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Abstract

Network embedding has recently emerged as a promising technique to embed nodes of a net-
work into low-dimensional vectors. While fairly successful, most existing works focus on the
embedding techniques for static networks. But in practice, there are many networks that are
evolving over time and hence are dynamic, e.g., the social networks. To address this issue, a
high-order spatio-temporal embedding model is developed to track the evolutions of dynamic
networks. Specifically, an activeness-aware neighborhood embedding method is first proposed
to extract the high-order neighborhood information at each given timestamp. Then, an embed-
ding prediction framework is further developed to capture the temporal correlations, in which the
attention mechanism is employed instead of recurrent neural networks (RNNs) for its efficiency
in computing and flexibility in modeling. Extensive experiments are conducted on four real-
world datasets from three different areas. It is shown that the proposed method outperforms all
the baselines by a substantial margin for the tasks of dynamic link prediction and node classifi-
cation, which demonstrates the effectiveness of the proposed methods on tracking the evolutions
of dynamic networks.

1 Introduction

Network embedding (NE) aims to represent each node by a low-dimensional vector, while seeking to
preserve their neighborhood information as much as possible. It has been shown that working on the low-
dimensional representations is much more efficient than on the original large-scale networks directly in
various real-world applications, such as friend recommendation, product advertising, community detec-
tion (Cavallari et al., 2017), nodes classification efc. Because of its capability in facilitating downstream
applications, many methods have been developed to embed network nodes into vectors efficiently and ef-
fectively, like DeepWalk in (Perozzi et al., 2014), LINE in (Tang et al., 2015), Node2Vec in (Grover and
Leskovec, 2016) etc. Later, the attributes/texts available at nodes are further taken into account, e.g. the
CANE in (Tu et al., 2017) and WANE in (Shen et al., 2018), to obtain more comprehensive embeddings.
However, these methods mostly focus on static networks, but in practice, networks are often dynamic.
In social networks, for instance, new friend connections are established all the time, and user profiles
are also updated from time to time. For these dynamic networks, how to learn their embeddings, and
more importantly, how to leverage the embeddings to predict their evolution trends is crucial for many
applications.

Existing methods for dynamic network embedding can be roughly divided into two categories. The
first category concerns about how to obtain new embeddings from the stale ones efficiently when changes
of networks are observed. In (Du et al.,, 2018), by decomposing the learning objective into differ-
ent parts, it is shown that new embeddings can be updated by only considering the newly added and
most influential nodes. Differently, (Hamilton et al., 2017; Cheng et al., 2020) proposed to use a
graph convolutional network (GCN) or Gaussian process to learn a mapping from the associated at-
tributes to the embeddings, respectively, then the embeddings can be updated directly with the output
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these methods focus only on the changes at the t t t,
current timestamp rather than their dynamics, >
the induced embeddings can only represent the
networks at the current timestamp, but are poor
at predicting their future evolvement.

The second category methods focus more
on the improvement of prediction performance.
Singer et al. (2019) proposed to learn embeddings and an alignment matrix for the network at each
timestamp by solving a sequential optimization problem, and then input the embeddings into recurrent
neural networks (RNN) to predict the future links. However, sequential optimization is very expensive,
hindering it from being applied to large networks. Alternatively, Zhou et al. (2018) proposed to learn
embeddings with the objective to predict the future closure process of nodes that are separated by at
most two hops. Later, Goyal et al. (2020) proposed to employ auto-encoders to predict nodes’ direct
neighbors with the neighbors from the previous timestamps via the long short-term memory (LSTM).
Recently, Zuo et al. (2018) introduced the concept of neighborhood formation and used it to track the
evolution of nodes with their direct neighbors from the previous timestamps. In all of these methods,
only the direct (first-order) neighbors in the spatial dimension are leveraged. However, to capture the
dynamics of networks, it is important to consider the high-order information of nodes in both the spatial
and temporal dimensions simultaneously. As illustrated in Fig.1, the green node is isolated from the red
node at ¢£; and becomes its fourth-order neighbor at o, and further evolves into its direct neighbor at ¢,,.
To capture this evolution process, the model should have the ability to be aware of nodes’ high-order
neighborhood information spatially and memorize the changes that occurred many timestamps before
temporally.

In this paper, a dynamic attribute network embedding model (Dane) is developed to track the evo-
lutions of dynamic networks. Specifically, an activeness-aware neighborhood embedding method is
proposed to extract the high-order neighborhood information at each given timestamp. The activeness-
aware mechanism enables the model to emphasize more on nodes that are active in social activities.
Then, an embedding prediction framework is developed to capture the temporal correlations of dynamic
networks, in which the attention mechanism is employed instead of RNNs for its efficiency in computing
and flexibilities in modeling. The methods are evaluated on the tasks of dynamic link prediction and
node classification over four real-world datasets. It is shown that the proposed methods outperform all
comparable embedding methods, including both static and dynamic ones, on the link prediction by a
substantial margin. This demonstrates that the proposed methods are able to capture the correlations
from the dynamic networks. Similar phenomena are observed on the task of dynamic node classification,
which further confirms the effectiveness of the proposed methods on tracking the evolutions of dynamic
networks.

Figure 1: Illustration of the evolution process of a
dynamic network, where red lines indicate the newly
formed relationships.

2 Related Work

Representation learning for graphs has attracted considerable attention recently, since they can poten-
tially benefit a wide range of applications. Specifically, (Perozzi et al., 2014) employs random walks
to obtain sequences of nodes, and then uses the word2vec technique to represent the nodes into low-
dimensional vectors. To preserve both the global and local structure information, (Tang et al., 2015)
proposed to jointly optimize the first- and second-order proximity of nodes in network. Later, (Grover
and Leskovec, 2016) introduced a biased random walk procedure under the BFS and DFS search strate-
gies to further exploit the diversity of structure patterns of networks. However, in all of these meth-
ods, only the topology information of network is leveraged. But in many real-world networks, nodes
are often associated with attributes or texts. To take the attributes into account, a mutual attention
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mechanism is designed to enhance the relation- L
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in (Tu et al., 2017). To extract more semantic oy :
features from attributed data, (Shen et al., 2018;
Xu et al., 2019b) modified the mutual attention
mechanism in (Tu et al., 2017) and employed a
fine-grained word alignment mechanism. How-
ever, all these works are overwhelmingly per-
formed in the context of plain or static networks.

Various techniques have been proposed to
learn deep representations in dynamic patterns. (Li et al., 2017) first provides an offline embedding
method and then leverages matrix perturbation theory to maintain the freshness of the end embedding
results in an online manner. In (Seo et al., 2018), the model was developed to combine convolutional
neural networks on graphs to identify spatial structures and RNN to find dynamic patterns. Similarly,
(Trivedi et al., 2017) proposed a deep recurrent architecture to model historical evolution of entity em-
beddings in a specific relationship space. To capture both structural properties and temporal evolutionary
patterns, (Sankar et al., 2018) jointly employed self-attention layers along structural neighborhood and
temporal dynamics. Differently, (Nguyen et al., 2018) employed a temporal version of traditional random
walks to capture temporally evolving neighborhood information. Although significant efforts have been
made to learn effective representations in evolutionary patterns, methods aiming to extract high-order
spatio-temporal evolutionary information have been rarely explored. In our work, an activeness-aware
neighborhood embedding method is developed to capture high-order neighbor evolutionary relationship,
followed by a low-complexity attention-based mechanism, which efficiently apprehends temporal evolu-
tionary patterns.

Timestamp

Figure 2: Illustration of how the activeness of an
node effects the evolution of network.

3 The Proposed Framework

A dynamic attributed network G consists of a sequence of snapshots G = {G'1, Ga, ..., Gy}, where G; =
(V4, Et, Ay) is the attributed network at timestamp t; V; and E; are the set of vertices and edges in the
network G, and A; denotes the attribute matrix, with the v-th row representing the attribute associated
with the node v. Additionally, we use V' = V7 U ... U V,, to denote the nodes of the whole network. In
this section, we first propose a method to effectively extract the high-order neighborhood information at
a given timestamp, based on which a low-complexity attention-based model is then developed to capture
the network’s future evolvement.

3.1 Activeness-aware Neighborhood Embedding

To extract high-order neighborhood information in dynamic attributed networks, we can simply apply the
GraphSAGE algorithm to the networks at each timestamp, which aggregates messages from neighboring
nodes iteratively (Hamilton et al., 2017). However, all messages in GraphSAGE are treated equally.
There is no problem if the embeddings are only used to represent the network at the current timestamp.
But if they are used to predict future evolvement, it would be problematic. To see this, let us take the
social network as an example. As illustrated in Fig 2, suppose that both node B and C are the direct
neighbors of node A, but node B is much more active than node C in organizing various social activities.
Obviously, node A is more likely to establish connections with the friends of node B than node C in
future. If the goal is to predict the future evolving trends, it is useful to know the activeness of different
nodes, and more emphases should be given to the messages from the nodes that are more active.

To this end, an activeness-aware neighborhood embedding method is proposed. Specifically, given the
attributed network G; = {V;, E, A;} at timestamp ¢, the embedding of node v is learned by updating
the following equations

:f:f’v = Mean (Aggregate(pgu ® :cﬁu, Yu € M(v))) , (1)
! = tanh(Wy - [, @1 ,)), 2)
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where { = 0,1,...,L; a:fu € R represents the embedding of node u at the ¢-th layer , with x?}u initial-
ized with the u-th row of the attributed matrix A; the values in pﬁu represent the degree of activeness
of node u, which will be discussed in detail later; AV¢(v) denotes the set of neighbors of node v at the
timestamp ¢; the function Aggregate(-) collects messages pf’u © ilff’u from all neighbors u € N;(v) to
constitute a matrix; Mean(-) means taking the average of a matrix along its rows; © is element-wise
multiplication; [- ; -] means the concatenation of two vectors; and W/ is the parameters to be learned.
From (1), we can see that the activeness vector p{u play the role of gates. If the node w is very active, the
values of the corresponding activeness vector pfu will be large. Hence, a larger proportion of the em-
bedding of node u will be flowed into its neighboring nodes, exerting a greater influence onto the other
nodes. On the contrary, if the node w is not active in social activities, its importance will be lowered by
diminishing the values in pf}u.
For the activeness vectors pfﬂ), it is computed from a randomly initialized time-invariant matrix P €
RIVIxd a4
@fﬂj = Mean (Aggregate(pf}u, Yu € M(v))) , 3)

{4 0 =L Y4
ptvtl = U(Wp : [ptﬂ);pt,v])v “)

where o (-) denotes the sigmoid function; and p?}v is initialized by the v-th row of the matrix P, which,
together with the model parameter W, is learned from the training data. Although pfﬂ} is computed from
the time-invariant P, because its computation also depends on the time-evolving network topologies, the
vector pf’v can still track the evolvement of networks.

3.2 Prediction of the Next-Timestamp Embedding

Given the embeddings a:f p fori = 1,2,--- ¢, in this section, we focus on how to predict the network

status at the next timestamp ¢ + 1, e.g., the link connections and node categories at ¢ + 1. In this paper,
we predict the future network status by estimating the embeddings at the next-timestamp &1, using
the previous ones, that is, finding the mapping

. l 0 ¢ L A
s {ml,vv Loy " ?mt,v}le — Tt 4)

The most direct way is to feed the previous embeddings of each layer ¢ into an RNN or LSTM and then
combine the predictions of different layers linearly as the final prediction, i.e.,

if—&-l,v = RNN(:E?U, mg,v? e 7$f,v)a (6)
1 L

Tiy1 = 2 Z(Wyierl,v +by). (N
(=1

where W, and b, are model parameters. It can be seen from (1) and (2) that as the number of layer ¢
increases, broader neighborhood information will be included in the embeddings, but at the same time,
the local information around each node will be weakened. Thus, to retain both the global and local
neighborhood information, the embeddings a:f’v obtained from all intermediate layers ¢ = 1,2,--- | L
are employed for the embedding prediction.

RNNs or LSTMs are good at modeling the time dependencies of sequences, but their computations are
also known to be time-consuming due to the difficulties of parallelizing. Actually, for many interesting
dynamic networks, the changes are not dramatic for each timestamp. To better model the temporal
correlation and speed up the computations, we further propose an attention-based model to predict the
next-timestamp embedding as

K
~L l y4
Lioy = tanh(z at—kz,vmt—k,v)’ (8)
k=1
S L y4 l ~¢
Tif10=TiyTGrp© (mt,v - mt,v)’ )
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where Ec'fw denotes the summarized representation of the most recent X embeddings until timestamp

t — 1; K is the number of used historical embeddings; af_ i 18 the attention coefficient and is computed
as

¢ exp(By_y,)
Qp ko = Kt 5 (10)
exp(Dp1 ﬁt,kﬂ,)
with the coefficient 3 , = o((z}_, D)TW/gmfva); and the vector
9t = o(Wy [ 21,0] + b)) (11)

controls how much of the change mfﬂ, — Ef’v at the previous timestamp are used for the prediction of the
next timestamp.

3.3 Training Objective

Suppose there exists a link e, ,, such that e, , € E;q but ey, ¢ {E; U ExU,--- ,UE}. If our
proposed method is able to capture the historical dynamics and make good prediction for timestamp
t + 1, the prediction embedding for node u and v, i.e., Z¢+1, and &¢41 4, should be close to each other
in the vector space. Thus, we define the objective function as as

L=— Z log p(Tt41,0|Tt+1,u), (12)

ev,ueEt+1

where p(&; ,|2¢,,) denotes the conditional probability of embedding &, ,, given the embedding & ,, and

is defined as

N exp(ﬁ:fuﬁ:t,v)
Z{z,v}EEt+1 eXP(iEZit7v)) .

To alleviate the computational burden of repeatedly evaluating the softmax function, as done in (Mikolov

et al., 2013), the negative sample technique is employed by optimizing the alternative loss below

(13)

p(ﬁ:t,v‘ﬁ:t,u)

R
L= —log U(®f+l,uit+17v) - Z EzwD(z) [log U(_:%g:&-l,z‘%t-i-l,v)}v (14)

r=1

where R is the number of negative samples and D(v) o df’,/ % is the distribution of vertices, where dy
denotes the out-degree of vertex v.

4 Experiments

In this section, we evaluate the performance of the proposed methods on two tasks: dynamic link predic-
tion and node classification. For the link prediction, we predict the new links that appear at timestamp
t + 1 for the first time based on the historical observations until ¢ (Goyal et al., 2018). For the task of
node classification, the categories of nodes at timestamp ¢ + 1 are predicted, with only the nodes that
change their categories at ¢ + 1 considered (Zhou et al., 2018). In the experiments, the dimension of
network embeddings is set to 100 for all considered methods. The negative samples are set to 1 and the
mini-batch size is set to 50 to speed up the training process. Adam(Kingma and Ba, 2014) is employed
to train the proposed model with a learning rate of 1 x 1074,

4.1 Datasets, Baselines and Evaluation Metric

Datasets To evaluate our proposed methods, we collect four real-world dynamic attributed network
datasets, ranging from user action network, brain activity network to academic citation network. The
statistics of four datasets are summarized in Table 1.

* MOOC is a user action dataset collected by (Kumar et al., 2019), in which users and course activities
are represented as nodes, and actions by users on the course are represented as edges. The actions
have attributes and timestamp, hence it can be recognized as a dynamic attributed graph. In our
experiment, we split the dataset into 20 timestamps.
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Datasets | #(Vertices) *(Vertices) #(Edges) x(Edges) Timestamp Categories

MOOC 1382 7047 12560 104642 20 -

Brain 5000 5000 74547 878207 12 -
DBLP 20252 189296 27263 1079777 16 7
ACM 10971 146040 11376 636527 19

Table 1: Statistics of datasets. #(-) and *(-) denote the number at the first and last timestamp.

* Brain is a brain activity dataset collected by (Xu et al., 2019a). The tidy cubes of brain tissue and
the connectivity are represented as nodes and edges respectively. PCA is applied to the functional
magnetic resonance imaging data to generate note attributes. If two tidy cubes show similar degree
of activation, they will be connected by an edge.

* DBLP is a citation network, consisting of bibliography data from computer science. In our exper-
iment, only the authors with at least three publications between 1995 to 2010 are collected. Each
author is viewed as a node, and the corresponding titles and abstracts are processed to be the at-
tribute of nodes. Specifically, all titles and abstracts published by an author are concatenated in
reverse chronological order. We then pass the concatenated words into the pre-trained BERTpasE
(Devlin et al., 2019) and use the vectors of [CLS] in the last layer as the representations. Since the
max length of input token for BERT g4 5£ is 512, words that exceed this length limit are removed.
The ground-truth category that an author belongs to is decided by the avenues where most of his/her
papers are published '.

* ACM is similar to the DBLP dataset. Here, only the authors who published at least three papers
over the years between 1991 to 2009 are taken into account. Similarly, BERT 455 (Devlin et al.,
2019) is applied to generate attributes for each node.

Baselines For comparisons, several baseline methods are considered, including both static and dynamic
methods.

* Static Methods: DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), Node2Vec (Grover and
Leskovec, 2016), CANE (Tu et al., 2017), SAG (Hamilton et al., 2017), WANE (Shen et al., 2018)

* Dynamic Methods: DynTriad(Zhou et al., 2018), DynGEM (Goyal et al., 2018), STAR (Xu et al.,
2019a), tNodeEmbed (Singer et al., 2019), DynAERNN (Goyal et al., 2020).

Among the static baselines, the DeepWalk, LINE, and Node2Vec only use the network structure, while
the CANE, WANE, and SAGE leverage both the network structure and attributes. When the static meth-
ods are used for link prediction of dynamic networks, we apply the static methods to the network ob-
served until most recently, and the obtained embeddings are then used to predict the links at the next
timestamp.

Evaluation Metrics For the task of dynamic link prediction, the widely used evaluation metrics, the
area under the ROC curve (ROC-AUC) (Hanley and McNeil, 1982), PR curve (PR-AUC) (Davis and
Goadrich, 2006) and F1 scores, are utilized to evaluate the performance of learned embeddings. For
the dynamic node classification task, a logistic regression model is used to classify the embeddings into
different categories. The classifier is trained with the provided labels of nodes. The weighted sum of F1
scores from different categories is used as the performance criteria of this task. All the experiments in
this paper are repeated 10 times, and the average results are reported.

'1) Computer Architecture: PPoPP, DAC, MICRO, PODC; 2) Computer Network: SIGCOMM, MobiCom, INFOCOM,
SenSys; 3) Data Mining: SIGMOD, ICDE, SIGIR; 4) Computer Theory: STOC, SODA, CAV, FOCS; 5) Multi-Media: SIGG-
PAPH, IEEEVIS, ICASSP; 6) Artificial Intelligence: IJCAI, ACL, NeurlPS; 7) Computer-Human Interaction: IUI, PERCOM,
HCI
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DBLP ACM

Method ROC-AUC  FI  PR-AUC ROC-AUC  FI  PR-AUC
DeepWalk 78.26 7014 60.13 73.53 6612 5673
LINE 74.66 6799 5881 70.40 6448 5599
Node2Vec 7777 6971 6021 72.86 6567 5648
CANE 79.08 7200  61.84 7721 7025 6022
WANE 79.55 7226 62.05 77.40 7037 6035
SAGE 82.49 7460 6508 80.15 7281 62,01
DynTriad 7741 7136 6032 75.59 69.60 5945
DynGEM 81.54 7565 6727 80.04 7385  65.69
STAR 82.52 7624  68.94 80.74 7658  68.84
{NodeEmbed 83.42 4658 6927 81.65 7712 6891
DynAERNN 84.05 7898  70.02 82.37 7758 69.03
Dane-RNN 87.14 8153 7142 86.69 7951  69.87
Dane-LSTM 87.55 82.03 7178 85.64 7871 69.12
Dane-ATT 87.70 8124 7227 86.32 7989  70.06

Table 2: Performance of dynamic link prediction in percentages on DBLP and ACM datasets.

Method MOOC Brain

ctho ROC-AUC Fl PR-AUC  ROC-AUC Fl PR-AUC
DeepWalk 58.43 56.39 53.41 55.00 53.84 52.11
LINE 59.02 56.95 54.76 60.14 57.96 52.89
Node2Vec 57.75 55.93 53.69 57.45 55.71 53.37
CANE 61.78 58.92 55.14 61.52 57.81 54.05
WANE 60.93 58.47 54.95 60.78 57.74 53.61
SAGE 62.59 58.64 56.00 62.07 58.54 55.13
DynTriad 57.14 54.81 52.86 54.05 52.95 49.76
DynGEM 62.65 57.68 55.01 62.84 57.82 54.98
STAR 63.81 59.16 55.98 63.47 58.94 56.02
tNodeEmbed 61.74 58.76 55.47 61.57 57.62 55.16
DynAERNN 63.45 59.04 56.06 63.47 58.27 56.34
Dane-RNN 64.58 58.91 57.12 64.13 58.98 56.87
Dane-LSTM 64.14 58.73 56.98 64.32 59.02 56.92
Dane-ATT 65.02 60.24 57.29 64.59 59.14 57.03

Table 3: Performance of dynamic link prediction in percentages on MOOC and Brain datasets.

4.2 Dynamic Link Prediction

For the performance evaluation of link prediction, as done in (Goyal et al., 2018), 20% of the new links
at timestamp ¢ + 1 are randomly selected to fine-tune the proposed model, and the rest 80% are held out
for testing. To be fair, the selected 20% links are also included in training dataset for all the baseline
methods. The ROC-AUC, PR-AUC, and F1 scores of different models on DBLP, ACM, MOOC and
Brain datasets are shown in Table 2 and Table 3, respectively, with the best performance highlighted in
bold. Note that the Dane-RNN, Dane-LSTM, and Dane-ATT represent the proposed network embedding
models that employ RNN, LSTM, and attentions in the next-timestamp prediction, respectively.

From Table 2, it can be seen that the proposed Dane models consistently outperform the baseline
methods by a substantial margin on the two considered DBLP and ACM datasets on citation networks.
The results suggest that our proposed methods successfully incorporate the network evolution into the
embeddings and thus significantly improve the performance on the task of dynamic link prediction. We
can also see that the simple attention-based model Dane-ATT achieves a comparable or even better per-
formance than the more complicated Dane-RNN and Dane-LSTM models. This confirms our hypothesis
that for the dynamic networks which do not evolve too fast, it is sufficient to employ the attention mech-
anism to model the temporal dynamics. By examing the static methods, it can be seen that the methods
using attributes (e.g. CANE and SAGE) generally perform better than those that do not (e.g. DeepWalk),
indicating that it is rewarding to incorporate the attributes into the embeddings. We can also observe that

6815



90

(=]
o

EEE Dane-ATT(w/o DP) EE Dane-ATT(w/o DP)
I Dane-ATT(w/o D) EEm Dane-ATT(w/o D)
88 m Dane-ATT(w/o P) 65 m Dane-ATT(w/o P)
Dane-ATT Dane-ATT

ROC-AUC
o
B

ROC-AUC
o
w

82

(<))
N

80 61

MOOC Brain

Figure 3: Performance of the variants of Dane-ATT that exclude the activeness vector, dynamic modeling
or both.
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ods, demonstrating the importance of modeling e DBLP | 86.25 - DBLP
the temporal correlations for future evolvement 12 3 4 860073 A
prediction. By jointly considering the attributes 86.4 86.50 —

and dynamics, we can see that the proposed 86.2 Ugg:ég S
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model’s generalization ability on datasets from égg:g §g§%g

other domains, experiments on user action net- 852 ACM gﬁ?g Y —¥- ACM
work and brain activity network are conducted. I o2 34 s

It can be observed from Table 3 that the pro-

posed Dane models perform best on MOOC and Figure 4: ROC-AUC of Dane-ATT under different

Brain datasets, which confirms the outstanding  values of L and K on the DBLP and ACM datasets.
generalization capacity of our proposed model.

Impacts of Different Modules To investigate the importance the activeness-aware mechanism module
and temporal correlation modeling module, we evaluate the performance of models that exclude one or
both of them, respectively. Specifically, in addition to the Dane-ATT, we consider another three variants:
1) Dane-ATT (w/o P), the model without using the activeness vector; 2) Dane-ATT (w/o D), the model
without modeling the dynamics; 3) Dane-ATT (w/o DP), the model that does not use both. The ROC-
AUC:s evaluated on the four datasets are reported in Fig.3. It can be seen that without using the activeness
vector and the dynamic modeling, an immediate performance drop is observed. This demonstrates the
importance of considering both the node activeness spatially and the time correlations temporally. We
can see that the drop caused by excluding the dynamic modeling is more significant, suggesting the
importance of taking the historical information into account when embedding the dynamic networks.
Moreover, if both the activeness vector and dynamic modeling are not used, the worst performance is
observed. It is interesting to point out that the Dane-ATT (w/o DP) is actually the static GraphSAGE
method, while the Dane-ATT (w/o D) is the static embedding method that has used the activeness of
nodes. By comparing the performance of the two variants, the benefits of considering the activeness of
nodes are confirmed again.

Impacts of the Parameters L and X' The parameter L represents the number of layers used in the
neighborhood embedding, while K means how many timestamps that we will look back for the next-time
prediction. To investigate the impacts of the two parameters, performances of Dane-ATT with different
number of layers L and lookback timestamps K on DBLP and ACM dataset are evaluated. The values
of ROC-AUC as functions of L and K are illustrated in Fig.4. It can be seen that as L increases, the
performance of proposed model increases rapidly at the beginning and then converges at around L = 3.
The significant improvement at the beginning suggests that incorporating information from high-order
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Figure 5: Node classification result on the Figure 6: ¢-SNE visualization of our learned
DBLP dataset network embeddings on DBLP dataset.

neighborhood into the embedding is highly beneficial to the modeling of dynamic evolvement. But as L
continues to increase, the improvement is lost. This may be because larger L also results in the decrease
of local neighborhood information. Similar trend can be observed in experiments with different k. That
is, the performance increases as k getting large initially, but then soon gets saturated. This reveals that in
the dynamic citation network, it is sufficient to only look back several timestamps when predicting the
future trends. This also explains why the attention-based model generally performs better than the RNNs-
or LSTM-based ones in the prediction of dynamic networks. That is because the dynamic networks often
have a short memory and thereby simple temporal correlations. Thus, for applications of this kind, the
more complicated RNN or LSTM may have a detrimental impact on the prediction performance. We
believe that when more complex dynamic networks are considered, larger K should be used.

4.3 Dynamic Node Classification

In this section, the experiment of dynamic node classification on the DBLP dataset is conducted. The
intuition is that if a model is able to capture the evolution of dynamic attributed networks, the evolution
of nodes’ categories should also be manifested in the predictive embeddings. To this end, nodes are
split into a training and testing set randomly with a proportion of 50%-50%. Then a logistic regression
classifier regularized by Lo is trained on the node embeddings and their corresponding categories. By
noticing that the categories are evolving over time in the DBLP dataset, only users whose categories
are changed at the next timestamp are used for testing. We repeated the experiment 10 times and the
average of weighted sum of F1 scores on different categories are reported. It can be seen from Fig.5 that
Dane-ATT performs the best among all compared methods considered. To evaluate the quality of the
obtained embeddings, we further visualize them on a 2-D plane with the ¢-SNE. Following (Zuo et al.,
2018), a sample of 500 nodes for each category is randomly selected and the result is shown in Fig.6. As
shown in Fig.6, nodes from different categories are separated pretty well, demonstrating that the obtained
embeddings preserve the category information of the network well.

5 Conclusion

In this paper, a dynamic attribute network embedding framework is proposed to track the network evolu-
tion by modeling the high-order correlations in spatial and temporal dimensions jointly. To this end, an
activeness-aware neighborhood embedding method is proposed to extract the high-order neighborhood
information at each timestamp. Then, an embedding prediction framework is developed to capture the
temporal correlations. Extensive experiments were conducted on four real-world datasets over the tasks
of link prediction and node classification, confirming the ability of the model to track the evolutions of
dynamic networks.
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