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Abstract

Pretrained language models, neural models pretrained on massive amounts of data, have estab-
lished the state of the art in a range of NLP tasks. They are based on a modern machine-learning
technique, the Transformer which relates all items simultaneously to capture semantic relations
in sequences. However, it differs from what humans do. Humans read sentences one-by-one,
incrementally. Can neural models benefit by interpreting texts incrementally as humans do? We
investigate this question in coherence modeling. We propose a coherence model which interprets
sentences incrementally to capture lexical relations between them. We compare the state of the
art in each task, simple neural models relying on a pretrained language model, and our model
in two downstream tasks. Our findings suggest that interpreting texts incrementally as humans
could be useful to design more advanced models.

1 Introduction

Coherence describes the semantic relation between elements of a text. It distinguishes a text as either
a unified whole or a collection of unrelated sentences. Lexical coherence represents the cohesive effect
achieved by lexical relations (Halliday and Hasan, 1976).

Earlier work mainly focuses on capturing lexical relations using external resources (Morris and Hirst,
1991). Mesgar and Strube (2016) introduce a graph model, the latest model for lexical coherence, to
represent lexical relations between sentences on the graph. It encodes sentences as nodes and lexical
relations between sentences as edges. This model, nevertheless, considers lexical items independently.

Recent neural models adopt a modern machine learning-based technique (Liu and Lapata, 2019; Gupta
and Durrett, 2019), the Transformer (Vaswani et al., 2017). It relates all items simultaneously to capture
semantic relations in sequences. More recently, large-scale pretrained language models, Transformer-
based models pretrained on the massive amounts of text, have led to significant improvements in a range
of NLP tasks (Devlin et al., 2019).

However, the Transformer processes texts in a way which is different from the way humans do it. Psy-
cholinguistic experiments show that humans read texts incrementally (Marslen-Wilson, 1975; Kamide
et al., 2003; Gibson and Warren, 2004). Kohn (2018) claim that NLP systems which follow this theory
should interpret texts incrementally, too. Do neural models benefit from both pretrained language models
and incremental sentence processing?

To investigate this question, we propose a coherence model which interprets sentences incrementally
to capture lexical relations. For the ongoing sentence being read, our model first captures a semantic
centroid vector which represents the centroid of preceding sentences. The centroid vector is computed
as averaged representations of sentences. The model then measures semantic similarity between the
centroid vector and the current sentence. Our model iterates this procedure for all sentences.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

6752

Proceedings of the 28th International Conference on Computational Linguistics, pages 6752-6758
Barcelona, Spain (Online), December 8-13, 2020



Model Output

Algorithm 1 Incremental processing module.
1: procedure IPM(sent_list)
2: dist_vec + {}
for sent; in sent_list do
centroid; = avg(senty : sent;_1)
dist; = dist(centroid;, sent;)
dist_vec.append(dist;)
end for
dist_vec = conv(dist_vec)
dist_vec = max_pool(dist_vec)
wgrdl chrd2 chrd3 ¢ ondn 10: return centroid;,s;, dist_vec
11: end procedure
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Figure 1: An overview of our model.

We evaluate our model on two tasks: assessing discourse coherence and automated essay scoring. We
compare our model with the state of the art in each task and two variants of a simple baseline relying on
a pretrained language model: the first baseline encoding sentences individually, and the second baseline

encoding a whole text at once!.

2 Related Work

Morris and Hirst (1991) propose lexical chains which identify sequences of related words using a lexical
knowledge base. To identify lexical relations without human annotation, generative models have been
developed, which learn lexical distributions. However, they may not generalize well across multiple
datasets drawn from different distributions (Eisenstein and Barzilay, 2008; McNamara et al., 2010).

Mesgar and Strube (2016) propose a graph-based model to overcome these limitations using word em-
beddings pretrained on a large-scale dataset. They introduce a graph model to represent lexical relations
between sentences, which encodes sentences as nodes and lexical relations between sentences as edges.
This graph-based model captures k-node subgraphs of this graph and represents coherence patterns by
the frequency of subgraphs. However, their model neglects context to capture lexical relations.

Modeling lexical coherence has proven to be effective in diverse NLP applications like summarization
(Erkan and Radev, 2004), translation (Xiong et al., 2013), and discourse parsing (Jia et al., 2018). We
believe that our study for lexical coherence can be beneficial in these applications.

3 Our Model

Figure 1 shows our model architecture. Our model takes sentence representations using a pretrained
language model. The model then feeds sentences into the lexical coherence module to produce the
semantic centroid vector and the semantic similarity vector. We concatenate the two vectors to generate
a model output through a feed-forward network.

Sentence representations: We first encode input sentences using a pretrained language model to pro-
duce word representations. We take a sentence representation as the average of all word representations
in a sentence. We then feed the sentence representations to the lexical coherence module.

Incremental processing module: Algorithm 1 describes our lexical coherence module. To interpret
the sentence being read, we update two components: a semantic centroid vector and a semantic simi-
larity vector. The semantic centroid vector takes averaged representations of preceding sentences, and
this vector represents their central point. We then measure the semantic similarity between the current
sentence representation and the centroid vector. We use cosine similarity to measure semantic similarity.
We iterate this procedure for all sentences.

'Our code is available at: https://github.com/sdeval4/coling20-inc-lexi-cohe
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Model Yahoo Clinton Enron Yelp | Avg Acc
Barzilay and Lapata (2008) 38.0 43.0 46.0 45.5 43.1
Guinaudeau and Strube (2013) 40.0 56.0 43.5 53.0 48.1
Li and Jurafsky (2017) 53.5 61.0 544  49.1 51.7
xMesgar and Strube (2018) 47.3 57.7 50.6 54.6 52.6
Lai and Tetreault (2018) 54.9 60.2 53.2 54.4 55.7
Avg-XLNet-Sent 58.0 57.6 543 559 56.4
Avg-XLNet-Doc 60.5 65.9 56.9 59.0 60.6
Our Model-Sent 57.3 61.7 54.5 56.9 57.6

Table 1: GCDC Accuracy performance comparison (x: our re-implementation).

A convolutional layer is applied to the semantic similarity vector to extract a feature map which rep-
resents the patterns of changes in semantic similarities. Max-pooling is applied to the feature map, and
this lets the model capture features semantically relevant to the centroid vector.

Document representation: We concatenate the semantic centroid vector, updated on the last sentence,
and the semantic similarity vector. Finally, a feed-forward network is applied on the representation to
produce the output value.

4 Experiments

4.1 Implementation Details

We implement our model using the PyTorch library and use the Stanford Stanza library? for sentence
tokenization. For the baselines that do not use the pretrained language model, we use Glove for word
embeddings, the pretrained word embeddings trained on Google News (Pennington et al., 2014). For our
model, we apply a convolutional layer whose kernel size is 3, stride is 2, and padding is 2 and an adaptive
max-pooling layer reducing a vector to the length of 5 (see the supplementary material for more details).

Many pretrained language models cannot encode long texts due to their training settings, or require
a massive amount of memory to encode them. In this work, we employ XLNet for the pretrained-
language model (Yang et al., 2019). Unlike BERT (Devlin et al., 2019), since XLNet can handle any
input sequence length, which is required for our datasets to encode a whole text at once.

We report the results by the mean of 10 cross-validation runs with different random seeds. We validate
statistical significance with a one-sample t-test with p-value < 0.01. We use 23GB GPU memory of a
NVidia P40 for each run.

4.2 Simple Baselines relying on a pretrained language model

To investigate the influence of a pretrained language model on the tasks, we present two simple baselines
relying on the pretrained language model. The first model encodes an input document at the sentence
level and averages the encoded representations (Averaged-XLNet-Sent). The second model has the same
architecture but it encodes an input document at the document level at once (Averaged-XLNet-Doc). We
compare these baselines with other models for both tasks.

4.3 Task 1: Assessing Discourse Coherence

Dataset: We first evaluate our model on the Grammarly Corpus of Discourse Coherence (GCDC) dataset
(Lai and Tetreault, 2018). While previous work evaluates coherence models on formal texts (Barzilay
and Lapata, 2008), GCDC is designed to evaluate coherence models on informal texts, such as emails or
online reviews. The dataset contains four domains: Clinton and Enron for emails, Yahoo for questions
and answers in an online forum, and Yelp for online reviews of businesses. The quality of the dataset is

controlled to have evenly-distributed scores and a low correlation between discourse length and scores”.

2https://stanfordnlp.github.io/stanza/
3The Pearson correlation between text length and scores is lower than 0.12 in all domains.
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Prompt
Model 1 2 3 4 P 5 6 7 3 Avg Acc
*xDong et al. (2017) 69.3 665 658 664 689 642 671 657 66.7
*Mesgar and Strube (2018) | 549 564 524 56.1 553 555 56.0 573 55.5
*xNadeem et al. (2019) 589 558 656 613 578 575 524 528 57.8
Avg-XLNet-Sent 70.7 695 69.0 675 724 709 70.1 69.0 69.9
Avg-XLNet-Doc 747 744 73.0 738 756 757 719 710 73.8
Our Model-Sent 756 734 750 735 768 752 735 728 74.5

Table 2: TOEFL Accuracy performance comparison (x: our re-implementation).

Experimental setup: For GCDC, we perform the experiments following previous work (Lai and
Tetreault, 2018). We perform 10-fold cross-validation, use the same evaluation measure, accuracy for
3-class classification, and use the same loss function, cross-entropy loss.

Baseline models: Barzilay and Lapata (2008) propose the entity grid, based on Centering Theory (Grosz
et al., 1995). This model considers the distribution of entities over sentences. Guinaudeau and Strube
(2013) convert the supervised entity grid into an unsupervised graph-based model. Li and Jurafsky (2017)
propose a neural model which uses cliques, sets of adjacent sentences, to discriminate the difference of
sentences extracted from original articles and randomly permutated ones. Mesgar and Strube (2018)
propose a neural coherence model which finds the two most similar RNN outputs to determine the most
salient part of sentences to connect adjacent sentences. Lai and Tetreault (2018) show that a simple
neural model which uses paragraph information outperforms previous coherence models on GCDC.

Results: Table 1 shows the performance of coherence models on GCDC. The first baseline outperforms
the previous models. Our model, which encodes sentences individually using the pretrained language
model and interprets sentences incrementally, outperforms the first baseline.

However, the second baseline, which —unlike humans— encodes a whole text at once, outperforms our
model. We suspect that the characteristics of GCDC lead to this. Lai and Tetreault (2018) observe that
many texts with low coherence are not well-organized and have unexpected topic switching more than
others. The texts on GCDC mostly consist of several sentences, and the model might distinguish these
cases well on relatively short sequences. To investigate this further, we next compare models on TOEFL
where texts are written in an academic style.

4.4 Task 2: Automated Essay Scoring

Dataset: To examine the effectiveness of our model in a downstream task with formal texts, we evaluate
our model on the Test of English as a Foreign Language dataset (TOEFL) dataset. TOEFL has an
overall higher quality of essays compared to essays in a standard dataset for AES, the Automated Student
Assessment Prize (ASAP) dataset*. The prompts in ASAP are written by students in grade levels 7 to
10 of US middle schools, whereas the prompts in TOEFL are submitted for the standard English test for
the entrance to US universities by non-native students. The prompts in TOEFL do not vary so much, the
student population is more controlled, and the essays have a similar length.

Experimental setup: We evaluate performance in-domain at the prompt level. We perform 5-fold cross-
validation. For 3-class classification, we use cross-entropy loss to train models and measure accuracy to
evaluate models. We evaluate performance for 30 epochs on the validation set. Following previous work
on AES (Taghipour and Ng, 2016), the model which reaches the best performance on the validation set
is then applied to the test set (see the supplementary material for details).

Baseline models: Dong et al. (2017) introduce a model which consists of a convolutional layer, followed
by a recurrent layer, and an attention layer (Bahdanau et al., 2015). We also compare with the state of
the art on TOEFL, Nadeem et al. (2019). Inspired by Dong et al. (2017), Nadeem et al. (2019) propose

*https://kaggle.com/c/asap-aes/
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a model which uses an attention layer to decide the relative weights automatically in adjacent words
as well as sentences. However, we notice that Nadeem et al. (2019) evaluate their model in a different
experimental setup. They filter out content with sentences longer than 40 words or documents longer than
25 sentences; they also evaluate performance without cross-validation®. To ensure a fair comparison,
we changed the experimental setup in their implementation. Mesgar and Strube (2018) evaluate their
coherence model on the AES task as well as the task of assessing readability.

Results: Table 2 summarizes the performance of models on TOEFL. The first baseline outperforms the
previous models, and the second baseline shows better performance than them. Our model sets a new
state of the art at this dataset. Texts included in TOEFL are organized better than those in GCDC where
the second baseline outperforms our model. We suspect that the pretrained language model captures
some patterns on long sequences to predict scores, rather than capturing relations between sentences.
This suggests that our model benefits more from incremental language processing on long sequences.

5 Conclusions

We propose a coherence model which encodes sentences individually using a pretrained language model
and interprets sentences incrementally. The simple baseline, which encodes a whole text at once unlike
humans do, outperforms our model on GCDC which includes informal texts such as online reviews.
However, our model outperforms this model on TOEFL whose texts are organized better. Our findings
suggest that it could be useful to constrain models to be exposed limited information as humans do to
design more advanced neural models with a pretrained language model.
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6 Appendix A. Dataset Details

Table 3 describes statistics on two datasets, GCDC® and TOEFL’. We split a text at the sentence level by
Stanford Stanza library, and tokenize them by the XL Net tokenizer. Table 4 describes the topic of each
prompt in TOEFL. They are all open-ended tasks, that do not have given context but require students to
submit their opinion.

Dataset | #Texts Avglen (Std) Maxlen Scores
G-Y 1,200 173 (48) 378 1-3
G-C 1,200 200 (65) 385 1-3
G-E 1,200 203 (67) 388 1-3
G-P 1,200 198 (58) 374 1-3
T-P1 1,656 401 (97) 902 1-3
T-P2 1,562 423 (97) 902 1-3
T-P3 1,396 407 (102) 837 1-3
T-P4 1,509 405 (99) 852 1-3
T-P5 1,648 424 (101) 993 1-3
T-P6 960 425 (101) 925 1-3
T-P7 1,686 396 (87) 755 1-3
T-P8 1,683 407 (92) 795 1-3

Table 3: Dataset statistics on tokenization: four domains in GCDC, Yahoo (G-Y), Clinton (G-C), Enron
(G-E), Yelp (G-P), and each TOEFL prompt (T-P).

Prompt 1 | Agree or Disagree: It is better to have broad knowledge of many academic subjects than
to specialize in one specific subject.

Prompt 2 | Agree or Disagree: Young people enjoy life more than older people do.

Prompt 3 | Agree or Disagree: Young people nowadays do not give enough time to helping their
communities.

Prompt 4 | Agree or Disagree: Most advertisements make products seem much better than they really
are.

Prompt 5 | Agree or Disagree: In twenty years, there will be fewer cars in use than there are today.
Prompt 6 | Agree or Disagree: The best way to travel is in a group led by a tour guide.

Prompt 7 | Agree or Disagree: It is more important for students to understand ideas and concepts
than it is for them to learn facts.

Prompt 8 | Agree or Disagree: Successful people try new things and take risks rather than only doing
what they already know how to do well.

Table 4: Topic description: TOEFL.

Shttps://github.com/aylai/GCDC-corpus
"https://catalog.ldc.upenn.edu/LDC2014T06
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