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Abstract

Linking of biomedical entity mentions to various terminologies of chemicals, diseases, genes,
adverse drug reactions is a challenging task, often requiring non-syntactic interpretation. A
large number of biomedical corpora and state-of-the-art models have been introduced in the
past five years. However, there are no general guidelines regarding the evaluation of models
on these corpora in single- and cross-terminology settings. In this work, we perform a com-
parative evaluation of various benchmarks and study the efficiency of state-of-the-art neural
architectures based on Bidirectional Encoder Representations from Transformers (BERT) for
linking of three entity types across three domains: research abstracts, drug labels, and user-
generated texts on drug therapy in English. We have made the source code and results available
at https://github.com/insilicomedicine/Fair-Evaluation-BERT.

1 Introduction

Aggregating knowledge about entities across different domains and corpora is critical for many infor-
mation extraction (IE) applications. In biomedical research and healthcare, the entity linking problem
is known as medical concept normalization (MCN). Medical concepts may have different types (e.g.,
drugs, diseases, or genes/proteins) and may be retrieved from different single-typed ontologies. Effec-
tive mapping of the same concepts across different ontologies (the MCN task) is the holy grail of modern
medical NLP.

Most MCN methods meanwhile are evaluated on test sets of widely differing sizes and domains and a
narrow subsample of concepts from specific terminology. Moreover, the reported results of neural net-
works vary substantially on different corpora, with, for example, accuracy ranging at least from 91% to
96% on research abstracts (Sung et al., 2020) and accuracy from 77% to 89% on social media texts (Mif-
tahutdinov and Tutubalina, 2019).

Owing to their superior semantic learning capabilities, BERT (Devlin et al., 2019) and other neural ar-
chitectures have been widely used in recent state-of-the-art (SOTA) models for the MCN task on research
abstracts and social media texts (Leaman and Lu, 2016; Zhao et al., 2019; Li et al., 2017; Phan et al.,
2019; Wright et al., 2019; Sung et al., 2020; Miftahutdinov and Tutubalina, 2019; Ji et al., 2020). These
studies mostly share the same limitations regarding their evaluation strategy: models are usually trained
and evaluated on entities of the same type from a single domain. Often, concept unique identifiers (CUIs)
used in training are included in the test set. A recurring problem, which arises with supervised models,
is how to reuse trained models for a different purpose; this requires coding to a specific terminology. In
this work, we take the task a step further from existing research by exploring current benchmarks and
cross-terminology transfer between entity mentions in research abstracts, drug labels, and user-generated
texts.

We perform an extensive evaluation of five biomedical corpora manually annotated with concepts
regarding diseases, chemicals, human genes, and adverse drug reactions (ADRs). We utilize two models:
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NCBI
Disease

BC5CDR
Disease

BC5CDR
Chem

BC2GN
Gene

TAC 2017
ADR

SMM4H
2017 ADR

domain abstracts abstracts abstracts abstracts drug labels tweets
entity type disease disease chemicals genes ADRs ADRs
terminology MEDIC MEDIC CTD Chem Entrez Gene MedDRA MedDRA

number of pre-processed entity mentions
full corpus 6881 12850 15935 5712 13381 9150
avg. len in chars 20.37 14.88 11.27 8.35 17.28 11.69
% have numerals 5.74% 0.11% 7.32% 62.46% 1.62% 2.52%
train set 5134 4182 5203 2725 7038 6650
dev set 787 4244 5347 - - -
test set 960 4424 5385 2987 6343 2500
refined test 204

(21.2%)
657
(14.9%)

425 (7.9%) 985 (32.9%) 1,544
(24.3%)

831
(33.3%)

number of concepts
train set |T1| 668 968 922 556 1517 472
test set |T2| 203 669 617 670 1323 254
refined test |T3| 140 438 351 642 857 201
|T1 ∩ T2| 136 457 368 55 867 218
|T1 ∩ T3| 76 226 102 27 401 165

Table 1: Statistics of the datasets used in our experiments.

(i) a baseline that ranks concepts for a given mention by comparing biomedical BERT vectors (Lee
et al., 2019) with the Euclidean distance; (ii) a supervised SOTA model BioSyn (Sung et al., 2020).
The work reported here aims to advance SOTA models in biomedical concept normalization of entity
mentions with a variety of entity types and differences in surface characteristics of mentions. In this
work, we seek to answer the following research questions: RQ1: Do test sets of current benchmarks lead
to an overestimation of performance? RQ2: How do surface characteristics of entity mentions affect
the performance of the BERT-based baseline? RQ3: Does a model trained on one corpus work for the
linking of entity mentions of another type or domain in the zero-shot setting?

2 Datasets and Resources

We use the following publicly available benchmarks with official train/dev/test splits. Descriptive statis-
tics of these datasets are shown in Table 1.

NCBI Disease Corpus The NCBI Disease Corpus (Doğan et al., 2014) contains 793 PubMed abstracts
with disease mentions and their concepts corresponding to the MEDIC dictionary (Davis et al., 2012).
The NCBI corpus is the smallest (by the number of mentions), but the mentions have the longest average
length and most of them are related to cancer and tumors. This MEDIC dictionary integrates concepts
and synonyms from the Online Mendelian Inheritance in Man (OMIM) (Amberger et al., 2011) and the
“Diseases” category of the National Library of Medicine’s Medical Subject Headers (MeSH) (Coletti
and Bleich, 2001). The “Diseases” category is very broad in MeSH; it includes conditions generally rec-
ognized as disease, abnormalities, injuries, poisoning, addiction, and pathological signs and symptoms.
We use the MEDIC lexicon (v. July 6, 2012) that contains 11,915 CUIs and 71,923 synonyms.

BioCreative V CDR BioCreative V CDR (BC5CDR) (Li et al., 2016) introduces a task for the extrac-
tion of chemical-disease relations (CDR) from 1500 PubMed abstracts that contains annotations of both
chemical/diseases. When dealing with chemicals, it is likely to see them expressed in the text exactly as
they are seen in other abstracts: only 7.9% of mentions in the test set were unique or were not included
in the train set. Disease and chemical mentions are linked to the MEDIC (Davis et al., 2012) and the
Comparative Toxicogenomics Database (CTD) (Davis et al., 2019) dictionaries, respectively. We note
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that CTD’s chemical vocabulary is a modified subset of descriptors from the “Chemicals and Drugs”
category and Supplementary Concept Records from MeSH. This category is very broad in MeSH; it in-
cludes therapeutic drugs, pure chemicals, and a variety of biological substances. The terms “drugs” and
“chemicals” are often used interchangeably. We utilize the CTD chemical dictionary (v. November 4,
2019) that consists of 171,203 CUIs and 407,247 synonyms.

BioCreative II GN BioCreative II GN (BC2GN) (Morgan et al., 2008) contains PubMed abstracts with
human gene and gene product mentions for gene normalization (GN) to Entrez Gene identifiers (Maglott
et al., 2005). Gene mentions have the shortest average length and 62.46% contain numerals. To create
the lexicon, we took the gene symbol, alias and description information for each gene identifier matched
the following query on NCBI1: “ ‘Homo sapiens’[porgn] AND alive[prop]”. It contains 61,646 CUIs
and 277,944 synonyms.

TAC 2017 ADR TAC 2017 ADR (Roberts et al., 2017) proposes a challenge for the extraction of
ADRs found in product labels (prescribing information or package inserts). ADRs are manually mapped
into the MedDRA dictionary (Brown et al., 1999). In this study, we use MedDRA v19.0 which contains
24,033 CUIs and 77666 synonyms.

SMM4H 2017 ADR The Social Media Mining for Health (SMM4H) challenge (Sarker et al., 2018)
presents a dataset with annotated ADR mentions linked to MedDRA. Tweets were collected using 250
generic and trade names for therapeutic drugs. Manually extracted ADR expressions were mapped to
Preferred Terms (PTs) of the MedDRA dictionary. We use MedDRA v19.0 for this dataset. Out of
the above-mentioned corpora, this corpus has the largest intersection of concepts between sets: 85% of
concepts from the test set were present in the train set.

Preprocessing Similar to previous works (Leaman and Lu, 2016; Wright et al., 2019; Phan et al., 2019;
Sung et al., 2020), we use several preprocessing steps. In particular, we adopt preprocessing scripts
for datasets and dictionaries from the work (Sung et al., 2020). We use Ab3P (Sohn et al., 2008) to
detect local abbreviations and replace each instance with the corresponding long form. We use heuristic
rules (D’Souza and Ng, 2015) to split composite mentions into separate mentions (e.g., non-familial
breast and ovarian cancers into non-familial breast cancer and ovarian cancers). Entity mentions from
a training set are included in a corpus-specific dictionary. Finally, we process all characters to lowercase
forms and remove punctuation for both mentions and synonyms.

2.1 Isolating train and test entity mentions
Given predefined splits of NCBI Disease, BC5CDR, and TAC 2017 ADR datasets, recent neural models
achieve almost excellent accuracy averaging between 91% and 96% (Phan et al., 2019; Sung et al., 2020).
Hence, one could view the MCN task on scientific texts as a largely solved task. After our analysis of
datasets, we found out that approximately 80% entity mentions in the test set are textual duplicates of
other entities in the test set or entities presented in train+dev sets. In order to obtain more realistic results,
we present refined test sets without duplicates or exact overlaps. We note that some concepts appearing
in the refined test set also appear in the respective training set (see |T1 ∩ T3| in Table 1).

In future work, we suggest that refined test sets can be split into two subsets, stratified and zero-
shot. Here Stratified (Tutubalina et al., 2018) is intended to show how well models recognize known
concepts with different surface forms of entity mentions. In contrast, the zero-shot setting shows how
well models map mentions to novel concepts. Here we present a cross-terminology evaluation that is a
more complicated version of zero-shot evaluation due to a shift in entity type and surface form mentions.

3 Models for Concept Normalization

We utilize two BERT-based models: (i) a baseline method based on the ranking of BioBERT representa-
tions, (ii) a SOTA model named BioSyn (Sung et al., 2020). We use BioBERTbase v1.1 for both models
that was pre-trained on PubMed abstracts (4.5B words in total) for 1M steps.

1https://www.ncbi.nlm.nih.gov/
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BioBERT ranking This is a baseline model that used the BioBERT model for encoding mention and
concept representations. Each entity mention or concept name is passed first through BioBERT (we use
the average over all outputs of BERT) and then through a mean pooling layer to yield a fixed-sized vector.
The inference task is then reduced to finding the closest concept name representation to entity mention
representation in a common embedding space. We use the Euclidean distance as the distance metric. The
nearest k concept names are chosen as top-k concepts for entities.

BioSyn BioSyn (Sung et al., 2020) is a recent SOTA model that utilizes the synonym marginalization
technique and iterative candidate retrieval. The model uses two similarity functions based on sparse and
dense representations, respectively. The sparse representation encodes the morphological information
of given strings via TF-IDF, the dense representation encodes the semantic information gathered from
BioBERT. BioSyn achieves SOTA results on NCBI, BC5CDR, TAC sets over previous works (Leaman
and Lu, 2016; Wright et al., 2019; Phan et al., 2019). We have used the publicly available code provided
by the authors at https://github.com/dmis-lab/BioSyn and reproduced the results success-
fully. We follow the default parameters of BioSyn as shown in (Sung et al., 2020): the number of top
candidates k = 20, the mini-batch size is 16, the learning rate is 1e-5, the dense ratio for candidate
retrieval is 0.5. We have trained BioSyn for 20 epochs for all datasets.

4 Single- and Cross-terminology Evaluation

We train BioSyn on the train/dev set of each corpus with a source dictionary, evaluating it on the respec-
tive test set (in-domain performance). For cross-domain evaluation, we assess models trained on source
data on the test sets of all other corpora (i.e., the target). Specifically, both BioSyn and BioBERT rank-
ing models retrieve the nearest concept name in a target dictionary for a given mention representation
at inference time. We note that cross-terminology evaluation provides a challenging setup for devel-
oping supervised models, especially for linking to concepts not encountered during training (zero-shot
concepts).

We evaluate this task in information retrieval (IR) scenario, where the goal is to find within a dictionary
of concept names and their identifiers the top-k concepts for every entity mention in the texts. Let acc@k
be 1 if the correct CUI is retrieved at rank k, otherwise 0. For composite entities, we define acc@k as 1 if
every prediction for a single mention is correct. In particular, we use the top-1 accuracy as an evaluation
metric, following previous works (Suominen et al., 2013; Pradhan et al., 2014; Wright et al., 2019; Phan
et al., 2019; Sung et al., 2020).

Table 2 shows results on six sets where models are usually trained and evaluated on entities of the
same type from a single domain. Table 3 compares the performance of BioSyn in single- and cross-
terminology normalization tasks. Models were trained on the training set from a source dataset and
evaluated on the target test set with different terminology.

To answer RQ1, we compare the results of models on official and refined test sets in Table 2. The
significant decrease of averaged acc@1 from 91.8% to 76.7% for BioSyn and averaged acc@1 from
77.7% to 54.9% for BioBERT ranking highlights the great need for external evaluation datasets, where
the same entity mentions will not be used for both training and testing. These observations also mean that
there is room for improvement in the transferability of developed methods, that is, the ability to maintain
performance for entirely unseen domains or entities.

According to Table 2, the following conclusions can be drawn to answer RQ2. First, the simple rank-
ing of BioBERT representations achieves strong results on CDR Disease and Chemical sets. On two
refined sets with larger mentions (NCBI, TAC) and the BC2GN corpus with mentions containing nu-
merals, the difference between BioBERT ranking and BioSyn is significant (average decrease of 23.6%).
Our qualitative analysis uncovered that BERT representations of mentions differing by one numeral (e.g.,
genes TP53 and TP63) are close in the latent space. As expected, results on SMM4H are significantly
lower than on abstracts due to the gap between the language of lay public and medical professionals.

To answer RQ3, we compare performance differences in Tables 2 and 3. The models trained on NCBI,
CDR Disease, BC2GN, and TAC data perform on par with the model trained on the CDR Chemical train
set (approx. 74% acc@1), while the model trained on CDR Chemical showed a 6% drop on these subsets.
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Model NCBI Disease BC5CDR Dis BC5CDR Chem BC2GN Gene TAC ADR SMM4H ADR
test refined test refined test refined test refined test refined test refined

BioSyn 90.7 72.5 93.5 74.1 96.3 83.8 90.8 85.8 95.6 83.2 83.8 60.5
BioBERT
ranking

83.9 47.5 91.3 65.1 94.7 79.3 74.7 68.4 87.8 54.7 33.9 14.3

Difference -6.8 -25.0 -1.9 -7.7 -1.6 -4.5 -16.1 -17.4 -7.8 -28.5 -49.9 -46.2

Table 2: Single-terminology normalization results in terms of acc@1 on the official and refined test sets.
Train set

Test set NCBI Dis BC5CDR Dis BC5CDR Chem BC2GN Gene TAC ADR SMM4H ADR
NCBI Disease 72.5 67.6 (-4.9) 64.7 (-7.8) 67.2 (-5.4) 67.6 (-4.9) 48.5 (-24.0)
BC5CDR Dis 74.7 (+0.6) 74.1 73.4 (-0.8) 73.1 (-1.1) 74.9 (+0.8) 58.3 (-15.8)
BC5CDR Chem 82.4 (-1.4) 84.2 (+0.5) 83.8 82.6 (-1.2) 82.4 (-1.4) 73.9 (-9.9)
BC2GN Gene 83.1 (-2.6) 81.7 (-4.1) 83.7 (-2.1) 85.8 82.6 (-3.1) 73.2 (-12.6)
TAC ADR 74.3 (-8.9) 77.5 (-5.7) 70.1 (-13.0) 69.9 (-13.3) 83.2 51.5 (-31.7)
SMM4H ADR 27.3 (-33.2) 35.6 (-24.9) 24.8 (-35.7) 21.9 (-38.6) 30.1 (-30.4) 60.5

Table 3: Comparison of BioSyn for single- and cross-terminology MCN on refined test sets by accu-
racy@1. In-domain results are on the diagonals (with a dark gray background). Other cells contain
results of a given model and differences in results between that model and the in-domain model in paren-
theses (by row). Light gray cells show cross-terminology experiments.

BioSyn trained on SMM4H achieves lower results on abstracts and drug labels than simple BioBERT
ranking, while all supervised models performed better on SMM4H data than the BioBERT ranking.

5 Conclusion

We have presented the first comparative evaluation of medical concept normalization (MCN) datasets,
studying the NCBI Disease, BC5CDR Disease & Chemical, BC2GN Gene, TAC 2017 ADR, and
SMM4H 2017 ADR corpora. We perform an extensive evaluation of two BERT-based models on six
datasets in two setups: with official train/test splits and with the proposed test sets that represent refined
samples of entity mentions. Our evaluation shows great divergence in performance between these two
test sets, finding an average accuracy difference of 15% for the state-of-the-art model BioSyn. We also
performed a quantitative evaluation of BioSyn in the cross-terminology MCN task where models were
trained and evaluated on entity mentions of various types with concepts from different terminologies.
Knowledge transfer can be effective between diseases, chemicals, and genes with an average drop of
2.53% accuracy in the performance on NCBI, BC5CDR, and BC2GN sets. For TAC and SMM4H sets
with ADRs from drug labels and social media, BioSyn models trained on four other corpora show a
substantial decrease in performance (-10.2% and -33.1% accuracy, respectively) compared to in-domain
trained models. To our surprise, these models still outperformed the straightforward ranking baseline on
BioBERT representations. We believe that refined datasets with cross-terminology evaluation can serve
as a step toward reliable and large-scale evaluation of biomedical IE models.

We foresee three directions for future work. First, a promising research direction is the multilingual
evaluation of MCN models. Second, in some cases current models choose a broader concept that is in a
parent-child relationship with the correct concept; here future research may focus on the encoding of the
concept hierarchy. Third, the use of local and global contexts of entity mentions remains to be explored.
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