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Abstract
This paper introduces DAN+, a new multi-domain corpus and annotation guidelines for Dan-
ish nested named entities (NEs) and lexical normalization to support research on cross-lingual
cross-domain learning for a less-resourced language. We empirically assess three strategies to
model the two-layer Named Entity Recognition (NER) task. We compare transfer capabilities
from German versus in-language annotation from scratch. We examine language-specific versus
multilingual BERT, and study the effect of lexical normalization on NER. Our results show that
1) the most robust strategy is multi-task learning which is rivaled by multi-label decoding, 2)
BERT-based NER models are sensitive to domain shifts, and 3) in-language BERT and lexical
normalization are the most beneficial on the least canonical data. Our results also show that an
out-of-domain setup remains challenging, while performance on news plateaus quickly. This
highlights the importance of cross-domain evaluation of cross-lingual transfer.

1 Introduction

Named Entity Recognition (NER) is the task of finding entities in text, such as locations, organizations,
and persons. NER is a key step towards natural language understanding, for instance for question answer-
ing and information extraction. The task has received a substantial amount of attention, particularly for
English. Most research so far, including for Danish, focused on newswire data and flat entities. It ignores
nested entities, like ‘Australian Open’ (illustrated in Figure 1) being both an event and a location-derived
entity. There is also little prior work on transfer learning for nested NER.

In this paper we introduce DAN+, a novel resource for Danish Nested Named entities and lexi-
cal Normalization, covering texts from canonical data from newswire and non-canonical social media
sources. Danish bears interesting challenges for NER similar to German, which we capture by drawing
inspiration from the NOSTA-D (Benikova et al., 2014) NER annotation scheme. In particular, location
adjectives like ‘dansk’ (Danish) or ‘hollandske‘ (Dutch) are not capitalized, and there are tokens which
are only partially named entities, like ‘Baltica-aktierne’ (the Baltica shares). Such entities were mostly
ignored so far. Full annotation guidelines for both tasks are provided in the appendix.

Wozniacki vinder iik australian open
Wozniacki vinder ikke Australian Open

PER
MISC

LOCderiv

Figure 1: Example with (a) nested entities and (b) lexical normalization.

Contributions We present 1) DAN+, a new multi-domain dataset for nested NER and lexical nor-
malization; 2) an evaluation of various models for Danish nested NER, including BERT variants and
in-language versus cross-language experiments; 3) first experiments of lexical normalization on Danish
and its downstream impact on NER.1

This work is licensed under a Creative Commons Attribution 4.0 International License. License
details: http://creativecommons.org/licenses/by/4.0/.

1All code and data to reproduce the experiments is available at https://github.com/bplank/DaNplus
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2 Related Work

Nested NEs have received less research focus in contrast to flat entities (Grishman and Sundheim, 1996;
Grishman, 1998; Tjong Kim Sang and De Meulder, 2003; Baldwin et al., 2015b). This has been attributed
to technological complexity (Finkel and Manning, 2009) and limited data availability (Ringland et al.,
2019). Existing nested NE data mostly spans newswire and biomedical data for English (Kim et al.,
2003; Mitchell et al., 2005) and German news (Benikova et al., 2014), for example. Interest in nested
NER is re-emerging (Katiyar and Cardie, 2018), with many new recent neural approaches (Sohrab and
Miwa, 2018; Luan et al., 2019; Lin et al., 2019; Zheng et al., 2019). To facilitate research, a fine-grained
nested NER annotation on top of the Penn Treebank has been released recently (Ringland et al., 2019).

To facilitate research on a less-resourced language, namely Danish, Plank (2019) introduced publicly
available evaluation data of flat NER on top of Danish UD (Johannsen et al., 2015), providing annotations
for approximately 20% of the data. The study also first benchmarked existing NER tools and evaluated
the feasibility of transfer for Danish. Hvingelby et al. (2020) recently independently annotated the
entire Danish UD data for flat NERs, though with different guidelines, annotating also adjectives, for
example. Before these two recent studies, Danish NER data was behind a paywall or available tools
were not benchmarked. To the best of our knowledge, DAN+ is the first Danish nested NER dataset
beyond newswire.

Domain shift is a pressing issue in NLP. One solution is to normalize the input text before detecting
NEs, which is a mitigation strategy particularly suitable for social media (Eisenstein, 2013). Previous
work has evaluated lexical normalization for a variety of languages—but not for Danish—with varying
degrees of success (Schulz et al., 2016; Küçük and Steinberger, 2014; Nguyen et al., 2016; Liu et al.,
2013; Li and Liu, 2015; Dugas and Nichols, 2016). Most works do not evaluate the normalization model
intrinsically, which is often restricted to a simple rule-based approach which is unlikely to transfer well.
DAN+ provides also data to study lexical normalization for Danish.

To the best of our knowledge, there is very little prior work on cross-lingual and cross-domain transfer
for nested (or overlapping) entities. Contemporary work includes English-Arabic (Lan et al., 2020).

3 Data and Annotation

This section depicts the data sources and annotation. Table 1 provides an overview of the DAN+ dataset.
For normalization, as opposed to earlier annotation efforts in other languages, we included correction of
capitalization. We refer to the appendix for details on annotation guidelines and data statement.

3.1 Data varieties
DAN+ includes canonical data from newswire and three social media varieties:

News The Danish DDT UD treebank (Johannsen et al., 2015; Kromann et al., 2003), which consists of
news texts from PAROLE-DK (Bilgram and Keson, 1998). We use the canonical train/dev/test split.

Reddit Sampled from the r/Denmark sub-reddit, in particular the top voted posts.2 The collected
posts all span a single date (November 28th 2019) and the data contains some non-Danish tokens (842
English tokens, 101 Swedish and 5 Norwegian).

Twitter We sample tweets collected over 2019-2020 using a list of Danish emotion words (love, pain,
surprise), to avoid having mainly news articles. To make sure the data contains some phenomena inter-
esting for normalization, we filtered it to contain at least 3 words not present in the Aspell dictionary.3

Arto Arto was Denmark’s first large-scale social media platform and operated from 1988 till 2006.
Because the website is not accessible anymore, we scraped all blog pages (where ‘blogs’ can also consist
of only a few words) and their corresponding comments from the Wayback Machine.4 Similar to the
Twitter data, we sample a subset and filter the data to contain some normalization density.

2Using the universal Reddit scraper: https://github.com/JosephLai241/Universal-Reddit-Scraper
3We complemented the Aspell dictionary with some common named entities and interjections for this purpose.
4https://archive.org/web/
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Variety German: News DAN+: News (UD-DDT) Reddit Twitter Arto
TRAIN TRAIN DEV TEST DEV TEST DEV TEST DEV TEST

Sentences 24,002 4,383 564 565 326 126 120 110 336 337
Tokens 452,853 80,378 10,332 10,023 4,547 4,497 5,347 5,086 5,496 4,389
Types 74,609 16,330 3,640 3,424 1,807 1,616 2,103 2,017 1,648 1,474
Sentences w/ NEs 59% 45% 47% 48% 60% 56% 80% 77% 21% 20%
1st level-NE 29,078 3,800 468 525 319 128 279 284 93 103
2nd level-NE 2,467 235 36 41 36 20 13 32 1 12
Tokens normalized — — — — — — 3.5% 2.3% 16.7% 15.2%

Table 1: Overview of DAN+: Danish Nested Named entities and lexical Normalization, which includes
news and social media varieties (Reddit, Twitter, Arto). First column: GermEval (Benikova et al., 2014).

3.2 Annotation
We opted for a two-level NER annotation scheme following largely the annotation scheme provided by
NoSTA-D (Benikova et al., 2014). First-level annotations contain outermost entities (e.g., the company
‘Maribo Frø’). Second-level annotations are sub-entities (location ‘Maribo’). Four annotators were
involved, three of which are native Danish speakers and one is proficient in Danish. For each task, a
native speaker annotated the entire dataset after initial training. Inter-annotator agreement was high. For
NER on the development sections of the Reddit and Twitter datasets, Cohen’s κ on the entity tokens
without nesting was 90.97 and 83.08, respectively. With nesting, the κ scores were 87.81 and 80.94. For
lexical normalization, 10% of the data was annotated by the two native speakers. For the decision on
whether to normalize they reached a κ of 88.66, whereas for the choice of the correct normalization the
agreement was 96.30%.

4 Experimental Setup

For nested NER, we use BERT (Devlin et al., 2019) with fine-tuning implemented in MaChAmp (van der
Goot et al., 2020).5 We evaluate three decoding strategies:

- single task-merged: both annotation layers are merged into a single flat entity.

- multi-task: the encoder is shared and each layer of annotation has its own decoder.

- multi-label: treats nested NER as multi-label problem, where a label i is predicted if P (li|·) ≥
τ (Bekoulis, 2019) further illustrated in Ramponi et al. (2020).

We first evaluate all NER models on Danish, both within news and on the three out-of-domain (OOD)
varieties. We further compare to transfer from German: 1) zero-shot transfer, fine-tuning only on
German; and 2) union of the Danish and German data for fine-tuning. We compare multilingual BERT
(mlBERT) versus training with Danish BERT (danishBERT).6 Even though both are trained on Dan-
ish data, for mlBERT this is Wikipedia data, whereas danishBERT is trained on Wikipedia, Common
Crawl, Danish debate forums, and Danish subtitles. For MaChAmp, we use the proposed default pa-
rameters (van der Goot et al., 2020) shown to work well across tasks. We tune early stopping and τ
on Danish news dev data, and set τ = 0.9. We compare our final model to the boundary-aware
model (Zheng et al., 2019), a state-of-the-art nested NER model which was also evaluated on GermEval
2014. We train it with bilingual Danish and German Polyglot embeddings obtained via Procrustes align-
ment (Conneau et al., 2018). For evaluation we use the official GermEval script (Benikova et al., 2014)
with strict span-based F1 over both entity levels.7

For normalization, we choose to use MoNoise (van der Goot, 2019), since it is open-source and is
the only model that has shown to reach competitive performance across multiple languages. MoNoise

5MaChAmp v0.2, included in the repository.
6version 2 from: https://github.com/botxo/nordic_bert
7Compared to the evaluation of Zheng et al. (2019), this script is more strict. The scores we report are thus slightly lower

compared to the ones reported in Zheng et al. (2019).
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Figure 2: Nested NER results. Models trained on German (de), Danish (da) or both (de+da) and with
mlBERT (ml) vs danishBERT (da). Average over 3 runs. Standard deviation indicated as error line.

requires n-grams and word embeddings to reach a good performance. We use a Wikipedia dump from
01-01-2020 and Twitter data collected throughout 2012 and 2018, filtered with the FastText language
classifier (Joulin et al., 2017). Intrinsic normalization results are reported as capitalization sensitive
word-level accuracy over all words (including words which are not normalized). Because we have no
external training data for normalization, we use a 10-fold setup of dev+test.

5 Results

5.1 NER

Figure 2 depicts the main results for nested NER on the dev set, while detailed results are given in Table 4
and 5 in the appendix. First, we note that the model performs well within Danish newswire, reaching an
F1 score in the 80ies (left bars). However, we observe a domain shift, as performances drop to 38-67%
on the three non-canonical social media datasets, with Twitter and Arto reaching lowest scores.

Our Danish training dataset is of modest size, hence the question arises whether existing German
data is beneficial. The German multi-task model performs remarkably well on Danish news in zero-shot
setups with mlBERT, reaching an F1 of 76%. This can be explained by the closeness of the languages,
the annotations and the large training data (Table 1).

For a model trained on the union of the German and Danish data (de+da), we observe that perfor-
mance is overall close to the model trained on Danish only, which is five times smaller. The average
F1 over all Danish datasets (News, Reddit, Twitter, Arto) for the two best models (using multi-task
learning) is 65.01 with da.da.multitask and 65.05 with de+da.da.multitask. Interestingly,
danishBERT is the best for the least non-canonical domain (Arto), in contrast to mlBERT which fares
best on news. This is likely due to forum data included for pre-training danishBERT,8 while mlBERT is
based on Wikipedia data, which is less fit for non-canonical data. This suggests that adaptive pre-training
could yield better results (Han and Eisenstein, 2019; Ramponi and Plank, 2020).

We also compare transfer learning from German with increasing amounts of in-language Danish data.
The learning curve in Figure 3 shows that transfer helps for low amounts of data, and in-domain perfor-
mance plateaus surprisingly quickly (especially for the da+de setup), and in-language data remains the
best in-domain (ID). Instead, the gap to the non-canonical domains remains large for both in-language
and cross-language setups, and performance on OOD is less stable throughout, calling for more out-of-
domain evaluation of NER models.

8It should be noted that it is trained on lower-cased texts, which is suboptimal for NER yet works surprisingly well.
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Figure 3: Learning curve for multi-task, ml-
BERT on in-domain (ID) news and average
over all out-of-domain datasets (OOD).

Normalization NE tagging
Twitter Arto Twitter Arto

Baseline 97.17 83.93 57.65 46.25
MoNoise 97.17 92.52 58.59 55.83
Gold 100.00 100.00 59.18 65.71

Table 2: Normalization accuracy, and its down-
stream effect on NER. For NER, multitask, ml-
BERT trained on de+da is used.

German News Reddit Twitter Arto

boundary-aware 57.89 56.89 16.48 21.37 13.77

Raw (ml) 83.31 80.73 57.99 60.87 54.88
Norm’ed (ml) — — — 61.74 56.38
Raw (da) 72.80 80.13 50.99 62.88 55.48
Norm’ed (da) — — — 62.91 56.59

Table 3: Nested NER F1 score on the test sets for models with mlBERT (ml) vs danishBERT (da).

5.2 Lexical Normalization
We take a straightforward baseline for normalization, which always copies the original token, and we
evaluate the impact of automatic versus gold normalization on NER. In other words, the accuracy of
this baseline is equal to the percentage of not-normalized words. The results in Table 2 show that
MoNoise is performing well for the less canonical Arto data in contrast to the Twitter data. On the
Arto data, MoNoise reaches scores in a similar range compared to state-of-the-art results on other lan-
guages (van der Goot, 2019).9

In the downstream evaluation (right part of Table 2), we see that normalization is most beneficial when
the data is less canonical (Arto), but even on Twitter normalization is beneficial. Furthermore, from the
GOLD results, we can conclude that there is still space for improvement for automatic normalization.

5.3 Test Data
We evaluate the model that fares overall best on in-domain source news (de+da-multitask)
with danishBERT and mlBERT on the test sets. Table 3 shows that our model outperforms the
boundary-aware method, which turns out to be brittle to domain shifts. Overall, the results con-
firm that normalization helps the most on the least canonical data (i.e. Arto), and mlBERT is better than
danishBERT on canonical news data, whereas on the least standard data (Arto) it is the other way around.

6 Conclusions

This paper contributes to the limited prior work on cross-lingual cross-domain transfer of nested NER.
We provide a new resource for Danish, DAN+, with baselines on nested NER and lexical normalization,
using two BERT variants and training on Danish, German or both. Our results show that BERT-based
variants are sensitive to domain shift for cross-domain nested NER, whereas they can cope relatively well
with missing in-language data. Results on normalization show that it helps in case of very non-standard
data only, for which automatic normalization improves Danish nested NER performance.

9van der Goot (2019) use Error Reduction Rate (ERR) for evaluation, which is accuracy normalized for the amount of words
that need to be normalized; ERR in our setup would be 53.45, (van der Goot, 2019) report ERR’s between 29 and 77.
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A Full results

Table 4 contains the exact scores which Figure 2 is based on. We also report the scores on only the nested
entities in Table 5; the multitask approach clearly outperforms the other models for this category.

German News Reddit Twitter Arto

da.ml.single-merged 66.32 77.09 62.71 51.26 40.16
da.ml.multitask 67.94 80.09 67.46 51.23 40.07
da.ml.multilabel 64.82 75.84 61.78 49.39 40.30
da.da.single-merged 30.35 73.85 60.59 52.02 63.37
da.da.multitask 33.94 78.15 65.04 53.75 63.11
da.da.multilabel 25.65 73.11 56.71 52.23 54.61
de+da.ml.single-merged 75.77 75.93 62.01 52.70 39.87
de+da.ml.multitask 83.88 81.48 66.53 57.65 46.25
de+da.ml.multilabel 76.36 76.53 61.72 55.62 39.58
de+da.da.single-merged 67.76 74.69 60.93 57.56 60.27
de+da.da.multitask 74.35 78.98 65.39 56.74 59.07
de+da.da.multilabel 66.47 74.31 62.75 57.25 63.35
de.ml.single-merged 75.50 71.90 56.63 54.74 42.59
de.ml.multitask 84.91 76.06 58.16 56.43 38.31
de.ml.multilabel 72.62 70.34 55.65 51.29 36.28
de.da.single-merged 67.21 60.08 49.62 50.25 50.87
de.da.multitask 74.20 64.14 51.01 47.45 52.61
de.da.multilabel 67.12 64.07 48.05 51.01 57.81

Table 4: Span-f1 scores on all development sets for all out proposed models (single-merged, multi(task),
multilabel), having two types of embeddings (da/ml), and all our training data combinations (da, de+da,
de). Average over all Danish datasets (News, Reddit, Twitter, Arto) for the two best models are 65.01 for
da.da.multitask and 65.05 for de+da.da.multitask. The latter is trained on 5 times more
data while performing similarly to the model trained on Danish only.
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German News Reddit Twitter Arto

da.ml.single-merged 4.15 10.94 4.94 3.17 0.00
da.ml.multitask 22.67 43.60 42.32 21.43 0.00
da.ml.multilabel 0.00 0.00 1.63 0.00 0.00
da.da.single-merged 2.30 10.38 5.31 0.00 0.00
da.da.multitask 6.30 39.44 47.23 22.16 0.00
da.da.multilabel 0.00 0.00 0.00 0.00 0.00
de+da.ml.single-merged 14.90 11.60 14.93 13.56 0.00
de+da.ml.multitask 65.80 47.61 39.10 15.74 0.00
de+da.ml.multilabel 2.56 0.00 0.00 0.00 0.00
de+da.da.single-merged 11.62 7.37 20.38 23.15 0.00
de+da.da.multitask 55.32 46.12 54.10 31.21 0.00
de+da.da.multilabel 0.84 0.00 0.00 0.00 0.00
de.ml.single-merged 15.77 8.20 18.98 19.17 0.00
de.ml.multitask 68.93 43.74 40.66 29.72 0.00
de.ml.multilabel 0.00 0.00 0.00 0.00 0.00
de.da.single-merged 11.88 7.14 17.19 21.60 0.00
de.da.multitask 56.42 30.21 25.93 24.02 0.00
de.da.multilabel 3.29 0.00 0.00 0.00 0.00

Table 5: Span-f1 scores on all development sets for only the nested entities.
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B DAN+ Data Statement

Following (Bender and Friedman, 2018), the following outlines the data statement for DAN+:
A. CURATION RATIONALE Collection of examples of Danish language for identification of

named entities in different text domains, complemented with lexical normalization annotation to study
the impact of it on NER.

B. LANGUAGE VARIETY The non-canonical data was collected via the Twitter search API, the
Reddit API and the Wayback archive.

Danish (da-DK) and some US (en-US) mainstream English, Swedish (se-SE) and Norwegian (no-NO)
in the Reddit sample.

C. SPEAKER DEMOGRAPHIC For the newswire data this is unknown. For the social media
samples it is Danish and Scandinavian Reddit, Twitter and Arto users. Gender, age, race-ethnicity,
socioeconomic status are unknown.

D. ANNOTATOR DEMOGRAPHIC Three students and one faculty (age range: 25-40), gender:
male and female. White European. Native language: Danish, German. Socioeconomic status: higher-
education student and university faculty.

D. SPEECH SITUATION Both standard and colloquial Danish, i.e., edited and spontaneous speech.
Time frame of data between 1988 and 2020.

D. TEXT CHARACTERISTICS Sentences from journalistic edited articles and from social media
discussions and postings.

PROVENANCE APPENDIX The news data originates from the Danish UD DDT data, GNU Public
License, version 2 OR CC BY-SA 4.0: https://github.com/UniversalDependencies/
UD_Danish-DDT/blob/master/README.md
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C Annotation guidelines for NER

This section describes the annotation guidelines which we used for our DAN+ NER corpus. Our guide-
lines were adopted from the German NoSta-D guidelines (Benikova et al., 2014).

We stick to a two layer annotation, where the outermost embraces the longer span and is the most
prominent entity reading, and the inner span contains secondary or sub-entity readings. If there would be
more than 2 layers, we drop the second potential reading in favor of keeping two layers (e.g., Australian
Open is both an event and hence MISC but also an ORG; as Australian is a LOCderiv, we here keep only
MISC for the event and LOCderiv for Australian).

Step 1: Named entities are nominal phrases that determine specific people, organizations, locations
or miscellaneous specific objects like film titles or products. National holidays or religious events (Jul,
Ramadan) are not annotated. Given the following example:

[Leila] bought [the house]

There are two nominal phrases. Only one of them is a named entity (Leila), the second nominal is a
common noun.

Step 2: Potential NEs Only full nominal phrases are potential full NEs. Pronouns and all other phrases
should be ignored. Derivations of NEs, i.e., words which are derived through morphological derivation
processes, are marked (e.g., danske). NEderiv do not need to be nominal phrases. Declination (e.g.,
genitive forms) are not considered derivations and are directly annotated as NEs. For mediums such
as social media we do mark user names and hashtags as potential NEs. Note that we diverge from the
German NoSta-D guidelines by annotating the names of languages (e.g., dansk, swahili) as LOCderiv.

• Full NEs are annotated as LOC (location), ORG (organization), PER (person) or MISC (miscella-
neous other)

• Derivations of NEs are marked as such by appending deriv, e.g., den [danske]LOCderiv midtbane-
spiller

Examples:

• Location: [København]LOC, [Kastrup]LOC

• BUT when the location acts as an organized entity (e.g. country, municipality, sports club), it is
tagged as ORG with LOC as inner layer: [[Danmark]LOC]ORG indfører grænsekontrol

• [Carsten Jensen]PER

• [IKEA]ORG

• [Parken]LOC (Stadium)

• [The Shining]MISC, [Jojo]MISC (product name, song titles etc)

• Location adjectives: De [københavnske]LOCderiv gader

• Person adjectives: [Freudiansk]PERderiv litteratur

• BUT genitive forms: [[Denmarks]LOC Radio]ORG, [Københavns]LOC kommune, [Jo-
hannsons]PER hus

Examples:

• Organizations: [Twitter]ORG, [TV2]ORG, på min [FB]ORG

• BUT: reference to specific Reddit channels [/r/all]MISC

• at være [dansker]LOCderiv på [reddit]ORG
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Step 3: Titles, owners Determiners and titles are not part of NEs. But owners can be NEs by itself.
Examples:

• dronning [Margareth]PER, dronning [Margareth II]PER (numbers are kept as part of the name)

• [Vivaldis]PER [Vier Jahreszeiten]MISC

Step 4: Multi-word tokens NEs often consist of multiple tokens.
Examples:

• person names: [Terry Hatcher]PER

• film titles (MISC): [Breaking Bad]MISC

Step 5: Nesting NEs can be nested.
Examples:

• locations in organization names: [[Allerød]LOC Gymnasium]ORG
([[Nordjyllands]LOC politi]ORG)

• organization names in product names: [[Google]ORG Translate]MISC

Step 6: Parts Named entities can also be parts of tokens and are annotated as such with the suffix
“part”.

Examples:

• [pro-hongkong]LOCpart

• [Hverdags-Lars]PERpart

Step 6: Medium-specific potential NEs Named entities can also be parts of special medium-specific
tokens, like user names and hashtags in Twitter. We do annotate them as such.

Examples:

• [@hik fodbold]ORG

• [#ToppenAfPoppen]MISC

• [@realDonaldTrump]PER

todo: list tables with examples
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D Annotation guidelines for lexical normalization

The guidelines are based on (Baldwin et al., 2015a), all the cases were we diverged from these guidelines,
or when we believed clarification was necessary are described below.

Systematic miss-spellings
Since the data was taken from social media some words were systematically spelled wrong. This is
especially seen on Arto, where many words were spelled using q instead of g. Here q was replaced with
g:

jeq 7→ jeg (I) muliqe 7→ mulige

As it is also common to write words without the last one or two letters, there were also many words
missing one or multiple letters in the end. Here the missing letters were inserted:

ik 7→ ikke hva 7→ hvad

Capitalization
Capitalization was corrected in names, first letter in a post and after periods, question marks and other
signs that require capitalization in the first letter of the following word. Capitalized words that illustrate
yelling or emphasis have been decapitalized, acronyms that are capitalized have been kept capitalized.

TILLYKKE 7→ tillykke (congratulations) DR 7→ DR (Denmark’s Radio)

Splitting and merging
Words that were incorrectly split or incorrectly merged into one word were corrected.

ar bej der 7→ arbejder (works) istedet 7→ i stedet (instead)

Phrasal abbreviations
There was no correction of phrasal abbreviations because the written-out form does not correspond to
the intended meaning of the phrase. The only ones found were in English.

lol 7→ lol omg 7→ omg

Hashtags
Hashtags and usernames were not corrected, even if they were misspelled or if they contained multiple
words.

#sundhedforalle 7→ #sundhedforalle (health for all)

Corrections of the letters æ, ø, å
The Danish alphabet contains the three letters æ, ø and å. If these are not available at the used keyboard
they are often replaced by other vowels:

ae 7→ æ o 7→ ø aa 7→ å

In words where the replacement vowels are used they have been replaced with the appropriate letter.
In some data æ, ø and å were left out entirely, here the letters were inserted. As the missing letter in some
cases results in multiple options, the word was determined using the context:

har 7→ har (to have) or hår (hair) fler 7→ flere (more) or føler (feels)


