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Abstract

We propose to learn distributed sentence representation using the text’s visual features as in-
put. Different from the existing methods that render the words (or characters) of a sentence into
images separately, we fold these images into a 3-dimensional sentence tensor. Then, multiple 3-
dimensional convolutions with different lengths (the third dimension) are applied to the sentence
tensor, which would act as bi-gram, tri-gram, quad-gram, and even five-gram detectors jointly.
Similar to the Bi-LSTMs, these n-gram detectors learn both forward and backward distributional
semantic knowledge from the sentence tensor. The proposed model uses bi-directional convolu-
tions to learn text embedding according to the semantic order of words. The feature maps from
the two directions are concatenated for final sentence embedding learning. Our model involves
only a single layer of convolution which makes it easy and fast to train. We evaluate the sentence
embeddings on several downstream natural language processing (NLP) tasks, which demonstrate
surprisingly excellent performance of the proposed model.

1 Introduction

Mapping documents or sentences to vectors (Le and Mikolov, 2014; Pagliardini et al., 2018) is the
foundation of various natural language processing (NLP) tasks, such as text classification (Kim, 2014),
paraphrase detection (Socher et al., 2011), natural language inference (Bowman et al., 2015), question
answering (Zhou et al., 2015), etc. The most straightforward approach to sentence representation uses the
bag-of-words model that represents a sentence as a bag of its constituent words, disregarding grammar
and even the word order but keeping multiplicity. Another similar approach is called Glove (Pennington
et al., 2014), which takes the average of word vectors of the constituent words of a sentence. These
approaches are typically efficient to train, while they ignore the sequential characteristic of the text.
To account for the word order, Skip-Thought (Kiros et al., 2015) learns sentence representation in an
unsupervised way inspired by the skip-gram. It aims to predict the neighboring sentences or phrases
for a given sentence. However, the training process of the Skip-Thought is very slow, which motivates
the FastSent (Kenter et al., 2016) to speed up the training by representing a sentence as a sum of its
constituent word vectors. Although FastSent is faster than Skip-Thought in training, it sacrifices the
order of words in a sentence, which is important in language models, such as the n-gram feature. For
example, Gupta et al. (2019) utilize the bi-gram and even tri-gram to train their embedding model.

As discussed above, most existing works of sentence representation require pre-trained word vectors as
the input or initialization. Sentence representation is taken as a downstream task of word representation.
However, when human beings read a sentence or an article, their eyes in fact receive a series of text
images which are then passed to the brain for recognition and understanding. Hence, a natural way of
word representation is to use visual shapes of the words or characters as features directly (Shimada et
al., 2016; Su and Lee, 2017; Liu et al., 2017; Sun et al., 2019; Liu and Yin, 2020). For example, Su and
Lee (2017) and Shimada, Kotani, and Iyatomi (2016) take Chinese and Japanese characters as images
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and apply a subsequent convolutional autoencoder to take those images as input and then output low-
dimensional character embeddings. Liu and Yin (2020) extract both the forward and backward n-gram
features from the text’s pixel embedding.

We propose to learn the sentence embeddings using the non-pretrained word images but fold them
into sentence images as input. Our model utilizes multiple bi-gram, tri-gram, quat-gram even five-gram
embeddings of both forward and backward orders of words. Current research in NLP tends to use deep
and complex models, which make the performance compromise to the model complexity. However, the
proposed model has a lightweight structure as shown in Figure 1. In detail, we render words or characters
of a sentence into images and then fold them into a 3-dimensional sentence tensor X ∈ Rw×h×l, where
w×h is the size of the word or character image and l is the length of the sentence. Each slice Xi ∈ Rw×h

corresponds to a word or a character image. Furthermore, we propose to fully exploit the language
feature (i.e., the word order in a sentence) with two distinctive strategies: (1) extracting the multiple
n-gram features with several 3-dimensional convolutional kernels of different sizes (n is the number of
words covered by the kernel); (2) learning both the forward and backward semantic information from
the sentence with bi-direcitonal convolutions, as shown by Figure 1. We name the proposed model
as 3D-ConvLM (3-dimensional Convolutional Language Model). We choose multiple n to integrate
multiple n-gram convolutional kernels. Taking the demo in Figure 1 as an example, we use bi-gram, tri-
gram, and quad-gram information together. Moreover, these n-gram information are constructed from
both the normal text order and the reverse order through bi-directional convolutions. A subsequent 1-
dimensional max-over-time pooling is applied to each channel of this 2-dimensional feature map output
by each n-gram model with different channels. After pooling, feature maps from each n-gram model
of two directions are concatenated as the output feature of the convolutional layer. Finally, three fully
connected (FC) layers are used for conducting text embedding learning.

The contributions of our work are three-fold:

(1) We propose to represent a sentence or an article with a video-like 3-dimensional tensor, and each
frame of this tensor represents one word in the sentence or article, which provides an alternative
view to understand the NLP with computer vision techniques.

(2) We use a 3-dimensional convolutional kernel to learn the n-gram features from the text tensor.

(3) We propose to use bi-directional convolutions to extract semantic information on both the text’s
forward and backward orders.

The proposed 3D-ConvLM extracts and integrates multiple n-gram features during forward and back-
ward convolutions, which further increases the flexibility of the input of text information. We evaluate
3D-ConvLM on text classification and sentence matching, and study the difference between traditional
Chinese and simplified Chinese under the proposed framework.

2 Related Works

2.1 Sentence embedding
Transforming a document or a sentence into a numerical vector (i.e., embedding) according to the text’s
semantic meaning represents a fundamental task in downstream applications of NLP. One simple imple-
mentation of the sentence representation is to sum or average all its constituent word embeddings, such
as the bag-of-words, Glove (Pennington et al., 2014), and FastSent (Kenter et al., 2016). These meth-
ods are typically efficient in training but compromise the order of words, which may cause significant
information loss for text analysis.

Research works have been carried out to model the order of words when learning the distributed sen-
tence representation (Le and Mikolov, 2014; Kiros et al., 2015; Conneau et al., 2017; Pagliardini et al.,
2018; Gupta et al., 2019; Shen et al., 2019). Le and Mikolov propose Doc2vec (Le and Mikolov, 2014)
to add a paragraph vector to represent the missing information from the current context. The Doc2vec
is an adaptation of the Word2vec (Mikolov et al., 2013). Also inspired by the Word2vec model, the
Skip-Thought (Kiros et al., 2015) learns sentence representation by predicting the neighboring sentences
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for any given sentences. Sent2Vec (Pagliardini et al., 2018) aims to strike a balance between matrix fac-
torization and deep learning. Gupta et al. (2019) propose two modifications of Word2vec by considering
higher-order word n-grams along with uni-gram during training. Shen et al. (2019) use InferSent (Con-
neau et al., 2017) for sentence embeddings based on word vectors learned by Glove (Pennington et al.,
2014) or FastText (Joulin et al., 2017). Gupta et al. (2019) claim that training word embeddings along
with higher n-gram embeddings helps in the removal of the contextual information from the uni-gram,
resulting in better stand-alone word embeddings. All the aforementioned methods require pre-trained
word vectors as input.

From a completely different perspective, the most natural way of representing text is using its visual
shape, which is also how human understand the text. The pre-trained word vectors are not indispensable
for sentence embedding. Intuitively, when we read an article on a screen or a book, our eyes capture the
text as a series of images rather than embedding them into vectors. In other words, human understand the
text with the visual information of the words, i.e., we recognize characters or words from their images that
are captured by our eyes. Therefore, we believe that the pixel image, i.e., the character’s morphological
shape, provides the most straightforward way to represent characters and words. Motivated by this idea,
several visual embedding methods (Shimada et al., 2016; Su and Lee, 2017; Sun et al., 2019) have been
developed for Chinese and Japanese text understanding. However, it is very difficult to visually embed
alphabetic languages such as English, because English words cannot be rendered as the same sized image
as Chinese or Japanese square characters. In this work, we render English words into fixed size images.
By contrast, for Chinese, each character is rendered into a squared image. Based on visual embedding,
we integrate multiple n-gram embeddings of both forward and backward directions into our model.

2.2 Bi-directional models

In neural language models, both the normal order and reverse order are preferred to be used as the input.
The most well-known bi-directional model is the Bi-LSTMs (Schuster and Paliwal, 1997), which accepts
both the forward and backward information of text as the input. For example, Melamud et al. (2016)
apply the Bi-LSTMs to a generic context embedding function from large corpora. Kawakami and Dyer
(2015) represent words in the context using Bi-LSTMs and multilingual supervision.

The forward direction on the input sequence follows the order as it is and the backward applies on
a reversed copy of the input sequence. The use of Bi-LSTMs may not always benefit for all sequence
prediction problems, but it can improve the results in the domains where it is appropriate (Graves and
Schmidhuber, 2005; Melamud et al., 2016; Kawakami and Dyer, 2015).

Substantial research works have been focused on combining the Bi-LSTMs with convolutional neural
networks (CNNs). For example, the gated bi-directional CNN (Zeng et al., 2016) is a bi-directional net-
work, which can effectively make use of multi-scale and multi-context regions of images. It is motivated
by the fact that features from different resolutions and support regions can validate the existence of one
another. One example is that a local rabbit ear is helpful in recognizing the rabbit from an image. How-
ever, when the local feature is that the rabbit ear is artificially located on a girl’s head, it would validate
the evidence to support a rabbit image. Hence, we cannot apply the gated bi-directional CNN to NLP
problems. Chiu et al. (2016) propose the bi-directional LSTM-CNNs, which can automatically detect
word- and character-level features using a hybrid bi-directional LSTM and CNN architectures, and thus
eliminate the need for most feature engineering. In contrast, 3D-ConvLM is focused on exploiting the
bi-directional semantic knowledge from the text directly.

3 Proposed Approach

3.1 Overview

Our model makes a direct connection between computer vision and NLP. We render a sentence S into a
3-dimensional tensor, where each slice of this tensor corresponds to a word (for English) or a character
(for Chinese), i.e., each word from S is rendered as an image Xi ∈ Rw×h. We then apply 3-dimensional
convolutional kernels of size w × h × n to the “text tensor”, where w and h are respectively the width
and height of the character images, and n is the number of characters. In other words, the 3-dimensional
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3D Convolution 

Max-over-time pooling 

FC Layers 

Figure 1: The Bi-directional 3-dimensional (3D) convolutional structure of the proposed model.

convolution operates n words or characters for one slide, which acts as an n-gram feature detector. The
3-dimensional convolutional kernel used here is different from the kernel in the traditional image or
video processing tasks. By varying the values of n, we can obtain different n-gram detectors of different
sizes. We propose to extract textual features using multiple n-gram convolutions. For example, in our
experiments, n can take values of {2, 3, 4, 5}. Integration of multiple n-grams is very easy and fast to
implement under the proposed framework.

In neural language modeling, textual information of the normal order and reverse order are two dif-
ferent inputs. For example, the Bi-LSTMs model takes both forward and backward sequences of the
text as inputs. Both the forward on the input sequence as it is and the backward on a reversed copy
of the input sequence are used. The integration of bi-directional information may not always benefit
for all sequence prediction problems, but it can offer some improvement in those domains where it is
appropriate (Graves and Schmidhuber, 2005). Traditional CNNs ignore the difference of the sequential
information between the forward and backward information. In this work, we propose both the forward
and backward convolutions to bridge this gap. As shown in Figure 1, three n-gram models (bi-gram, tri-
gram, and quad-gram1) have been applied to the forward and backward text inputs. Hence, each n-gram
detector from both the forward and backward models would output two 2-dimensional feature maps, in
which the rows correspond to channels and the columns correspond to the n-gram features. A subsequent
1-dimensional max-over-time pooling is applied to each channel of these 2-dimensional feature maps.
The max-over-time pooling means this procedure is implemented along the time dimension according to
the order of a sentence, which is different from the max-over-time pooling referred in Kim et al. (2016)
that takes max pooling over different convolutional kernels. After pooling, the feature maps extracted
by each n-gram detector of two directions are concatenated as the output feature of the convolutional
layer. Finally, three FC layers are used for conducting downstream NLP tasks, such as text classification.
Figure 1 illustrates this entire process of the proposed model.

1In the following experiments, the five-gram model has also been used.
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3.2 Discussion
CNNs have been shown to achieve excellent performance on text classification and sentiment classifi-
cation (Kim, 2014). For the standard CNN on text analysis, only the forward convolution is passed to
the next layer. On the contrary, we propose bi-directional convolutions to adapt our model to text data
as shown in Figure 1. We add the following two more important characteristics into the CNN to make
it better for text analysis: (1) We use bi-directional convolutions to extract features; and (2) we integrate
multiple n-gram features as the input.

3.3 Network Implementation
The network architecture can be described in order as follows:

1. Conv3d layer: kernel size = (20, 131, 3), stride = (1, 1, 1), number of kernels = 50, padding = 0;

2. MaxPool1d layer (the max-over-time pooling): kernel size = 3, stride = 3, dilation = 3, padding =
0;

3. FC layer 1: input = 1250, output = 512;

4. FC layer 2: input = 512, output = 100;

5. FC layer 3: input = 100, output = number of classes.

The specification stride = 3 for the MaxPool1d results in no overlaps in the max-over-time pooling. The
kernel size of the Conv3d layer is (20, 131, 3). It corresponds to a tri-gram model, which is different
from the bi-gram model illustrated in Figure 1.

The proposed model has a light-weight architecture, which only contains no more than 20 ∗ 131 ∗ 3 ∗
50 + 50 ∗ (L − 6) ∗ 1250 ∗ 512 ∗ 100 ∗ num class, num class is the number of the category of each
dataset. The number of parameters of 3D-ConvLM is much fewer than that of the baseline char-CNN
(Zhang et al., 2015).

4 Experiments

4.1 Experimental setup
We render characters (in Chinese) or words (in English) into images of size Rw×h. Chinese characters
have squared shapes, and thus can be represented by squared images with 20× 20 = 400 pixels; that is,
w = h = 20. For English words, we render each word into images, and set the height h = 20 and the
width w = 131 to satisfy most of the English words with a maximum length of 17 alphabets. Our model
is trained using the Adam (Kingma and Ba, 2015) with a learning rate of 0.00001.

4.2 Text classification
4.2.1 Datasets for text classification
The three datasets for text classification are introduced as follows. The THUCNews dataset2 (Li and
Sun, 2007) is generated according to the historical data obtained from the subscription channel of Sina
News RSS (https://rss.sina.com.cn/) from year 2005 to 2011. The Toutiao news dataset
collects the text from the Toutiao App3, and each item contains the title and keywords of the news. We
concatenate the title and keywords as one sample where samples of lengths shorter than 5 are removed
and thus the remaining 380,455 samples are used for training and testing (https://github.com/
fate233/toutiao-text-classfication-dataset). There are 382,688 item documents in
the raw data. We filter out sentences with lengths outside of the range [5, 100] and, as a result, there
remain 380,455 item documents, i.e., 99.41% sentences with their lengths falling in the range of [5, 100].
The Dianping dataset consists of user reviews from online restaurants (http://www.dianping.

2http://thuctc.thunlp.org
3It is also called Jinri Toutiao, which is a news and information content platform of the company ByteDance. It is one of

the largest mobile platforms of content creation, aggregation and distribution in China. https://www.toutiao.com/
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com/) (Zhang and LeCun, 2017), which contains 2,500,000 samples. Each sample is a review with a
score ranging from 1 star to 5 stars. We mark a review as a positive sentiment if the star value equals 4
or 5, and negative otherwise.

For the three datasets, the sample sizes for training, validation, and testing are given in Table 1.

4.2.2 Baselines
For comparison, we consider four baseline methods described as follows:

• The character-level convolutional neural networks (char-CNN) (Zhang et al., 2015);

• CNN for text classification on top of the distributed word vectors obtained via Word2vec (Kim,
2014);

• CNN for text classification on top of the one-hot word vectors;

• FastText (Joulin et al., 2017).

We experiment with three variants of 3D-ConvLM:

• 3D-ConvLM using both the bi-directional convolution and multiple n-grams inputs, as shown in
Figure 1.

• 3D-ConvLM using the bi-directional convolution and 3-gram detector with the filter size w×h×3.

• 3D-ConvLM using only the 3-gram which has two convolutional layers and the filter size is w ×
h× 3.

Table 1: Split of the sample size for training, validation and testing of the datasets for text classification.

Datasets Training Validation Testing Classes Average length Content

THUCNews 50,000 5,000 10,000 10 251 News
Toutiao 266,318 37,666 76,471 15 38 Title and keywords
Dianping 1,750,000 250,000 500,000 2 148 Food reviews

4.2.3 Results on text classification
Testing results on the accuracy of our models in comparison with other methods are shown in Table 2.
The proposed model with bi-directional convolutions and {2, 3, 4, 5}-gram achieves superior perfor-
mances on the text classification compared with the others. It is worth emphasizing that both the bi-
directional convolution and multiple n-gram detector contribute to the final performance, which can be
supported by the experimental results of the first three rows of Table 2. By comparing the results in row
2 and row 3, we observe that the model with bi-directional convolution in row 2 indicates better accuracy
than the model in row 3. Results in row 1 and row 2 in Table 2 also suggest that integrating multiple
n-gram improves the performance.

4.3 Interpretation of 3-dimensional convolution
The 3-dimensional convolutional kernel acts as an n-gram detector in our model. As shown in Figure
1, the conventional kernel operates on n frames (i.e., n words) at a time, which thus corresponds to an
n-gram detector. For a sentence S of length l, we can generate a feature vector u ∈ Rl−1, which is a
continuous n-gram feature of S. By applying k different kernels, we obtain a feature map U ∈ Rk×(l−1)

for each n-gram detector.
When carrying out the testing, we also render a test sentence S = {v1, v2, . . . , vl} into a text video
X = {X1, X2, . . . , Xl}. We input the text video X , which outputs a corresponding feature map U.



6826

Table 2: Comparisons of the accuracy between our three pixel embedding models, 3D-ConvLM, and
four baseline methods under three datasets.

Methods THUCNews Toutiao Dianping

3D-ConvLM (bi-directional + {2, 3, 4, 5}-gram) 0.94 0.86 0.77
3D-ConvLM (bi-directional + 3-gram) 0.92 0.85 0.76
3D-ConvLM (3-gram) 0.89 0.84 0.75

char-CNN 0.92 0.84 0.76
CNN one-hot 0.86 0.78 0.69
CNN Word2vec 0.91 0.81 0.68
FastText 0.91 0.79 0.73

Its element Ui,j corresponds to the convolutional result between the i-th 3-dimensional convolutional
kernel and the j-th n-gram. A larger value of Ui,j indicates that the j-th n-gram of the input sentence S

is more relevant for the classification task (selected by kernel i). By identifying the maximum Ũi,j of all
elements in U, we can easily find out the most relevant n-gram for the task of classification within the
sentence S, where j + 1 ≤ l, and l is the number of words in S.

We visualize the weighted bi-grams according to the first layer of the network trained on the task of
topic classification of the dataset THUCnews. It has ten classes as shown in Table 3. There are 10,000
testing samples for all categories. Table 3 illustrates the top five bi-grams associated with each category.

Almost all the top five bi-grams detected by the proposed model (bi-directional + {2, 3, 4, 5}-grams)
are relevant to the corresponding topics. Taking the topic “Finance” as an example, the detected bi-
grams, “基金” in Chinese and “fund” in English, are strongly matched with its semantic topic. We mark
it in blue. We also see that the third bi-grams are “记者” in Chinese and “journalist” in English, which
may or may not have any relationship with finance so that we color it in orange. The fifth most relevant
bi-grams of “Finance” suggested by 3D-ConvLM is “可能”, which however is not relevant and we color
it in red.

Because 3D-ConvLM does not need to conduct preprocessing, such as segmentation (for Chinese),
some special bi-grams without any semantic meaning could be detected, for instance, “图) ”, “》报”,
“月2”, and “》新”. Although these bi-grams are meaningless, they do exist in the corpus with high
frequency.

4.4 Simplified Chinese versus traditional Chinese

                      

                      

                      

                      

 

 

學而時習之，不亦說乎？ 
学而时习之，不亦说乎？ 

Figure 2: An example of simplified Chinese versus
traditional Chinese.

Chinese characters are possibly the oldest con-
tinuously used but most complex systems of
writing in all languages. There are two coexist-
ing writing systems, i.e., simplified Chinese and
traditional Chinese. The two writing systems are
used to write almost all Chinese dialects4. As
shown in Figure 2, the upper row illustrates char-
acters of simplified Chinese, and the lower row
displays the same characters but in traditional
Chinese, which clearly have more strokes than
the simplified Chinese. Over the years, there have been extensive debates about traditional and simpli-
fied Chinese. For example, what are the differences between traditional and simplified Chinese? And
which one is more efficient?

In this section, we compare the differences between the simplified Chinese and traditional Chinese
under the framework of 3D-ConvLM. We render the three datasets into both simplified Chinese and
traditional Chinese, then run the text classification tasks on them for 10 times. From the results in Table

4https://unitedlanguagegroup.com/blog/traditional-chinese-vs-simplified-chinese-whats-the-difference/
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Table 3: Top five bi-grams of 10 different topics from the Chinese dataset THUCNews by the proposed
model: bi-directional + {2, 3, 4, 5}-gram. Each one is listed in the format of [bi-gram in Chinese]+(its
English translation)+(frequency). We use three different colors to indicate the relevancy between the
topic and bi-grams: blue means strongly related, orange means possibly relevant, and red means irrele-
vant.

Topic Top five bi-grams for 10 different topics of THUCNews based on frequency.

Finance
基金 (Fund) (12203), 投资 (Invest) (484),记者 (Journalist) (182), 公司 (Company)

(163), 可能 (Possible) (130)

House
图) (Drawing) (4292), 新浪 (Sina Co., ltd) (2131),投资 (Invest) (815),
开盘 (Open house) (694), 地产 (Real estate) (659)

Stock
投资 (Invest) (4696), 公司 (Company) (1540), 新浪 (Sina Co., ltd) (1400),
美国 (U.S.A.) (1237), 可能 (Possible) (877)

Education
高考 (University entrance examination) (4534), 学生 (Student) (3031),
图) (Drawing) (2092), 考生 (Examinee) (960),
留学 (Study aboard) (241)

Technology
图) (Drawing) (2159), 图片 (Picture) (1897),影像(Image) (598),
新浪 (Sina Co., ltd) (163), 公司 (Company) (388)

Society
男子 (Man) (3011), 法院 (Court) (2766),学生 (Student) (1167),
报讯 (News from newspaper) (850), 通讯 (Communication) (528)

Politics
月2 (Month 2) (2101), 》报 (Newspaper) (760), 法院 (Court) (641),
美国 (U.S.A.) (559), 图) (Drawing) (516)

Sports
新浪 (Sina Co., ltd ) (3622), 球队 (National team) (1573), 足球 (Soccer) (874),
比赛 (Game) (663), 篮球 (Basketball) (595)

E-game
游戏 (E-game) (7630), 》新 (New) (813), 娱乐 (Entertainment) (471),
月2 (Month 2) (141), 战队 (Clans) (104)

Entertainment
娱乐 (Entertainment) (2587), 新浪 (Sina Co., ltd ) (1098), 报讯 (News from

newspaper) (971), 媒体 (Media) (841), 月2 (Month 2) (411)

4, we can see that although simplified Chinese and traditional Chinese characters have different forms,
they deliver comparable capability on language expression.

4.5 Sentence matching
In this section, we evaluate the relatedness and entailment relation between two sentences. The related-
ness and entailment relation are defined based on a sentence pair (SA, SB). The relatedness is a 5-point
score that quantifies the degree of semantic relatedness between sentences; the entailment relation be-
tween SA and SB could be: entailment, contradiction, and neutral. To adapt the proposed 3D-ConvLM to
these two tasks, we modify it by inputting sentence (SA, SB) separately. Then multiple n-gram detectors
are applied to SA and SB to output two separate feature maps.

1. Split and render the sentence pair (SA, SB) into 3-dimensional tensors XA, XB;

2. Apply multiple bi-directional n-gram detectors to XA, XB separately and output feature maps A,
B;

3. Impose 1-dimensional max-over-time pooling on A, B and output A′, B′ respectively;

4. Calculate the angle and distance |A′ − B′|, |A′ ◦ B′| between A′ and B′ (Tai et al., 2015) and
concatenate them into (|A′ −B′|, |A′ ◦B′|), where | · | is an absolute element-wise difference, ◦ is
the Hadamard product;

5. Feed the FC layers (|A′ −B′|, |A′ ◦B′|) for relatedness and entailment prediction.
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Table 4: Comparisons of the accuracy of 10 tests between simplified Chinese and traditional Chinese.
We render the three datasets into both simplified Chinese and traditional Chinese and then conduct tests
for 10 times.

Datasets Chinese Bi-directional + {2, 3, 4, 5}-gram

Toutiao
Simplified 0.86 0.85 0.86 0.85 0.86 0.86 0.86 0.85 0.86 0.86
Traditional 0.85 0.86 0.85 0.85 0.85 0.85 0.85 0.86 0.85 0.86

THUcnews
Simplified 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.95 0.94 0.94
Traditional 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Dianping
Simplified 0.74 0.74 0.73 0.74 0.75 0.74 0.74 0.74 0.74 0.74
Traditional 0.74 0.74 0.74 0.74 0.73 0.73 0.74 0.74 0.74 0.73

4.5.1 Datasets for sentence matching
The SICK dataset (Marelli et al., 2014) contains about 10,000 English sentence pairs. Each pair was
annotated for relatedness (SICK-R) and entailment (SICK-E) by means of crowdsourcing5. Samples in
STS14 (Agirre et al., 2014) are also labeled as well as the SICK-R that contains 36000 sentence pairs.

4.5.2 Baselines

Table 5: Results on the testing set of three tasks. We
evaluate the SICK-E with classification accuracy,
SICK-R, and STS14 with both Pearson/Spearman
correlations.

Methods SICK-E SICK-R STS14

3D-ConvLM 0.79 0.73/0.7 0.61/0.63
FastText+BoW 0.78 0.73/0.69 0.54/0.56
Glove+BoW 0.78 0.79/0.71 0.54/0.55
Skip-Thought 0.82 0.59/0.62 0.29/0.35

We run the following baselines with the SentE-
val (Conneau and Kiela, 2018), which is a sen-
tence embeddings evaluation toolkit6.

• FastText (Joulin et al., 2017) with the bag-
of-words (BoW).

• Glove (Pennington et al., 2014) with the
bag-of-words (BoW).

• Skip-Thought (Kiros et al., 2015).

4.5.3 Results of sentence matching
The results of sentence matching are shown in
Table 5. For SICK-E and SICK-R, we see that
the proposed model achieves comparable results
with the FastText+BoW, while Skip-Thought
and Glove+BoW perform as the best two. But for the STS14 set, our model achieves the highest Pear-
son/Spearman correlations. Although the proposed model does not present a remarkable performance on
all the tasks, it has a light-weight structure for training.

5 Conclusion

Visual embedding of the text has been studied extensively in recent years. CNNs can deliver a compet-
itive performance in comparison with LSTM on text data analysis. We propose a bi-directional CNN
to learn text embedding according to the semantic order of sentences. In our model, visual signals of
each character can be extracted by multiple n-grams in both the normal order and reversed order. We
conduct text classification and sentence matching on several datasets to evaluate the performance of our
model. Within the proposed framework, we also study the difference between the simplified Chinese and
traditional Chinese.

5https://zenodo.org/record/2787612#.XeZNsPl3iUk
6https://github.com/facebookresearch/SentEval
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