FASTMATCH: Accelerating the Inference of BERT-based Text Matching

Shuai Pang®, Jiangiang Ma*, Zeyu Yan, Yang Zhang, Jianping Shen
{pangshuai550,majianqiang554,yanzeyu751,zhangyang147,shenjianping324 } @pingan.com.cn
Al Team, Ping An Life Insurance Company of China, Ltd

Abstract

Recently, pre-trained language models such as BERT have shown state-of-the-art accuracies in
text matching. When being applied to IR (or QA), the BERT-based matching models need to
online calculate the representations and interactions for all query-candidate pairs. The high in-
ference cost has prohibited the deployments of BERT-based matching models in many practical
applications. To address this issue, we propose a novel BERT-based text matching model, in
which the representations and the interactions are decoupled. Then, the representations of the
candidates can be calculated and stored offline, and directly retrieved during the online matching
phase. To conduct the interactions and generate final matching scores, a lightweight attention net-
work is designed. Experiments based on several large scale text matching datasets show that the
proposed model, called FASTMATCH, can achieve up to 100X speed-up to BERT and RoBERTa
at the online matching phase, while keeping more up to 98.7% of the performance.

1 Introduction

Many natural language processing tasks, such as answer selection (Nakov et al., 2016) in question an-
swering, query-document matching (Li and Xu, 2014) in information retrieval, natural language in-
ference (Parikh et al., 2016) and paraphrase identification (Yin et al., 2015) can be formulated as text
matching. Typical text matching model takes a pair of sentences (texts) as input and outputs their sim-
ilarity score or label. Recently large Pre-trained Language Models (PLM) like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) have achieved state-of-the-art results in this field. However, these
PLM-based models usually have high computational cost in both training and inference phase due to
their very deep architectures with up to billions of parameters. In particular, the high latency caused by
the intensive computation during the online inference makes the deployment of PLMs prohibitive for
many real-world applications.

In particular, the high latency during online inference of BERT becomes crucial when text matching
is applied to IR and QA, where a given query sentence needs to be matched to N (> 10?) retrieved
candidates sentences (documents). The PLM-based matching model has to repeatedly calculate the
representations and interactions for all the N [query, candidate] pairs in an online manner. Denoting the
time cost for matching each pair as 7', the total time cost for processing a single query is N x T, as
shown in Figure 1 (a). For such candidate-rich text matching, the inference speed per query deteriorates
by the increase of the number of candidates, N. Thus, how to accelerate the inference becomes a key
challenge in applying PLM-based text matching models to IR/QA products.

To address this challenge, we propose FASTMATCH, an inference acceleration method for BERT-based
text matching. Its key idea is process decomposition, where matching is decomposed into intra-sentence
encoding with BERT and inter-sentence interaction with a lightweight core matching model. Since the
encoding for all the candidates can be conducted offline, the inference procedure can be accelerated
dramatically. Specifically, FASTMATCH works in a two-stage manner, as shown in Figure 1 (b). In the

*Equal contributions.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

6459

Proceedings of the 28th International Conference on Computational Linguistics, pages 6459-6469
Barcelona, Spain (Online), December 8-13, 2020



T : inference time of PLM

word embedding : inference time for core
matching model
word vect from PLM '« N: number of candidates label
label T
Time,:
T N x ‘ Core Matching Model ‘

Time: Pre-trained / \
NxT

Language Model query

=] .

Times:| | Encoder: Pre-trained N

candidate,

candidate,

query candidate; . 1xT Language Model
candidatey
N candidate, T
query
candidatey
(a) text pair classfication with PLM such BERT (b) FastMatch with PLM and core matching model

Figure 1: Text matching with pre-trained language models (PLM)

first stage, though the representation of the query is still computed online by BERT with the time cost of
T, the representations of the /V candidates can be pre-computed offline and cached with ignorable online
retrieval time. In the second stage, the N pairs of [query, candidate] are fed to, instead of the original
PLM, the core matching model, which takes time ¢ to predict the label for each pair, arriving at a time
cost of N x t. To sum up, the total time cost for FASTMATCH is approximately 7'+ N x t. Thus, the
speed-up ratio r is the ratio of the time cost of the PLM to that of FASTMATCH, as shown in (1). With
large N, the speed-up ratio is dominated by 7'/t, i.e. the inference time of the PLM over that of the core
matching model.

N xT T T

T:T+N><t:%+tm“?

(D

While the query-independent and thus pre-computable encoding of candidates lays the foundation for
efficient online inference, the real challenge lies in designing a substantially faster core matching model
that can, at the same time, keep most of the PLM’s accuracy. A naive approach would be choosing
an existing, lightweight text matching model to server the purpose. Unfortunately, using classic text
matching architectures as the core matching model typically leads to dramatic accuracy drop compared
with BERT-based model (Section 4.2). It turns out that it does not only require balancing speed and
performance, but also calls for complementing BERT so that the whole architecture can get the most out
of powerful contextualized representations.

In contrast with off-the-shelf models, the proposed core matching model (Section 3.1) is designed
to take advantage of contextualized nature of BERT representations. Recall that in BERT, each token
is recursively encoded by its context with a self-attention layer, using the representations of the most
relevant words throughout the sentence from the previous layer. As a result, the word representations
from a PLM carry a rich set of linguistic features at various granuarities. With such representations, a
single interaction layer can largely capture the interactions between the query and candidate at different
levels, a proven recipe for accurate matching (Hu et al., 2014). Based on such intuitions, we design an
attention-based core matching model. In our model, BERT-based representations of query and candidate
are fed to a cross-attention layer to mimic multi-level, query-candidate interactions. Then a self-attention
layer is introduced to aggregate token-wise matching results into sentence-level matching result. Finally,
we combine the matching results using yet another attention layer, after injecting diversities to interaction
signals with a pooling layer. In practice, FASTMATCH can achieve more than 100X speed-up, while
achieving comparable accuracy as the original PLM. The main contributions of this paper are three-fold:

6460



e We propose FASTMATCH, a fast and accurate text matching method. To the best of our knowledge,
FASTMATCH is the first process decomposition-based inference acceleration method for pre-trained
language models.

e We propose a novel core matching model, which is the key to the superior results of FASTMATCH
on accuracy-speed balance, compared to many established text matching models (Section 3.1).

e We show empirically that BERT and RoBERTa can be plugged into FASTMATCH, resulting in up
to 100X speed-up for inference for text matching, while keeping more than 98.7% of the accuracy
(Section 4.1, 4.4).

2 Related Work

Text matching Many text-based applications, such as Information Retrieval (IR), Question Answer-
ing (QA), Natural Language Inference (NLI) and Paraphrase Identification (PI) can be formalized as
text matching. Table 1 summarises different paradigms in text matching. DSSM (Huang et al., 2013),
CDSSM (Shen et al., 2014) and ARC-I (Hu et al., 2014) take a representation-based approach, which
focuses on building the representation of the query and the candidates (documents) in a dynamic way. In
particular, the representation of each candidate is built without considering the query. Thus, candidate
representations can be pre-computed offline, leading to great reduction of computation at the online in-
ference time. By contrast, interaction-based methods (Socher et al., 2011; Hu et al., 2014; Rocktéschel
et al., 2015; Wan et al., 2016; Yin and Schiitze, 2015; Yin et al., 2015; Pang et al., 2016; Chen et al.,
2017; Kim et al., 2018) focuses on modeling the multi-level interactions of the query and candidate,
while the representation of query and candidates are static, i.e. taking word embeddings of each token
as input. Many representation-based methods fall into the matching-aggregation framework (Wan et al.,
2016; Tan et al., 2018),which inspires the design of our core matching model. Interaction-based methods
typically outperform representation-based ones, as the latter does not model the interactions between the
query and candidate until their individual representations are fully built, thus taking the risk of missing
important details.

Recently, BERT establishes itself as the new state-of-the-art in text matching and neural ranking (Qiao
et al., 2019), thanks to the pre-training, as well as the modeling of all-to-all interactions between to-
kens in both query and candidate. In this case, the representations of candidate are built dynamically
by taking the query into account, where the drawback is that the offline pre-computation of representa-
tions becomes infeasible. The proposed method, FASTMATCH, differs from BERT in that (1) its query-
candidate interaction is conducted by a much faster core matching model rather than BERT itself and
(2) the candidate representation is built independently from the query, thus can enjoy the benefits of
offline computation of candidate representations, similar to representation-based method. However, un-
like representation-based method, FASTMATCH explicitly computes query-candidate interactions in a
multi-granularity manner. At the same time, FASTMATCH also distinguishes itself from interaction-
based methods, as the interactions in FASTMATCH is based on dynamic, contextualized representation
via BERT, instead of static word embeddings.

interaction
candidate no yes
represent.
static / interaction-based
dynamic, w/o query representation-based FASTMATCH
dynamic, w/ query / BERT

Table 1: Text matching paradigms. Interactions: whether or not to model multi-level interactions
between query and candidate; candidate represent.: whether the candidate representations are word
embeddings (static) or are built by the model (dynamic), with or without encoding the query.

6461



Model compression for inference acceleration The proposed method is built upon BERT and can also
be seen as a specific way of inference acceleration for PLM, thus is related to other inference acceleration
techniques. Since computational cost comes from model complexity, a family of inference acceleration
methods take a model compression (Bucila et al., 2006) perspective: building a compact model to replace
the original one. Most model compression work falls into three categories: (1) quantization (Gong et
al., 2014); (2) weights pruning (Han et al., 2015): keeping the overall model architecture while reducing
connections in certain layers; and (3) knowledge distillation (Sanh et al., 2019; Jiao et al., 2019): learning
a simpler model to mimic the behavior of the original large model. For knowledge distillation with PLMs,
DistilBERT (Sanh et al., 2019) reports a 60% faster model with more than 97% of kept accuracy on the
GLUE benchmark (Wang et al., 2018). More recently, TinyBERT (Jiao et al., 2019) has suggested a new
two-stage learning method for BERT, arriving at 9.4X speed-up, while keeping 96% of the accuracy on
GLUE.Compared with above generic inference acceleration methods offering reasonable acceleration,
FASTMATCH is tailored for text matching and can achieve more substantial speed-up up to 100X, as
shown in Table 2.

Method Acc. Speed Usage Scenario
Up
model com- | 96% | <9.7X replace original PLM (pre- | single & pair of
press. trained language model) sentences
FAST- 96% | > 100X fine-tune original PLM & train | pair of sentences,
MATCH task-specific model N >1

Table 2: FASTMATCH v.s. model compression for inference acceleration. ACC = relative accuracy
w.r.t. PLM.

3 The FASTMATCH Method

The overall structure of FASTMATCH is depicted in Figure 1 (b). It combines a generic PLM with a task-
specific core matching model, leading to a two-stage matching procedure. In order to conduct efficient
matching, we propose an attention-based (Bahdanau et al., 2014) core matching model, the architecture
of which is depicted in Figure 2. In the rest of this section, we go through each layer. We only show the
equations for query ¢, as the readers can infer that for candidate p.

3.1 The core matching model

Cross attention layer for interaction It computes token-to-token interaction of the sentence pair.
The cross attention works from query to candidate and vice versa, as it is well known bi-directional
interactions outperform uni-directional ones. Figure 2 (a) shows the cross attention from ¢ to p. For each
token g; in sentence g, its attention over the whole token sequence in p is computed as follows. First,
the dot product of g; with each token representation p; in p, is computed as in (2), before feeding them
a softmax function to obtain the weight for each p;, denoting agj, as in (3). Then the weighted sum of
all the p; in sentence p is obtained as the new representation for ¢;, denoted as qjC (equation 4), where C
stands for the cross attention layer. Each token g; is crossly encoded by the sum of its interactions with
all the tokens in the other sentence.

e =4 )
c
exp (ef;
gy l) 0
C R ()
exp | ey
= k.j
. |p| o o
95 = ag;p; 4
i=1

6462



details of attention
components

Core Matching Model

e [
S | Qos G aq; Qn
I . I (b)
e | e

N N O

weighted sum

®

| cross attention | | cross attention
[*] 0 j*J \ |+ J joJ
Pcis Py P Jorz G4 Paw

Figure 2: The proposed core matching model.

Self attention layer for aggregation The self attention layer aggregates the local interaction results
at each token position to obtain a global vector for the whole sentence, capturing its interaction with
the other sentence. As shown in Figure 2 (b), the computation procedure is otherwise quite standard,
except the special treatment of gcrg, which is the symbol representing the whole sentence, shown in
darker blue in the figure. In the self-attention layer, we only compute the attention of qg g over all the
tokens in the same sentence, including qg 1.¢ itself, The intuition is that, the representation given by the
cross attention layer for qg 1, summarize the interaction between the full sentence ¢ and all the tokens in
the other sentence. Therefore, the token-wise interactions that are consistent with ¢, ¢ should be given
more weights.

Concatenation and dense layers The output vector of the self-attention layer, g2, ¢ summarizes the
interaction from ¢. It is then concatenated with ¢o g, the sentence representation given by the PLM
encoder. The concatenated vector is fed to a dense layer with the ReLu non-linearity, resulting vector /.

Pooling layer for diversity Capturing the inter-sentence interaction with the cross layer is efficient but
may lack diversity in terms of coverage for interaction patterns. Methods like (Wang et al., 2017; Tan et
al., 2018) rely on multiple interaction layers in parallel to solve this problem. Since computational cost
is critical, we stick to one cross-attention layer for interaction, while adding a pooling layer to foster the
diversity after having the global interaction vectors via the self attention layer. As shown in the upper left
of Figure 2, the pooling consists of five element-wise filters that are applied to each dimension of the two

6463



input vectors, which are detailed in the following equation. We will see that these filters are commonly
used metrics for capturing the sentence-pair relations in (Chen et al., 2017; Tay et al., 2017).

vi = hg, hp, hq® hy, maz(hg, hy), abs(hg — hy) (5)

Attention layer for combining pooling result Pooling results v; (¢ = 1 to 5) are summed up with
the third attention layer shown in Figure 2 (c). The advantage of using attention is faster computation,
compared with alternatives such as concatenating the pooling results and feeding to a dense layer. This
final attention layer is similar to the self-attention layer, except that the attention is w.r.t. a combo vector
randomly-initialized and optimized during training. The combo vector learns the weights for different
pooling output to be summed up. Finally, the obtained vector v is fed to softmax layer for predicting the
output label.

Training The core matching model is trained to optimize w.r.t. the final label accuracy of the sentence
pairs, with cross entropy loss for classification or mean squared error loss for regression. Training of the
core matching model is conducted jointly with fine-tuning the PLM encoder.

3.2 Time Complexity and speed-up effect

Speed-up effect As already discussed in Introduction, the vanilla sentence pair classification with the
PLM needs to conduct NV pair-wise classification each costing T, resulting a total time cost of N x T',
while the proposed FASTMATCH method has the total time cost of 7'+ N X ¢ for the N sentence pairs,
leading to the speed-up ratio as shown in equation (1). Since T > ¢, by the increase of N, the ratio
steadily increases and approximates to 7'/¢, the inference time of the PLM v.s. that of the core matching
model.

Time complexity comparison For simplicity, we use d to denote the dimension of all the hidden layers
as well as the dimension of word embeddings, while using [ to denote maximum sentence length. In
practice, we expect [ < d by an order of magnitude or so, taking values such as | = 64 and d = 768.
The cross-attention layer has the time complexity of O(I? - d), as it conducts I x [ cross-sentence token-
wise dot product of dim-d. The self-attention layer needs a fraction of computation (by a factor of [)
compared to the cross attention layer. The dense layer has the complexity of O(d?), as it involves one
vector of dim 2d going through a 2d x d matrix. The pooling and the last attention layer are relelatively
simple and both has O(d) complexity. In summary, The computation time is dominated by the cross
attention layer costing O(I? - d) and the dense layers costing O(d?). Since [?(~ 10%) is typically larger
than d (~ 103) in practice, the overall complexity of the core matching model can be approximated by
Ocore = O(1 2. d). For PLMs such as BERT, the time complexity of each transformer block (Vaswani et
al., 2017) is known to be Ogrrr = O(I - d?), making the whole PLM of the same time complexity with
a rather large co-efficient. We can see that the time complexity of the core matching model, O(12d), is
significantly lower than that of PLM, O(Id?). To see this, we take realistic values of | = 64 and d = 768,
for which we have Id? ~ 37.7 x 10° while I?d ~ 3.1 x 105. The empirical number is in this range, as
shown in Figure 3.

4 Experiments

This section presents FASTMATCH on a variety of text matching datasets. We first describe the setups
and details before presenting main results in Section 4.1 with two standard QA datasets. In Section 4.2
the choice of core matching model is discussed. Ablation study comes in Section 4.3. And in Section 4.4
auxiliary evaluation of GLUE is conducted, where FASTMATCH achieves competitive results compared
with model compression techniques for inference acceleration.

We use a batch size 32-64, with max sequence length of 64. Max training iteration is 12 with early
stopping based on the dev set. First 10% steps are used for warming up. Adam (Kingma and Ba,
2014) optimizer is used with initial learning rate 1 x 10~°. BERT-base and RoBERTa-base are used as
encoders for FASTMATCH. Both BERT-base/RoBERTa-base have 12 layers, with 12 heads and hidden
size d = 768. All models were trained in a single-task manner, with no ensemble or multi-task learning

6464



120
100
80
60

20

Speedup Ratio

O

OO ® ® © OO DO DDA D DD
IR NN SN SN BNV RN NN RN

Num of Candidates N

Figure 3: Speed-up ratio v.s. candidate num. N

employed. All experiments were conducted on Intel Xeon Gold 6130 CPU@2.10GHz, Tesla V100 GPU
and CUDA 10.1.

4.1 Main results

We first study the speedup and performance retaining characteristics of FASTMATCH on two QA
datasets. First is the TREC-QA dataset (Wang et al., 2007), which is a widely used benchmark for an-
swer selection, where the candidate best matches the query is selected. It is based on the Text REtrieval
Conference (TREC) QA track (8-13), which consists of 1162/65/68 unique queries in train/dev/test set,
respectively. Each query has different number of candidate answers, with the median number NV being
85. The second is from Task 3 of SemEval 2016, community question answering (Nakov et al., 2016).
It is compiled for the question-external comment similarity task. Each query has 10 related questions,
and each question has 10 comments attached. That is, every query has a fixed number of 100 candidates.
The task is to rank these 100 comments by relevance score to the given query. It has 267/50/70 queries
in train/dev/test set, respectively.

Metrics We use Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) as the perfor-
mance metrics. MAP and MRR are widely used in TREC and SemEval tasks, as well as research like
[24, 33]. On each dataset, we train two versions of FASTMATCH, based on BERT and RoBERTa, re-
spectively. Then we compare the performance and speedup of FASTMATCH and corresponding PLM,
which is used conventionally as a sentence pair-wise classifier. In addition, we also fine-tune the SOTA
BERT-based knowledge distillation model TinyBERT for comparison. The main results are illustrated
in Table 1, showing that in each group FASTMATCH is on par with corresponding PLM, retaining up
to 97.8%/98.7% of the original PLM on MAP/MRR. Meanwhile It achieves astonishing 47.2X and
49.2X speedups on TREC-QA and SemEval-2016, respectively. By contrast, SOTA compression-based
method, TinyBERT can only offer a data-set invariant speed-up ratio of 9.7X, which is substantially lower
than FASTMATCH. Moreover, the performance retaining capacity of TinyBERT is also surpassed by our
model on both datasets. Such results suggest that FASTMATCH is very competitive for accelerating the
inference of BERT-based text matching.

Model TREC-QA SemEval-2016
MAP MRR Speedup | MAP MRR Speedup
BERT-base 0.829 0.871 1X 0474 0559 1X
tinyBERT 0.749 0.774 9.7X 0.446 0.508 9.7X
FASTMATCHBERT 0.807 0.849 47.2X 0.462 0.539 49.2X
RoBERTa 0.832 0.872 1X 0479 0569 1X
FASTMATCHR,pERT, | 0.814 0.861 47.2 0.447 0512 49.2X

Table 3: Main results. Accuracy in percentage. Best results marked in bold.

6465



Model TREC-QA SemEval-2016
MAP MRR Speedup | MAP MRR Speedup

BERT pairwise 0.829 0.871 1X 0474 0559 1X
BERT + cosine 0.681 0.711 119.1X | 0.382 0.444 125.6X
BERT + MLP 0.692 0.718 78.3X 0.395 0461 80.5X
BERT + MatchPyramid | 0.745 0.798 49.6X 0.402 0469 52.1X
BERT + DecAttend 0.752 0.791 48.4X 0.416 0.489 50.8X
FastMatchggrr 0.807 0.849 47.2X 0.462 0.539 49.2X

Table 4: The choice of the core matching model. Best results shown in bold.

As discussed in Section 3.2, the speed-up effect of FASTMATCH is amplified when number of can-
didates [V is large. The empirical speed-up ratio for BERT and RoBERTa (of the same architecture as
BERT) is depicted in Figure 3. We expect to further improve the acceleration ratio with even larger N and
stabilizes it at a certain number, which is determined by T=t as analyzed in Section 3.2. Unfortunately,
due to resource limitations we are unable to plot the results beyond N = 200, where the speed-up ratio is
already > 100.

4.2 The choice of core matching models

Having established the effectiveness of FASTMATCH for speeding up BERT while retaining most of the
accuracy, we further verify the usefulness of the proposed core matching model. To this end we com-
pare several FASTMATCH variants, the matching model of which are replaced by classic text matching
architectures also on TREC-QA and SemEval-2016 dataset. Specifically, the matching model to be re-
placed including cosine similarity, Multi-Layer Perceptron(MLP) with one hidden layer, classic models
like MatchPyramid (Pang et al., 2016) and DecAttend (Parikh et al., 2016). BERT-base is used as the
encoder for all these variants. BERT-base model is also used as sentence-pair classifier for comparison.
Results are shown in Table 4.2.

What makes a good core matching model? It turns out that our proposed core matching model dwarfs
not only the cosine and MLP baselines, but also classic architectures such as MatchPyramid and De-
cAttend. It suggests that well-established methods are not inherently good choices for core matching
models. The core matching model needs to make good use of BERT representations and work together
with BERT. This is exactly the process decomposition approach that FASTMATCH takes. FASTMATCH
utilizes BERT representations, which capture linguistic features at various granularities, and leverage
cross- and self-attention layers to capture multi-level interactions. The effectiveness of attention is also
shown by the performance of DecAttend, which ranks right below our model. We conjecture that our
model may enjoy most advantages that transformers (Vaswani et al., 2017) have, because of their similar-
ity in architecture. Our cross-attention and self-attention layers are special cases of the self-attention as
in transformers, where our layers attend on the CLS token and tokens in the other sentence, respectively,
instead of attending on each token in the sentence pair.

4.3 Ablation Study

Here we study the influence of components in FASTMATCH with same setup. Results are shown in Table
5. The cross- and self-attention layer work together as a mini matching aggregation, which is vital to
FastMatch. Removing them leads to a dramatic accuracy drop. The pooling and pooling-attention layers
are designed to foster diversity in matching patterns, the removal of which also leads to a significant
drop. This shows the necessity of complementing the first two attention layers with the attentive pooling
layers.

4.4 Auxiliary Results on GLUE

In previous subsections, FASTMATCH presents high acceleration ratio while retaining most of accu-
racy. The acceleration effect relies on the candidate number NV as shown in Figure 3, thus needs no

6466



Model TREC-QA SemEval 2016
MAP MRR | MAP MRR

FastMatch_BERT 0.807 0.849 | 0.462 0.539
-cross-attention-self-attention 0.741 0.787 | 0.412 0.488
-self-attention 0.772 0.809 | 0.424 0.497

-pooling -attention after pooling | 0.787 0.818 | 0.422 0.496

Table 5: Ablation Study.

validation with different datasets. It is still interesting to see whether the high accuracy retaining char-
acteristics can generalize to other text matching datasets. For this purpose, we choose the widely-used
GLUE benchmark(Wang et al., 2018). Recall that FASTMATCH deals with sentence-pair tasks, thus we
exclude single-sentence tasks CoL A and SST-2. Following (Devlin et al., 2019), we also exclude the
problematic WNLI set, leaving three NLI datasets(MNLI, QNLI, RTE), two PI datasets (MPRC, QQP)
and one textual similarity dataset (STS-B) for evaluation. We compare the accuracy-retaining results of
FASTMATCH with SOTA inference acceleration methods, TinyBERT and DistilBERT!. We report the
performance with standard metrics as in (Devlin et al., 2019) for FASTMATCH. We also calculate the av-
erage relative accuracy on all six datasets. FastMatchr,prRrT, achieves the best among the four models,
even surpassing BERT on the three NLI datasets, giving credit to FastMactch’s accuracy retaining from
RoBERTa. On relative accuracy, FASTMATCH consistently keeps most of the accuracy of the BERT
and RoBERTa across all datasets, leading to average relative accuracies higher than 96%. This makes
FastMach on-par with TinyBERT and significantly better than DistilBERT. It suggests that FastMatch is
competitive on inference acceleration of PLM for text matching.

Model MRPC QQP STS-B MNLI QNLI RTE | Rel.

F1 F1 SCol ACC ACC ACC | Acc.

DistilBERT 824 68.5 76.1 78.9 852 541 | 911

TinyBERT 86.4 71.3 799 82.5 87.7 629 | 96.6
BERTY 87.6 70.1 85.8 84.6 90.5 66.0 |/

FASTMATCHBERT 80.6 69.0 81.6 83.1 88.7 639 |94
RoBERTaf 88.7 709 855 87.6 940 832 |/

FASTMATCHR,BERTa | 82.0 69.2 824 85.9 91.5 799 | 963

Table 6: Results on GLUE subsets. Scol:Spearman’s correlation coefficient. Rel. Acc.:relative accu-
racy.Best results marked in bold.7: reproduced results.

5 Conclusion and Future Work

To deal with the prohibitive online computational cost of PLM for real-world applications, we propose
FASTMATCH, an inference acceleration method of BERT for text matching tasks with a rich set of
candidates, such as answer selection in QA and document ranking in IR. FASTMATCH decouples text
matching into representation encoding and interaction computation, where the candidates encoding are
calculated and stored offline with ignorable online retrieval time. For online interaction-based matching,
we introduce an attention-based core matching model, which has significant lower time complexity than
BERT. Experiments show that FASTMATCH can achieve up to 100X speed-up to BERT and RoBERTa
in online matching, while keeping most of their accuracy. FASTMATCH offers an alternative to model
compression for inference acceleration with PLM. With superior speed-up ratio, it can be useful for other
similar tasks. Moreover, as FASTMATCH is orthogonal to model compression, combining them together
can yield more promising results.

"For DistilBERT, we use the re-produced results from TinyBERT, as the original results are on the dev set with different
metrics, making the results incomparable.

6467



Acknowledgements

We thank Jun Xu of RUC, Wenpeng Yin, Muhua Zhu, Benyou Wang as well as all the anonymous
reviewers for their invaluable comments and suggestions.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. CoRR, abs/1409.0473.

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model compression. In KDD.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1657-1668, Vancouver, Canada, July. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume I (Long and
Short Papers), pages 4171-4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. 2014. Compressing deep convolutional networks
using vector quantization. ArXiv, abs/1412.6115.

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient
neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 1135—1143. Curran Associates, Inc.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neural network architectures
for matching natural language sentences. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2042-2050. Curran
Associates, Inc.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P. Heck. 2013. Learning deep
structured semantic models for web search using clickthrough data. In CIKM.

Xiaoqi Jiao, Y. Yin, Lifeng Shang, Xin Jiang, Xusong Chen, Linlin Li, Fang Wang, and Qun Liu. 2019. Tinybert:
Distilling bert for natural language understanding. ArXiv, abs/1909.10351.

Seonhoon Kim, Jin-Hyuk Hong, Inho Kang, and Nojun Kwak. 2018. Semantic sentence matching with densely-
connected recurrent and co-attentive information. In AAAL

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Hang Li and Jun Xu. 2014. Semantic matching in search. Foundations and Trends in Information Retrieval,
7:343-469.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke S.
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692.

Preslav Nakov, Lluis Marquez, Alessandro Moschitti, Walid Magdy, Hamdy Mubarak, Abed Alhakim Freihat, Jim
Glass, and Bilal Randeree. 2016. SemEval-2016 task 3: Community question answering. In Proceedings of
SemEval-2016, pages 525-545, San Diego, California.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng. 2016. Text matching as image
recognition. In AAAIL

Ankur Parikh, Oscar Téckstrom, Dipanjan Das, and Jakob Uszkoreit. 2016. A decomposable attention model for
natural language inference. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2249-2255, Austin, Texas, November. Association for Computational Linguistics.

Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding the behaviors of bert in
ranking. ArXiv, abs/1904.07531.

6468



Tim Rocktéschel, Edward Grefenstette, Karl Moritz Hermann, Tomds Kocisky, and Phil Blunsom. 2015. Reason-
ing about entailment with neural attention. CoRR, abs/1509.06664.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014. A latent semantic model with
convolutional-pooling structure for information retrieval. In CIKM.

Richard Socher, Eric H. Huang, Jeffrey Pennin, Christopher D Manning, and Andrew Y. Ng. 2011. Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. In J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,
pages 801-809. Curran Associates, Inc.

Chuangi Tan, Furu Wei, Wenhui Wang, Weifeng Lv, and Ming Zhou. 2018. Multiway attention networks for
modeling sentence pairs. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial In-
telligence, IJCAI-18, pages 4411-4417. International Joint Conferences on Artificial Intelligence Organization,
7.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2017. Compare, compress and propagate: Enhancing neural archi-
tectures with alignment factorization for natural language inference. In EMNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
[llia Polosukhin. 2017. Attention is all you need. In NIPS.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng. 2016. A deep architecture for
semantic matching with multiple positional sentence representations. In AAAI volume 16, pages 2835-2841.

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. 2007. What is the jeopardy model? a quasi-synchronous
grammar for qa. In EMNLP-CoNLL.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017. Bilateral multi-perspective matching for natural language
sentences. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 1JCAI-
17, pages 4144—4150.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353-355, Brus-
sels, Belgium, November. Association for Computational Linguistics.

Wenpeng Yin and Hinrich Schiitze. 2015. Convolutional neural network for paraphrase identification. In Proceed-
ings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 901-911, Denver, Colorado, May—June. Association for Computational
Linguistics.

Wenpeng Yin, Hinrich Schiitze, Bing Xiang, and Bowen Zhou. 2015. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. TACL, pages 259-272.

6469



