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Abstract

Deep neural networks excel at learning from labeled data and achieve state-of-the-art results
on a wide array of Natural Language Processing tasks. In contrast, learning from unlabeled
data, especially under domain shift, remains a challenge. Motivated by the latest advances, in
this survey we review neural unsupervised domain adaptation techniques which do not require
labeled target domain data. This is a more challenging yet a more widely applicable setup. We
outline methods, from early traditional non-neural methods to pre-trained model transfer. We also
revisit the notion of domain, and we uncover a bias in the type of Natural Language Processing
tasks which received most attention. Lastly, we outline future directions, particularly the broader
need for out-of-distribution generalization of future NLP.1

1 Introduction

Deep learning has undoubtedly pushed the frontier in Natural Language Processing (NLP). Particularly
large pre-trained language models have improved results for a wide range of NLP applications. However,
the lack of portability of NLP models to new conditions remains a central issue in NLP. For many target
applications, labeled data is lacking (Y scarcity), and even for pre-training general models data might
be scarce (X scarcity). This makes it even more pressing to revisit a particular type of transfer learning,
namely domain adaptation (DA). A default assumption in many machine learning algorithms is that the
training and test sets follow the same underlying distribution. When these distributions do not match, we
face a dataset shift (Gretton et al., 2007) – in NLP typically referred to as a domain shift. In this setup,
the target domain and the source training data differ, they are not sampled from the same underlying
distribution. Consequently, performance drops on the target, which undermines the ability of models to
truly generalize into the wild. Domain adaptation is closely tied to a fundamental bigger open issue in
machine learning: generalization beyond the training distribution. Ultimately, intelligent systems should
be able to adapt and robustly handle any test distribution, without having seen any data from it. This
is the broader need for out-of-distribution generalization (Bengio, 2019), and a more challenging setup
targeted at handling unknown domains (Volpi et al., 2018; Krueger et al., 2020).

Work on domain adaptation focused largely on supervised domain adaptation (Daumé III, 2007; Plank,
2011). In such a classic supervised DA setup, a small amount of labeled target domain data is available,
along with some larger amount of labeled source domain data. The task is to adapt from the source to the
specific target domain in light of limited target domain data. However, annotation is a substantial time-
requiring and costly manual effort. While annotation directly mitigates the lack of labeled data, it does
not easily scale to new application targets. In contrast, DA methods aim to shift the ability of models
from the traditional interpolation of similar examples to models that extrapolate to examples outside
the original training distribution (Ruder, 2019). Unsupervised domain adaptation (UDA) mitigates the
domain shift issue by learning only from unlabeled target data, which is typically available for both
source and target domain(s). UDA fits the classical real-world scenario better, in which labeled data in

1Accompanying repository: https://github.com/bplank/awesome-neural-adaptation-in-NLP
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: Taxonomy of DA as special case of transductive transfer learning (left). Related problems (e.g.,
domain and out-of-distribution generalization) and DA setups (1:1 and multi-source adaptation) (right).

the target domain is absent, but unlabeled data might be abundant. UDA thus provides an elegant and
scalable solution. We believe these advances in UDA will help for out-of-distribution generalization.

A categorization of domain adaptation in NLP We categorize research into model-centric, data-
centric and hybrid approaches, as shown in Figure 1. Model-centric methods target approaches to aug-
ment the feature space, alter the loss function, the architecture or model parameters (Blitzer et al., 2006;
Pan et al., 2010; Ganin et al., 2016). Data-centric methods focus on the data aspect and either involve
pseudo-labeling (or bootstrapping) to bridge the domain gap (Abney, 2007; Zhu and Goldberg, 2009;
Ruder and Plank, 2018; Cui and Bollegala, 2019), data selection (Axelrod et al., 2011; Plank and van
Noord, 2011; Ruder and Plank, 2017) and pre-training methods (Han and Eisenstein, 2019; Guo et al.,
2020). As some approaches take elements of both, we include a hybrid category.2 A comprehensive
overview of UDA methods and the tasks each method is applied to is provided in Table 1.

Other surveys Comprehensive reviews on DA exist, each with a different focus: visual applications
(Csurka, 2017; Patel et al., 2015; Wilson and Cook, 2020), machine translation (MT) (Chu and Wang,
2018), pre-neural DA methods in NLP (Jiang, 2008; Margolis, 2011). Seminal surveys in machine
learning on transfer learning include Pan and Yang (2009), Weiss et al. (2016), and Yang et al. (2020).

Contributions In this survey, we (i) comprehensively review neural approaches to unsupervised do-
main adaptation in NLP,3 (ii) we analyze and compare the strengths and weaknesses of the described
approaches, and (iii) we outline potential challenges and future directions in this field.

2 Background

First we introduce the classic learning paradigm with its core assumption, then we outline DA setups.
Given {x1, ..., xn} = X the training instances and {y1, ..., yn} = Y the corresponding class labels, the
goal of machine learning is to learn a function f that generalizes well to unseen instances. In supervised
learning, training data consists of tuples {(xi, yi)}ni=1, where n is the number of instances, while in
unsupervised learning we only have {(xi)}ni=1. A general assumption in supervised machine learning is
that the test data follows the same distribution as the training data. Formally, training and test data are
assumed to be independently and identically (i.i.d.) sampled from the same underlying distribution. In
practice, this assumption does not hold, which translates into a drop in performance when the model f
trained on a source domain S is tested on a different but related target domain T .

2.1 Domain adaptation and transfer learning: notation

Formally, a domain is defined asD = {X , P (X)} where X is the feature space (e.g., the text representa-
tions), and P (X) is the marginal probability distribution over that feature space. A task (e.g., sentiment
classification) is defined as T = {Y, P (Y |X)}, where Y is the label space. Estimates for the prior
distribution P (Y ) and the likelihood P (Y |X) are learned from the training data {(xi, yi)}ni=1.

2We take inspiration of the data-centric and model-centric terms from Chu and Wang (2018) in MT, and add hybrid.
3We disregard methods which are task-specific (like leveraging a sentiment thesaurus).
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Domain adaptation aims to learn a function f from a source domain DS that generalizes well to
a target domain DT , where PS(X) 6= PT (X). DA is a particular case of transfer learning, namely
transductive transfer learning (Pan and Yang, 2009; Ruder, 2019). In inductive learning, the source and
target tasks differ (Pan and Yang, 2009). In transductive DA, the source and target tasks TS and TT
remain the same, but the source and target domains DS and DT differ in their underlying probability
distributions. Given two distributions PS(X,Y ) and PT (X,Y ), DA typically addresses the shift in
marginal distribution PS(X) 6= PT (X), also known as covariate shift. A related problem is the problem
of label shift, PS(Y ) 6= PT (Y ). Since we do not assume any labeled target data, we focus on the former.4

3 What is a domain? From the notion of domain to variety space and related problems

Despite the formal definition of domain above, the term is quiet loosely used in NLP and there is no
common ground on what constitutes a domain (Plank, 2016). Typically in NLP, domain is meant to
refer to some coherent type of corpus, i.e., predetermined by the given dataset (Plank, 2011). This may
relate to topic, style, genre, or linguistic register. The notion of domain and what plays into it has though
significantly changed over the last years, leading to relevant research lines.

First, the Penn Treebank WSJ corpus (Marcus et al., 1993) and the Brown corpus (Francis and Kucera,
1979) are prototypical examples, with the WSJ being considered widely as the canonical newswire do-
main. In the recent decade, there has been considerable work on what is considered non-canonical
data. The dichotomy between canonical (typically considered well-edited English newswire) and non-
canonical data arose with the increasing interest of working with social media with all its challenges
related to the ‘noisiness’ of the domain (Eisenstein, 2013; Baldwin et al., 2013). Models trained on
canonical data failed in light of the challenges on, e.g., Twitter (Gimpel et al., 2011; Foster et al., 2011).

The general quest to understand the implications of variations of language on model performance
led to lines of work on how human factors impact data in a covert or overt way, e.g., on how latent
socio-demographic factors impact NLP performance (Hovy, 2015; Nguyen et al., 2016), or how direct
data collection strategies like crowdsourcing impact corpus composition (Geva et al., 2019) or frequency
effects impact NLP performance (Zhang et al., 2019). However, what is a domain? Is, say, Twitter,
its own domain? Or is it a set of subdomains? Similarly, do language samples of social groups (e.g.,
sociolects) form a domain or a set of subdomains?

Variety space We believe it is time to reconsider the notion of domain, the use of the term itself, and
raise even more awareness of the underlying variation in the data samples NLP works with. NLP is
pervasively facing heterogeneity in data along many underlying (often unknown) dimensions. A theoret-
ical notion put forward by Plank (2016) is the variety space. In the variety space a corpus is seen as a
subspace (subregion), a sample of the variety space. A corpus is a set of instances drawn from the under-
lying unknown high-dimensional variety space, whose dimensions (or latent factors) are fuzzy language
and annotation aspects. These latent factors can be related to the notions discussed above, such as genre
(e.g., scientific, newswire, informal), sub-domain (e.g., finance, immunology, politics, environmental
law, molecular biology) and socio-demographic aspects (e.g., gender), among other unknown factors, as
well as stylistic or data sampling impacts (e.g., sentence length, annotator bias).

In spirit of the variety space (Plank, 2016), we suggest to use the more general term variety, rather
than domain, which pinpoints better to the underlying linguistic differences and their implications rather
than the technical assumptions. Each corpus is inevitably biased towards a specialized language and
some latent aspects. Understanding bias sources and effects, besides effects only (Shah et al., 2020), and
documenting the known are the first important steps (Bender and Friedman, 2018), as is building broader,
more varied corpora (Ide and Suderman, 2004). What we need more work on is to link the known to
the unknown, and studying its impact. Doing so will ultimately help to not only overcome overfitting

4As outlined in Plank (2011), there exists a three-way distinction for domain adaptation: supervised DA, unsupervised DA
but also semi-supervised DA. The latter was coined around 2010 to distinguish purely unsupervised DA from cases where a
small amount of labeled data is available in addition to the unlabeled target data. As this setup still assumes some labeled data
and it has not received much attention, it is not discussed in the current survey.
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to overrepresented domains (e.g., the newswire bias (Plank, 2016)), but also work on robustness and
ultimately out-of-distribution generalization, as described later on.

Treating data as ‘just another input’ to machine learning is very problematic. For example, it is less
known that the well-known Penn Treebank consists of multiple genres (Webber, 2009; Plank and van
Noord, 2011), including reviews and some prose. It has almost universally been treated as prototypical
news domain. Similarly, social media is typically considered only non-canonical data, but an analysis
revealed the data to lie on a “continuum of similarity” (Baldwin et al., 2013). This has implications
on NLP performance. As we have seen, there are a multitude of dimensions to consider in corpus
composition and annotations, which are tied to the theoretical notion of a variety space. They challenge
the true generalization capabilities of current models. What remains is to study what variety comprises,
how covert and overt factors impact results, and take them into consideration in modeling and evaluation.

Related problems Following the idea of the variety space, we discuss three related notions: cross-
lingual learning, domain generalization/robustness, and out-of-distribution generalization.

In cross-lingual learning the feature space drastically changes, as alphabets, vocabularies and word
order can be different. It can be seen as extreme adaptation scenario, for which parallel data may exist
and can be used to build multilingual representations (Ruder et al., 2019; Artetxe et al., 2020). Second,
instead of adapting to a particular target, there is some work on domain generalization aimed at building
a single system which is robust on several known target domains. One example is the SANCL shared
task (Petrov and McDonald, 2012), where participants were asked to build a single system that can
robustly parse reviews, weblogs, answers, emails, newsgroups. In this setup, the DA problem boils down
to finding a more robust system for given targets. It can be seen as optimizing for both in-domain and
out-of-domain(s) accuracy.

If domains are unknown a priori, robustness can be taken a step further towards out-of-domain gen-
eralization, to unknown targets, the most challenging setup. A recent solution is distributionally robust
optimization (Oren et al., 2019), i.e., optimizing for worst-case performance without the knowledge of
the test distribution. To do so, it assumes a subpopulation shift, where the test population is a subpopula-
tion mix of the training distribution. A model is then trained to do well over a wide range of potential test
distributions. Some early work in dialogue (Bod, 1999) and parsing (Plank and Sima’an, 2008) adopted
a similar idea of subdomains, however, with manually identified subpopulations. This bears some simi-
larity to early work on leveraging general background knowledge (embeddings trained on general data)
for domain adaptation (Plank and Moschitti, 2013; Nguyen and Grishman, 2015; Li et al., 2018a), and
also relates to recent work on pre-training (Section 5.3). An alternative and complementary interesting
line of research is to predict test set performance for new data varieties (Ravi et al., 2008; Van Asch and
Daelemans, 2010; Elsahar and Gallé, 2019; Xia et al., 2020).

4 Model-centric approaches

Model-centric approaches redesign parts of the model: the feature space, the loss function or regulariza-
tion and the structure of the model. We categorize them into feature-centric and loss-centric methods.

4.1 Feature-centric methods

Two lines of work can be found within feature-centric methods: feature augmentation and feature gen-
eralization methods. The former use pivots (common shared features) to construct an aligned feature
space. The latter use autoencoders to find latent representations that transfer better across domains.

Pivots-based DA Seminal pivot-based methods include: structural correspondence learning (SCL)
(Blitzer et al., 2006) and spectral feature alignment (SFA) (Pan et al., 2010). They both aim at finding
features which are common across domains by using unlabeled data from both domains. The two ap-
proaches differ in the specifics of the method to construct the shared space. SCL uses auxiliary functions
inspired by Ando and Zhang (2005), while SFA uses a graph-based spectral learning method. Creating
domain-specific and domain-general features is the key idea of EasyAdapt (Daumé III, 2007), a seminal
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Model-centric:
(Ziser and Reichart 2017; 2018a; 2018b; 2019) Neural SCL 3
(Miller, 2019) Neural SCL (Joint AE-SCL) 3
(Glorot et al., 2011) SDA 3
(Chen et al., 2012) MSDA 3
(Yang and Eisenstein, 2014) MSDA 3
(Clinchant et al., 2016) MSDA 3 3
(Ganin et al., 2016) DANN 3
(Li et al., 2017) DANN+SCL MemNet 3
(Kim et al., 2017) DANN/DSN 3 3
(Sato et al., 2017) DANN 3
(Wu et al., 2017) DANN 3
(Yasunaga et al., 2018) DANN 3
(Shen et al., 2018) DANN 3
(Li et al., 2018a) DANN 3 3
(Alam et al., 2018a) DANN 3
(Wang et al., 2019) DANN 3
(Shah et al., 2018) DANN+Wasserstein 3
(Fu et al., 2017) DANN 3
(Rios et al., 2018) DANN 3
(Xu et al., 2019) DANN 3
(Shi et al., 2018) DSN (GSN) 3
(Rocha and Lopes Cardoso, 2019)* DANN, Shared encoders 3 3
(Ghosal et al., 2020) DANN (concept embeddings) 3
(Naik and Rose, 2020) DANN (context embeddings) 3
Data-centric:
(Ruder and Plank, 2018) SSL, Multitask tri-training 3 3
(Lim et al., 2020) SSL 3
(Rotman and Reichart, 2019) Deep self-training 3
(Han and Eisenstein, 2019) AdaptaBERT� 3 3
(Li et al., 2019) Adaptive pre-training 3
(Gururangan et al., 2020) Adaptive pre-training (incl. multi-phase) 3 3 3 3
Hybrid:
(Saito et al., 2017) Asymmetric tri-training 3
(Desai et al., 2019) Adaptive (temporal) ensembling 3
(Jia et al., 2019) Cross-domain LM 3
(Cui and Bollegala, 2019) SelfAdapt (pivots+co-training) 3
(Peng and Dredze, 2017) Multi-task-DA� 3 3
(Guo et al., 2020) DistanceNet-Bandit 3
(Ben-David et al., 2020) PERL (pivots+context embeddings) 3

Table 1: Overview of neural UDA in NLP: method and task(s). Methods: SCL = structural correspon-
dence learning; AE = autoencoder; SDA = stacked denoising autoencoder; MSDA = marginalized SDA;
DANN = domain-adversarial neural network; DSN = domain separation network; GSN = genre sep-
aration network; SSL = semi-supervised learning; LM = language modeling. Tasks: SA = sentiment
analysis; LI = language identification; TC = binary text classification (incl. machine reading, duplicate
question detection, stance detection, intent classification, political data identification); NLI = natural lan-
guage inference; POS = part-of-speech (incl. Chinese word segmentation); DEP = dependency parsing;
NER = named entity recognition (incl. slot tagging, event trigger identification, named entity segmenta-
tion); RE = relation extraction. *with cross-lingual adaptation. � applicable to UDA but main focus is
supervised DA.

supervised DA method. A recent line of work (Ziser and Reichart, 2017; Ziser and Reichart, 2018a;
Ziser and Reichart, 2018b; Ziser and Reichart, 2019) brings SCL back to neural networks.

In particular, Ziser and Reichart (2017) propose to combine the strengths of pivot-based methods with
autoencoder neural networks in an autoencoder structural correspondence learning (AE-SCL) model.
Autoencoders are used to learn latent representations to map non-pivots to pivots, and these encodings
are then used to augment the training data. The main drawback of this approach is that the output vector
representations of the text are unique and not context-dependent. To solve this problem, a pivot-based
language modeling (PBLM) method has been proposed (Ziser and Reichart, 2018a; Ziser and Reichart,
2018b). PBLM effectively combines SCL with a neural language model based on long short-term mem-
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ory (LSTM) networks which predicts the presence of pivots and non-pivots, thus making representations
structure-aware. A weakness of the PBLM approach relies in the large number of pivots needed. To
remedy this issue, Ziser and Reichart (2019) adopted a task refinement learning approach using PBLM
(called TRL-PBLM), showing gains in both accuracy and stability over different hyperparameters se-
lection choices. The approach is an iterative training process where the network is trained using an
increasingly larger amount of pivots. Recent hybrid UDA work extends pivots with contextual embed-
dings (Ben-David et al., 2020), as we discuss in Section 6.

A common issue with the aforementioned methods is that they involve two independent steps: one for
representation learning and one for task learning. To tackle this issue, recent studies propose training the
two tasks jointly (i.e., pivot prediction and sentiment) (Miller, 2019) and learn pivots automatically via
attention (Li et al., 2017), similar to work on automatic non-pivot identification (Li et al., 2018b).

To the best of our knowledge, neural pivot-based UDA approaches have been solely applied to sen-
timent classification, cf. Table 1. Notably, Ziser and Reichart (2018a) went a step further, and applied
neural SCL cross-lingually; the NLP task is still sentiment classification. The effectiveness of pivot-
based methods in neural models remains to be tested. Early non-neural work applied SCL to structure
prediction problems with mixed results, i.e., POS (Blitzer et al., 2006) and parsing (Plank, 2011).

Autoencoder-based DA Early neural approaches for UDA have been based on autoencoders. Au-
toencoders are neural networks that are employed to learn latent representations from raw data in an
unsupervised fashion by learning with an input reconstruction loss. Motivated by the denoising autoen-
coders (Vincent et al., 2008), the first work in this line is by Glorot et al. (2011), who introduced the
stacked denoising autoencoder (SDA) for domain adaptation. Basically, a SDA automatically learns a
robust and unified feature representation for all domains by stacking multiple layers, and artificially cor-
rupts the inputs with a Gaussian noise that the decoder needs to reconstruct. However, SDAs showed
issues in speed and scalability to high-dimensional data. To mitigate these limitations, a more efficient
marginalized stacked denoising autoencoder (MSDA) that marginalizes the noise was proposed (Chen
et al., 2012). MSDAs have been further extended by Yang and Eisenstein (2014) with marginalized
structured dropout, and by Clinchant et al. (2016), which improved the regularization of MSDAs follow-
ing the insights from the domain adversarial training of neural networks (Ganin and Lempitsky, 2015;
Ganin et al., 2016) (described in Section 4.2). The main drawback of autoencoder approaches is that the
induced representations do not make use of any linguistic information.

4.2 Loss-centric methods

Loss-centric approaches can be divided into methods which employ domain adversaries, and instance-
level reweighting methods. We outline these two strands of work in the following.

Domain adversaries The most widespread methods for neural UDA are based on the use of domain
adversaries (Ganin and Lempitsky, 2015; Ganin et al., 2016). Inspired by the way generative adversarial
networks (GANs) (Goodfellow et al., 2014) minimize the discrepancies between training and synthetic
data distributions, domain adversarial training aims at learning latent feature representations that serve at
reducing the discrepancy between the source and target distributions. The intuition behind these methods
puts its ground on the theory on domain adaptation (Ben-David et al., 2010), which argues that cross-
domain generalization can be achieved by means of feature representations for which the origin (domain)
of the input example cannot be identified.

The seminal approach in this category are DANNs: domain-adversarial neural networks (Ganin and
Lempitsky, 2015; Ganin et al., 2016). The aim is to estimate an accurate predictor for the task while
maximizing the confusion of an auxiliary domain classifier in distinguishing features from the source or
the target domain. To learn domain-invariant feature representations, DANNs employ a loss function via
a gradient reversal layer which ensures that feature distributions in the source and target domains are
made similar. The strength of this approach is in its scalability and generality; however, DANNs only
model feature representations that are shared across both domains, and suffer from a vanishing gradient
problem when the domain classifier accurately discriminates source and target representations (Shen et
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al., 2018). Wasserstein methods (Martin Arjovsky and Bottou, 2017) are more stable training methods
than gradient reversal layers. Instead of learning a classifier to distinguish domains, they attempt to
reduce the approximated Wasserstein distance (also known as Earth Mover’s Distance). A recent study
on question pair classification shows that the two adversarial methods reach similar performance, but
Wasserstein enables more stable training (Shah et al., 2018).

DANNs have been applied in many NLP tasks in the last few years, mainly to sentiment classification
(e.g., Ganin et al. (2016), Li et al. (2018a), Shen et al. (2018), Rocha and Lopes Cardoso (2019), Ghoshal
et al. (2020), to name a few), but recently to many other tasks as well: language identification (Li et
al., 2018a), natural language inference (Rocha and Lopes Cardoso, 2019), POS tagging (Yasunaga et
al., 2018), parsing (Sato et al., 2017), trigger identification (Naik and Rose, 2020), relation extraction
(Wu et al., 2017; Fu et al., 2017; Rios et al., 2018), and other (binary) text classification tasks like
relevancy identification (Alam et al., 2018a), machine reading comprehension (Wang et al., 2019), stance
detection (Xu et al., 2019), and duplicate question detection (Shah et al., 2018). This makes DANNs the
most widely used UDA approach in NLP, as illustrated in Table 1.

To model features that also belong to either the source or target domain, domain separation networks
(DSNs) (Bousmalis et al., 2016) have been proposed. DSNs separate latent representations in i) separate
private encoders (i.e., one for each domain) and ii) a shared encoder (in charge to reconstruct the input in-
stance using these representations). This bears similarities to a traditional supervised method (Daumé III,
2007). The main drawback of DSNs is that domain-specific representations are solely used in the de-
coder, leaving the classifier to be trained on the domain-invariant representations only.

DSNs have seen a notable success in Computer Vision (CV) (Bousmalis et al., 2016). In NLP, Shi et
al. (2018) propose the genre separation networks (GSNs) as a variant of the DSNs, introducing a novel
reconstruction component that leverages both shared and private feature representations in the learning
process. As noted also by Han and Eisenstein (2019), a downside of adversarial methods is that they
require careful balancing between objectives (Kim et al., 2017; Alam et al., 2018a) to avoid instability
during learning (Arjovsky et al., 2017).

Reweighting This family of methods is an instance-level adaptation method. The core idea of instance
weighting (also known as importance weighting) is to assign a weight to each training instance propor-
tional to its similarity to the target domain (Jiang and Zhai, 2007). We can see instance weighting as
an alternative to domain adversaries. While domain adversaries distinguish the domains to learn domain
invariant representations in a joint model, instance weighting decouples domain detection for a-priori
weight estimation of an instance.

Methods that explicitly reweight the loss based on domain discrepancy information include maximum
mean discrepancy (MMD) (Gretton et al., 2007) and its more efficient version called kernel mean match-
ing (KMM) (Gretton et al., 2009). KMM reweights the training instances such that the means of the
training and test points in reproducing a kernel Hilbert space are close to each other. Jiang and Zhai
(2007) introduced instance weighting in NLP and proposed to learn weights by first training domain
classifiers. The effectiveness of the method in neural setups remains to be seen. An early study reports
non-significant improvements for POS tagging (Plank et al., 2014b).

5 Data-centric methods

Recently, data-centric approaches are on a rise, due to rapid growth of data and the gain in popularity of
pre-training methods. We summarize data-centric strands next, which differ whether they use pseudo-
labeling, select relevant data or use large unlabeled data or auxiliary tasks for model pre-training.

5.1 Pseudo-labeling
The main idea of pseudo-labeling is to apply a trained classifier to predict labels on unlabeled instances,
which are then treated as ‘pseudo’ gold labels. Pseudo-labeling applies semi-supervised methods (Ab-
ney, 2007; Zhu and Goldberg, 2009) such as bootstrapping methods like self-training, co-training and
tri-training or methods such as temporal ensembling (Charniak, 1997; McClosky et al., 2006; Blum
and Mitchell, 1998; Steedman et al., 2003; Zhou and Li, 2005; Søgaard and Rishøj, 2010; Saito et
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al., 2017; Laine and Aila, 2016) by using either the same model, a teacher model, or multiple boot-
strap models which may include slower but more accurate hand-crafted models (Petrov et al., 2010) to
guide pseudo-labeling. Most pseudo-labeling works date back to traditional non-neural learning meth-
ods. Bootstrapping methods for domain adaptation are well-studied in parsing (McClosky et al., 2006;
Reichart and Rappoport, 2007; Yu et al., 2015). They include models trained on other grammar for-
malisms to improve dependency parsing on Twitter (Foster et al., 2011). Recently, this line of classics
has been revisited (Ruder and Plank, 2018; Rotman and Reichart, 2019; Lim et al., 2020). For example,
classic methods such as tri-training constitute a strong baseline for domain shift in neural times (Ruder
and Plank, 2018). Pseudo-labeling has recently been studied for parsing with contextualized word rep-
resentations (Rotman and Reichart, 2019; Lim et al., 2020) and a recent work proposes adaptive ensem-
bling (Desai et al., 2019) as extension of temporal ensembling (see hybrid methods in Section 6).

5.2 Data selection
A relatively unexplored area is data selection for adaptation, which is gaining traction again in light of
large pre-trained models (which data should they be trained on?) and the related problem of cross-lingual
learning (what is/are the best source language(s) to transfer from?). Data selection aims to select the best
matching data for a new domain, typically by using perplexity (Moore and Lewis, 2010) or using do-
main similarity measures such as Jensen-Shannon divergence over term or topic distributions (Plank and
van Noord, 2011). This has mostly been studied for MT (Moore and Lewis, 2010; Axelrod et al., 2011;
van der Wees et al., 2017; Aharoni and Goldberg, 2020), but also for parsing (Plank and van Noord, 2011;
Ruder and Plank, 2017) and sentiment analysis (Remus, 2012) though for supervised domain adaptation
setups only. For parsing and sentiment analysis, the simple Jensen-Shannon divergence on term distri-
bution constitutes a strong baseline (Plank, 2011; Ruder and Plank, 2017). Within MT, van der Wees et
al. (2017) propose a dynamic data selection approach which changes the subset of data in each epoch
for MT. Data selection is gaining attention, in light of the abundance of data. Recent work investigates
data representation and cosine similarity for MT data selection (Aharoni and Goldberg, 2020). Similarly,
distance metrics have been been recently used for multi-source domain adaptation of sentiment classifi-
cation models using a bandit-based approach (Guo et al., 2020). For morphosyntactic cross-lingual work,
simple overlap metrics are indicative (Üstün et al., 2019; Lin et al., 2019). Another line explores whether
tailoring large pre-trained models to the domain of a target task is still beneficial, and use of data selection
to overcome costly expert selection. They propose two multi-phase pre-training methods (Gururangan et
al., 2020) (as discussed further below) with promising results on text classification tasks.

5.3 Pre-training—And:—Is bigger better? Are domains (or: varieties) still relevant?
Large pre-trained models have become ubiquitous in NLP (Howard and Ruder, 2018; Peters et al., 2018;
Devlin et al., 2019). Fine-tuning a transformer-based model with a small amount of labeled data often
reaches high performance across NLP tasks and has become a de-facto standard. It means starting
from the pre-trained model weights and training a new task-specific layer on supervised data. A natural
question which arises is how universal such large models are. Is bigger better? And are domains (or
varieties) still relevant? We return to these questions after depicting pre-training strategies. We delineate:

1. Pre-training: pre-training alone (e.g., multilingual BERT; language-specfic BERTs from scratch);

2. Adaptive pre-training: This encompasses pre-training, followed by secondary stages of pre-
training on unlabeled data or on labeled data from intermediate higher-resource auxiliary tasks:

(a) Multi-phase pre-training: two or more phases of secondary pre-training, from broad-
coverage to domain-/task-adaptive pre-training (i.e., BioBERT, AdaptaBERT, DAPT, TAPT).
They differ by the source of unlabeled data: broad-domain � domain-specific � task-specific;

(b) Auxiliary-task pre-training: pre-training, followed by (possibly multiple stages of) auxiliary-
task pre-training (e.g., supplementary training on intermediate labeled-data tasks, STILTs).

Pre-training (option 1) can be seen as straightforward adaptation, analogous to zero-shot in cross-
lingual learning. The key idea is to train encoders with self-supervised objectives like (masked) language
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model and related unsupervised objectives (Peters et al., 2018; Devlin et al., 2019; Beltagy et al., 2019).
In light of a domain shift, adaptive pre-training is beneficial, in which in one instantiation contextual-

ized embeddings are adapted to text from the target domain by masked language modeling, as introduced
by Han and Eisenstein (2019). More broadly, we distinguish two variants of adaptive pre-training. They
differ whether unlabeled data or some form of auxiliary labeled data (or intermediate tasks data) is used.
These variants can also be combined, and fine-tuning applies to all setups, if data is available. The key
idea of multi-phase pre-training (option 2a) is to use secondary-stage unsupervised pre-training, such
as broad-coverage domain-specific BERT variants (e.g., BioBERT). Gururangan et al. (2020) propose
domain-adaptive pre-training (DAPT) from a broader corpus, compared to (Han and Eisenstein, 2019),
and task-specific pre-training (TAPT) which uses unlabeled data closer-and-closer to the task distribu-
tion. As these studies show, domain-relevant data is important for pre-training (Han and Eisenstein,
2019; Gururangan et al., 2020) in both high and low resource setups. Similar adaptive pre-training work
has been shown to be effective for dependency parsing (Li et al., 2019). This suggests that there exists
a spectrum of domains of varying granularity, confirming ideas around domain similarity (Plank, 2011;
Baldwin et al., 2013). Domains (varieties) do still matter in today’s models.

An alternative line of work (option 2b) is auxiliary-task pre-training and use labeled auxiliary tasks
either via multi-task learning (MTL) (Peng and Dredze, 2017) or intermediate-task transfer (Phang et
al., 2018; Phang et al., 2020). The latter proposed supplementary training on intermediate labeled-data
tasks for transfer (STILT) (Phang et al., 2018), and recently adopted this idea to cross-lingual learning,
where English is used as intermediate-task for zero-shot transfer (Phang et al., 2020).

The choice of data used for pre-training (or the auxiliary tasks) do matter. Current transformer models
are trained on either large general data like BookCorpus and Wikipedia in BERT (Devlin et al., 2019)
or target-specific samples, like papers from Semantic Scholar in SciBERT (Beltagy et al., 2019), and
PubMed abstracts and PMC full-text articles in BioBERT (Lee et al., 2020). What denotes relevant
data is an open question. Today, it is either general background knowledge, domain-specific target data,
or a combination thereof, possibly via auxiliary tasks or intermediate training stages. Most of these
have been carefully selected manually, raising interesting connections to data selection (Section 5.2) and
finding better curricula (Tsvetkov et al., 2016) to learn under domain shift (Ruder and Plank, 2017).

While large pre-trained models have shown to work well, many questions and challenges remain. Re-
cent work has shown that these models degrade on out-of-domain data, maximum likelihood training
makes them too over-confident (Oren et al., 2019) and particularly calibration is important for out-of-
domain generalization (Hendrycks et al., 2020). An acknowledged issue with fine-tuning is the brittle-
ness of the process (Phang et al., 2018; Dodge et al., 2020). Even with the same hyperparameters, distinct
runs can lead to drastically different results and training data order and seed choice have a considerably
impact (Dodge et al., 2020). Deeper investigations into what such models capture, how they can be
robustly trained in light of known test distributions or out-of-domain conditions are interesting issues.

6 Hybrid approaches

Work on the intersection of data-centric and model-centric methods can be plentiful. It currently in-
cludes combining semi-supervised objectives with an adversarial loss (Lim et al., 2020; Alam et al.,
2018b), combining pivot-based approaches with pseudo-labeling (Cui and Bollegala, 2019) and very
recently with contextualized word embeddings (Ben-David et al., 2020), and combining multi-task ap-
proaches with domain shift (Jia et al., 2019), multi-task learning with pseudo-labeling (multi-task tri-
training) (Ruder and Plank, 2018), and adaptive ensembling (Desai et al., 2019), which uses a student-
teacher network with a consistency-based self-ensembling loss and a temporal curriculum. They apply
adaptive ensembling to study temporal and topic drift in political data classification (Desai et al., 2019).

7 Challenges and future directions

While recent work has made important progress in neural UDA, our survey reveals i) an over-
representation and bias of work on sentiment analysis (cf. column bias in Table 1) and ii) a general
lack of testing across tasks (row sparsity in Table 1) and multiple adaptation methods.
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Comprehensive UDA benchmarks Concretely, we recommend a) to create new benchmarks for UDA
with multiple tasks and of increasing complexity, setups beyond 1:1 adaptation, and datasets which
document known variety facets of the data (Bender and Friedman, 2018). This will help to learn about
the known and unknown (Section 3) as ‘variety’ (domain) matters; b) to release unlabeled data from
the broader distribution from which annotated data was sampled, in line with Gururangan et al. (2020);
this allows studying diachronic effects, as labeled evaluation data lacks diversity in terms of topics and
time (Desai et al., 2019; Derczynski et al., 2016); and c) to release unaggregated, multiple annotations to
study divergences in annotations (Plank et al., 2014a).

Back to the roots and how knowledge transfers Revisiting classics in neural times is beneficial, as
shown for example in recent work which brings back SCL and pseudo-labeling methods (see Table 1),
but much is left to see how these methods generalize. This can be linked to the question on what repre-
sentations capture (Belinkov and Glass, 2019) and how knowledge transfers (Rethmeier et al., 2020).

X scarcity Even unlabeled data can be scarce (X scarcity), particularly in highly-specialized language
varieties (e.g., clinical data) (Rethmeier and Plank, 2019). This is often due to data sharing restrictions.
In some cases, only a trained source model could be available instead of raw or labeled texts (Laparra et
al., 2020). Together with the quest for more efficient learning methods, the general question of how to
adapt in light of X scarcity or absence becomes important.

8 Conclusion

In this survey, we review strands of unsupervised domain adaptation, summarized into model-centric,
data-centric, and hybrid methods, including trends in pre-training. We also revisit the notion of domain
and suggest to use the term variety instead, to better capture the multitude of dimensions of variation. Our
survey identifies a limited focus on sentiment benchmarks and single-task evaluation for UDA. Lastly,
we outline future directions, linking to the broader challenges related to learning beyond 1:1 scenarios
and out-of-distribution generalization. This also calls for new directions on benchmarks and learning
under scarce data.
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