes the average pairwise cosine similarity between s and
the sentences inE(s), whereas the second term denotes the fraction of tokens in s that appear inE(s). To
minimize across-sentence repetitions in the summary, top 4 candidates identified from the search process
are re-ranked (Chen and Bansal, 2018) based on the number of repeated word bigrams and trigrams if the
expansion-set is included in the final summary. We obtained best performance by initializing nwith 3 and
changing it to 2 at later iterations of the decoding process. If ~v k

i denotes the embedding-vector of the k-th
sentence in E(s) computed by the embedding-layer of the i-th decoder-block, we define the probability
of expanding a sentence s from the prototype summary to E(s) in the final summary as follows.

~C e
i,k =

1

r
Σr
j=1 disti(~vi

k, ~Qi
T

[j]) (4)

c ei,k =
1

ni
Σni
j=1(

~C e
i,k[j]) (5)

~A e =
1

m
Σm
i=1 (~c ei · wi) (6)

In Eq. 4, ~Qi denotes the semantic kernel shared between the i-th encoder-block and decoder-block.
We compute the probability of including the kth sentence of E(s) into the final summary by computing
its contribution (cei,k) towards optimizing the qualitative property Φi encoded by ~Qi first (Eq. 5).
Repeating this process for all the sentences in E(s), followed by normalization provides us with the
distribution ~c ei = (cei,1, c

e
i,2, ...). Here, ~c ei represents the probability distribution over E(s). To obtain

the expansion probability of a sentence in E(s), we repeat this process for all 3 attention-heads and
average them (Eq. 6). The probability Pe(s) of expanding a sentence s from the prototype summary is
obtained by averaging the expansion probability of all sentences in E(s). Once a sentence s has been
expanded into the final summary, we update the attention distribution by zeroing out the probability at s
and renormalizing the resulting distribution.

Soft-Selection between Copy and Expansion: We define the probability po(s) of selecting between
the copy and expand operation for a sentence s in the prototype summary as follows.

po(s) = α× Pe(s) + (1− α)× Pc(s) (7)

α =

{
0 if b ≤ len(sb

∗)
max(Pe(s), Pc(s)) if b > len(sb

∗)
(8)

In Eq. 8, sb∗ denotes the partially constructed summary till timestep t. If the length-budget b is
smaller than the length of the prototype summary sp, the probability of including a sentence from sp into
the final summary depends on the attention distribution ~A t over sentences in sp that are not included
in the final summary till timestep t. In all other scenarios, α acts as a soft-switch between copying
or expanding a sentence in sp. A sentence can be expanded only if doing so does not exceed the
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length-budget. Once the probability of each sentence (and/or its expansion set) has been computed, the
decoder attends to the position with the highest probability and copies/expands it into the final summary.
Generation stops once len(sb

∗) reaches b. We observed that the probability of expanding a sentence
from the prototype summary (instead of copying it) increases with the allocated length-budget.

2.3 Training the Networks
We trained PG-Network and the Pointer-Magnifier network separately on a NVIDIA Titan-XP GPU
with a batch size of 16. We pretrained the PG-Network on the CNN-DailyMail dataset (Nallapati et al.,
2016) and then fine-tuned it on training samples of our experimental datasets. Using the evaluation script
provided by (Nallapati et al., 2016), we obtained a training set of 287,226 pairs and validation set of
13,368 pairs for this dataset. All encoder-decoder weights were allowed to be updated during fine-tuning
stage, following a L1-transfer (Pan and Yang, 2009) of weights from the pretrained network. The
external vocabulary used in both pretraining and fine-tuning stage consisted of 80K most frequent tokens
in the training samples of the CNN-DailyMail dataset, our experimental dataset or both. Learning-rate
and initial accumulator values were set to 0.15 and 0.1 respectively. We used Adagrad (Duchi et al.,
2011) to train the network. The encoder was fed a maximum 400 tokens and the decoder generated 100
tokens during pretraining. These values were increased to 500 and 200 respectively during fine-tuning.
To prevent overfitting, we stopped training after 3000 iterations during the fine-tuning stage. With
respect to the Pointer-Magnifier network, we learn the optimal values of wi, 1 ≤ i ≤ 3 associated with
each attention-head by grid-searching over the interval [-1,1] with the learning objective of maximizing
ROUGE-1 score on the validation set. The optimal weights assigned to the attention-head corresponding
to topic-coverage (φ1) and keyword-coverage (φ2) were positive, whereas information redundancy (φ3)
was assigned a negative weight for both of our datasets.

3 Experiments

Index Dataset Size Max Median Mean

D1 MSR Narrative 476 130 15 18.65
D2 Thinking Machines 186 82 33 33.23

Table 1: The minimum, maximum, median, and av-
erage number of sentences in datasets D1 and D2

We seek to answer three key questions in our
experiments. Given a length-constrained sum-
mary sb, (a) how similar is sb to a gold-standard
summary?, (b) is it coherent and representative
of the input document? and (c) how abstractive
is sb? We answer the first two questions by
evaluating the summaries generated by MLS
over a range of success metrics on datasets
belonging to two low-resource domains. We also conduct a user study to measure how representative are
the summaries with respect to the input documents. A representative summary covers the main topics of
the document. We answer the third question by computing the percentage of n-grams in sb that do not
appear in the input document and/or generated from the external vocabulary.

A. Datasets: We evaluate MLS on two publicly available datasets from two low-resource domains:
the MSR-Narrative (Ouyang et al., 2017) (D1) dataset and the Thinking-Machines (Brockman, 2018)
(D2) dataset. The MSR-Narrative dataset contain personal stories shared by users on a social networking
website. The Thinking-Machines dataset, on other hand, contains position papers on a popular
scientific topic published in an educational website. Each document in both datasets is paired with a
gold-standard summary. We randomly selected 25% document-pairs to construct the training set and
10% document-pairs to construct a validation set for both datasets. The rest comprised the test corpus.
We present an overview of some of the important properties of both datasets in Table 1.

B. Metrics: We compare the summaries constructed by MLS against gold-standard summaries
using METEOR (Banerjee and Lavie, 2005) and ROUGE (Lin, 2004) scores4. The average F1 score
of ROUGE-1, ROUGE-2 and ROUGE-L metrics obtained for both datasets are shown in Table 2. To
measure the representativeness of a summary, we compute the average KL-divergence score between

4We used py-rouge (Benjamin Heinzerling, 2020) and the NLTK library to compute the ROUGE and METEOR score
respectively.
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Dataset Metric Budget = 1/32 Budget = 1/16 Budget = 1/8 Budget = 1/4 Budget = 1/2
MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3

D1

ROUGE-1 45.99 23.44 37.46 41.65 45.99 30.50 37.68 43.07 45.99 31.27 38.05 43.50 46.11 41.86 43.95 44.10 45.67 40.67 41.13 45.50
ROUGE-2 35.97 14.79 22.59 30.65 35.97 20.77 25.50 30.65 35.98 22.95 29.14 33.50 35.60 27.57 32.36 34.50 36.70 29.38 31.02 35.02
ROUGE-L 40.89 21.35 32.38 37.65 42.50 27.9 33.07 38.92 43.01 36.25 37.62 43.50 42.83 38.83 40.95 41.07 40.18 39.60 40.74 41.50
METEOR 47.12 18.91 24.22 45.51 47.12 13.07 25.02 45.60 46.50 20.89 30.86 43.88 46.61 27.26 33.05 44.65 45.71 27.84 32.95 45.39

D2

ROUGE-1 40.25 16.20 21.06 35.60 40.0 17.08 22.0 36.0 40.25 22.59 28.10 39.72 41.01 23.55 27.83 38.50 44.36 29.53 32.75 44.06
ROUGE-2 33.25 11.25 17.22 26.50 34.50 12.0 16.75 30.05 35.67 14.60 19.01 31.80 36.0 17.90 20.06 31.0 38.70 20.67 23.46 36.44
ROUGE-L 37.17 14.50 19.06 33.67 37.0 15.60 20.55 35.70 37.05 21.65 20.26 34.33 37.96 21.87 22.60 32.77 41.50 26.04 27.17 39.75
METEOR 40.22 12.68 24.33 35.05 44.82 15.17 23.22 42.90 44.82 11.96 30.79 42.0 42.88 24.20 21.83 38.05 44.79 28.08 25.82 45.70

Table 2: ROUGE and METEOR scores of the budgeted summaries constructed by MLS (highlighted
column) and the baseline methods for the MSR-Narrative (D1) and Thinking Machines (D2) dataset

the top-3 topic vectors of a summary and its input document. Following (Srinivasan et al., 2018), we
measure the coherence of a summary by computing the average cosine similarity between consecutive
sentences. We report the absolute difference between the coherence score computed for a summary and
its input document in Table 3. We also report the KL-divergence score between sentiment vectors of
a summary and the input document to check for potential biases in its polarity distribution. We used
a publicly available library (Hutto and Gilbert, 2014) to derive the sentiment vectors.. Note that, lower
values of ∆Coherence and KL-divergence score are desirable for a high-quality summary.

C. Baselines: We compare MLS against three baseline methods. Two of them follow a sampling
based approach, while our final baseline method employs a convolutional network to construct length
budgeted summaries. Our first baseline (A1) follows a systematic sampling based approach to construct
length-controlled summaries. Initialized with a randomly selected sentence from the first k-1 sentences
of the input document, it constructs the final summary by including the k-th sentence from the last
sampled position. We set k = 3 in all of our experiments for both datasets. Sampling terminates when the
budget limit is exceeded or the end of document is reached. Our second baseline method (A2) follows a
weighted graph-based sampling strategy to construct budgeted summaries. It represents each sentence in
the input document as a node in an undirected, complete, weighted graph. The weight assigned to an edge
in this graph is equal to the pairwise cosine similarity between the connecting nodes. To construct the
budgeted summary, we sample the top-K nodes of this graph using a weighted PageRank algorithm (Mi-
halcea and Tarau, 2004). Sampling stops when the budget is reached. Our third and final baseline
method (A3) is a convolutional approach proposed in (Liu et al., 2018b). It is a sequence-to-sequence
network with Gated Linear Units (Dauphin et al., 2017) that takes the desired length of a summary as an
additional input to the initial state of the decoder network. Similar to our training protocol, we pretrain
this network on the CNN-DailyMail dataset first and fine-tune it on the training samples from both of
our experimental datasets. We allowed all weights to be updated during the fine-tuning phase.

3.1 Results and Discussion

We report the performance of all competing methods at five length-budgets. We specify the length-budget
to construct a summary as a product of the number of tokens in the input document and a compression-
budget c ∈ { 1

32 ,
1
16 ,

1
8 ,

1
4 ,

1
2}. Results from our experiments are presented in Tables 2 and 3. The best

performance achieved for each metric is boldfaced. We highlight some of our key findings below.

3.1.1 Qualitative Evaluation at five Compression Budgets
In general, the abstractive methods (MLS and A3) outperform sampling-based approaches (see Table 2)
on both datasets. MLS performs consistently well on all budgets, although performance is relatively
better on smaller budgets. We obtain an absolute improvement of 4.34% and 4.65% in ROUGE-1
score & 1.61% and 5.17% in METEOR score over the convolutional baseline (A3) for datasets D1
and D2 at compression budget = 1

32 . At higher budgets, our performance was comparable with A3. In
terms of coherence, MLS performs comparably or better than A3 (see Table 3). Smaller ∆Coherence
score than A1 and A2 suggests that MLS generated more coherent summaries than these two baseline
methods. Small KL-divergence between the topic distribution of a budgeted summary and input
document shows that MLS generated summaries are representative of the document for both datasets.
In fact, topic-coverage in summaries generated by MLS is at least 75% better than the convolutional
baseline (A3) (Liu et al., 2018b), although performance becomes comparable at larger budgets as more
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Dataset Metric Budget = 1/32 Budget = 1/16 Budget = 1/8 Budget = 1/4 Budget = 1/2
MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3

D1
Topic 0.12 0.28 0.29 0.21 0.12 0.27 0.27 0.20 0.12 0.26 0.23 0.15 0.13 0.21 0.19 0.18 0.13 0.21 0.21 0.18
Sentiment 0.09 0.22 0.19 0.11 0.09 0.23 0.15 0.13 0.09 0.19 0.15 0.12 0.1 0.14 0.12 0.1 0.16 0.07 0.17 0.13
∆Coherence 0.08 0.3 0.20 0.11 0.08 0.26 0.18 0.09 0.08 0.21 0.11 0.07 0.09 0.13 0.10 0.12 0.1 0.06 0.09 0.1

D2
Topic 0.05 0.27 0.24 0.15 0.05 0.27 0.25 0.16 0.05 0.17 0.2 0.12 0.05 0.08 0.08 0.11 0.03 0.03 0.02 0.10
Sentiment 0.03 0.24 0.16 0.10 0.03 0.21 0.13 0.07 0.03 0.12 0.15 0.04 0.03 0.06 0.08 0.05 0.04 0.02 0.03 0.03
∆Coherence 0.03 0.27 0.20 0.05 0.03 0.18 0.12 0.10 0.03 0.09 0.09 0.05 0.03 0.05 0.05 0.06 0.04 0.03 0.03 0.04

Table 3: Coherence and completeness of the budgeted summaries constructed by MLS (highlighted
column) and the baseline methods for MSR-Narrative (D1) and Thinking Machines (D2) dataset

sentences from the prototype summary are expanded to make the final summary. MLS outperfoms A1
and A2 in terms of staying true to the sentiment distribution of the input document. This can be seen
from the small KL-divergence scores obtained for the sentiment distribution achieved by MLS in Table 3.

Figure 4: Abstractiveness of MLS generated summaries

MLS generated summaries
were more abstractive at higher
budgets (Fig. 4). At compres-
sion budget = 1

2 , 27.35% tokens
in the summaries constructed
for dataset D1 and 8.75% tokens
for dataset D2 were contributed
by the external vocabulary.

3.1.2 Ablative Analysis
To investigate the effects of pretraining on end-to-end results, we compare the ROUGE-1 score of sum-
maries constructed by MLS against an ablative baseline MLS*. It is identical to MLS except that the
PG-Network was not pretrained. In our second experiment, we compare MLS against MLS+, an ablative
baseline that constructs the prototype summary following a greedy heuristics (Otterbacher et al., 2006)
instead of the PG-network. MLS outperforms both baselines (Fig. 5) on both datasets, thereby establish-
ing that using PG-Network in our framework and pretraining it on the CNN-DailyMail dataset improved
the quality of our final summaries. Finally, to investigate the effects of the semantic kernels introduced
in the Pointer-Magnifier network, we iteratively replaced each of the three semantic kernels (Section 2.2)
with a randomized kernel by shuffling its rows and columns.

Figure 5: ROUGE-1 score of MLS and the ablative baselines MLS+
and MLS* on datasets D1 and D2

We observed an absolute
decrease of up to 4.30% in
ROUGE-1 score and 3.75% in
METEOR score for ~Q3, with
bigger impacts in performance
at higher length-budgets. Re-
placing ~Q2 with a randomized
kernel, on other hand, decreased
the average ∆Coherence score
by approximately 45% for
dataset D1 and 30% for D2 for
summaries constructed at compression budget = 1

2 , i.e. half-length of the input document.

3.1.3 Human Evaluation of Length-Controlled Summaries
We conducted a study to evaluate the completeness of the summaries constructed by MLS. More specif-
ically, we considered a scenario where the user needs to complete a fact checking task. We chose three
documents from both datasets randomly and asked each participant to verify the presence of some key
facts of the document in the summaries constructed by MLS and/or a baseline method. Each participant
was instructed to complete the task solely based on the content of the summary and not depending on
any previous knowledge. For example, the question “Does the story tell us why the narrator was fired?”
was paired with the following summary– “I tried to return a lost wallet to a customer who accused me
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of stealing it and then grabbed my hair. We got in a physical fight and I was fired from my job”. The
participants had to chose between ‘Yes’, ‘No”, and “More information required”. If a participant selected
the third option, a longer summary was shown with the same question. The task was terminated other-
wise. In addition to MLS, A2 (the stronger extractive baseline in our experimental setup) and A3, we add
two extreme settings: (a) the full-content setting in which the original document was shown, and (b) the
no-content setting where no textual content (other than the question itself) was shown to a participant.
The full-content setting ensured that the question could indeed be answered from the article, whereas the
no-content setting ensured whether the questions contained any hint about the answer.

Index Dataset MLS A2 A3 NC FC

D1 Accuracy 0.88 0.55 0.55 0.0 0.88
Duration (s) 36.7 43.69 69.08 12.0 75.6

D2 Accuracy 0.55 0.44 0.66 0.0 0.88
Duration (s) 70.24 68.9 96.47 20.95 132.86

Table 4: Mean accuracy and completion time using MLS,
A2, A3, No-content (NC) and Full-content (FC) settings

The task started by showing each partic-
ipant a summary generated at compression
budget = 1/32. If they opted for more
information to be shown, we provided a
summary generated by the same method
by doubling the compression budget each
time until the user responded with a ‘Yes’
or ‘No’ or we reached the budget of 1/2.
The key intuition here is that if users are
given a complete and representative summary, they should be able to answer the questions accurately,
as a good summarization model would pick up the key concepts of the document even at shorter
length-budgets, without requiring for it to be expanded further. With this in mind, we recorded task
completion time and user response for each treatment. All budgeted summaries were constructed
beforehand. We invited 22 graduate students to participate in the study. Each participant was shown
summaries generated by at most two different methods in random order. No information on the method
used was revealed to a participant at any stage. To prevent information retention, each participant was
shown a summary generated from the same document only once. Using a balanced, incomplete block
design (Aschbacher, 1971), each of the 10 settings (5 methods × 2 datasets) was assigned to 3 subjects.
The average accuracy and task completion time recorded for each treatment is shown in Table 4. The
accuracy of the no-content setting is 0 for both datasets, indicating that the questions did not contain any
hint to the correct answer, whereas the full-content setting shows that overall the questions could have
been answered from the original documents. When using summaries generated by MLS, the participants
responded as accurately as the Full-content setting on dataset D1, while being more than two times
faster, outperforming A2 and A3. For dataset D2, participants were more accurate using summaries
constructed by MLS than A2. MLS performed better than A3 on one document, comparable on one and
worse on one document, with an average accuracy of 0.55.

4 Conclusion
We have proposed MLS, a supervised approach to construct abstractive summaries at controllable
lengths. Following an extract-then-compress paradigm, we develop the Pointer-Magnifier network –
a length-aware, encoder-decoder network that constructs length-constrained summaries by shortening
or expanding a prototype summary inferred from the document. The key enabler of this network
is an array of semantic kernels with clearly defined human-interpretable syntactic/semantic roles in
constructing the summary given a budget-length. We train our network on limited training samples from
two cross-domain datasets. Experiments show that the summaries constructed by MLS are coherent and
reflectively capture the main concepts of the document. Our human evaluation study also suggest the
same. In the future, we would like to extend our work to construct task-driven summaries for interactive
question answering tasks. Personalizing a summary based on user’s past interaction model is another
exciting direction of future work.
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