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Abstract

Distantly supervised relation extraction has been widely applied in knowledge base construction
due to its less requirement of human efforts. However, the automatically established training
datasets in distant supervision contain low-quality instances with noisy words and overlapped
relations, introducing great challenges to the accurate extraction of relations. To address this
problem, we propose a novel Regularized Attentive Capsule Network (RA-CapNet) to better
identify highly overlapped relations in each informal sentence. To discover multiple relation
features in an instance, we embed multi-head attention into the capsule network as the low-level
capsules, where the subtraction of two entities acts as a new form of relation query to select
salient features regardless of their positions. To further discriminate overlapped relation features,
we devise disagreement regularization to explicitly encourage the diversity among both multiple
attention heads and low-level capsules. Extensive experiments conducted on widely used datasets
show that our model achieves significant improvements in relation extraction.

1 Introduction

Relation extraction aims to extract relations between entities in text, where distant supervision proposed
by (Mintz et al., 2009) automatically establishes training datasets by assigning relation labels to instances
that mention entities within knowledge bases. However, the wrong labeling problem can occur and var-
ious multi-instance learning methods (Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu et al., 2012)
have been proposed to address it. Despite the wrong labeling problem, each instance in distant super-
vision is crawled from web pages, which is informal with many noisy words and can express multiple
similar relations. This problem is not well-handled by previous approaches and severely hampers the
performance of conventional neural relation extractors. To handle this problem, we have to address two
challenges: (1) Identifying and gathering spotted relation information from low-quality instances; (2)
Distinguishing multiple overlapped relation features from each instance.

First, a few significant relation words are distributed dispersedly in the sentence, as shown in Figure 1,
where words marked in red brackets represent entities, and italic words are key to expressing the rela-
tions. For instance, the clause “evan bayh son of birch bayh” in S1 is sufficient to express the relation
/people/person/children of evan bayh and birch bayh. Salient relation words are few in number and dis-
persedly in S1, while others excluded from the clause can be regarded as noise. Traditional neural models
have difficulty gathering spotted relation features at different positions along the sequence because they
use Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) as basic relation en-
coders (Zeng et al., 2015; Liu et al., 2018; Ye and Ling, 2019), which model each sequence word by
word and lose rich non-local information for modeling the dependencies of semantic salience. Thus, a
well-behaved relation extractor is needed to extract scattered relation features from informal instances.

Second, each instance can express multiple similar relations of two entities. As shown in Figure 1,
Changsha and Hunan possess the relations /location/location/contains and /location/province/capital in
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ID Instances Relations

S1
senator [evan_bayh], son of former senator [birch_bayh] of 
indiana, is organizing and testing the waters for a possible 
presidential bid in 2008.

/people/person/children

S2
that is one reason that [hunan]'s fast-growing provincial capital, 
[changsha], is beginning to siphon some workers.

/location/location/contains
/location/province/capital

S3
the land is near calgary; while that is one of [alberta]'s largest 
cities, the capital is [edmonton].

/location/location/contains
/location/province/capital
/location/country/capital

… … …

Figure 1: Example of instances from the New York Times (NYT).

S2, which have similar semantics, introducing great challenges for neural extractors in discriminating
them clearly. Conventional neural methods are not effective at extracting overlapped relation features,
because they mix different relation semantics into a single vector by max-pooling (Zeng et al., 2014)
or self-attention (Lin et al., 2016). Although (Zhang et al., 2019) first propose an attentive capsule
network for multi-labeled relation extraction, it treats the CNN/RNN as low-level capsules without the
diversity encouragement, which poses the difficulty of distinguishing different and overlapped relation
features from a single type of semantic capsule. Therefore, a well-behaved relation extractor is needed
to discriminate diverse overlapped relation features from different semantic spaces.

To address the above problem, we propose a novel Regularized Attentive Capsule Network (RA-
CapNet) to identify highly overlapped relations in the low-quality distant supervision corpus. First,
we propose to embed multi-head attention into the capsule network, where attention vectors from each
head are encapsulated as a low-level capsule, discovering relation features in an unique semantic space.
Then, to improve multi-head attention in extracting spotted relation features, we devise relation query
multi-head attention, which selects salient relation words regardless of their positions. This mechanism
assigns proper attention scores to salient relation words by calculating the logit similarity of each relation
representation and word representation. Furthermore, we apply disagreement regularization to multi-
head attention and low-level capsules, which encourages each head or capsule to discriminate different
relation features from different semantic spaces. Finally, the dynamic routing algorithm and sliding-
margin loss are employed to gather diverse relation features and predict multiple specific relations. We
evaluate RA-CapNet using two benchmarks. The experimental results show that our model achieves
satisfactory performance over the baselines. Our contributions are summarized as follows:

• We first propose to embed multi-head attention as low-level capsules into the capsule network for
distantly supervised relation extraction.
• To improve the ability of multi-head attention in extracting scattered relation features, we design

relation query multi-head attention.
• To discriminate overlapped relation features, we devise disagreement regularization on multi-head

attention and low-level capsules.
• RA-CapNet achieves significant improvements for distantly supervised relation extraction.

2 Related Work

Distantly supervised relation extraction has been essential for knowledge base construction since (Mintz
et al., 2009) propose it. To address the wrong labeling problem in distant supervision, multi-instance and
multi-label approaches are proposed (Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu et al., 2012).

With the renaissance of neural networks, increasing researches in distant supervision have been pro-
posed to extract precise relation features. Piecewise CNNs with various attention mechanisms are pro-
posed (Zeng et al., 2015; Lin et al., 2016; Ji et al., 2017). Reinforcement learning and adversarial training
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are proposed to select valid instances to train relation extractors (Feng et al., 2018; Qin et al., 2018b; Qin
et al., 2018a). Recently, multi-level noise reduction is designed by (Ye and Ling, 2019; Jia et al., 2019).

Nevertheless, the above approaches ignore the effect of noisy words and overlapped relation features
in each instance. To reduce the impact of noisy words, tree-based methods attempt to obtain the rele-
vant sub-structure of an instance for relation extraction (Xu et al., 2015; Miwa and Bansal, 2016; Liu
et al., 2018). To discriminate overlapped relation features, (Zhang et al., 2019) apply the capsule net-
work (Sabour et al., 2017) for multi-labeled relation extraction. Inspired by the ability of multi-head
attention in modeling the long-term dependency (Vaswani et al., 2017), (Zhang et al., 2020) attempt to
reduce multi-granularity noise via multi-head attention in relation extraction.

senator evan_bahy , son of former birch_bahy of indiana

x1 x2 x3 x4 x5 x6 x7 x8 x9Word Encoding 

h1 h2 h3 h4 h5 h6 h7 h8 h9BLSTM Encoding
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Multi-Head Attention

Low-Level 
Regularized Capsules ...u11 u1k ...u21 u2k ...u31 u3k ...ut1 utk
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Figure 2: Overall architecture of RA-CapNet, expressing the process of handling an instance.

3 Methodology

As shown in Figure 2, we will introduce the three-layer RA-CapNet: (1) The Feature Encoding Layer
primarily contains the word encoding layer and BLSTM encoding layer. (2) The Feature Extracting
Layer chiefly includes relation query multi-head attention and disagreement regularization. (3) The
Relation Gathering Layer mainly consists of a regularized capsule network and dynamic routing.

3.1 Feature Encoding Layer
Each instance is first input into the encoding layer to be transformed to the distributed representations
for the convenience of calculation and extraction by neural networks.

Word Encoding Layer
As mentioned in (Zeng et al., 2014), the inputs of the relation extractor are word and position tokens,
which are encoded by word embeddings and position embeddings at first. Then, the jth input word xij
in the ith instance, is concatenated by one word embedded vector xwij ∈ Rk and two position embedded
vectors xp1ij and xp2ij ∈ Rp, xij = [xwij ;x

p1
ij ;x

p2
ij ], where k and p represent the dimensions of word vectors

and position vectors respectively, and ; denotes the vertical concatenating operation. To simplify the
mathematical expression, we denote xij as xj .

BLSTM Encoding Layer
To further encode relation features inside the context, we adopt the Bidirectional Long-Short Term net-
work (BLSTM) (Graves, 2013) as our basic relation encoder, which can access the future context as well
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as the past. The encoding feature vector hi of the ith word is calculated as follows:

−→
hi =

−−−−→
LSTM(xi,

−−→
hi−1) (1)

←−
hi =

←−−−−
LSTM(xi,

←−−
hi+1) (2)

hi =
−→
hi +

←−
hi (3)

where
−→
hi and

←−
hi ∈ Rd are hidden state vectors of the LSTM. Finally, we obtain the sentence encoding

vector H = [h1, h2, · · · , hl], where l represents the instance length.

3.2 Feature Extracting Layer

First, relation query multi-head attention is devised to emphasize spotted relation features from different
semantic spaces. Then, disagreement regularization is applied to encouraging the diversity of relation
features that each head discovers.

Relation Query Multi-Head Attention
Multi-head attention is useful for modeling the long-term dependency of salient information in the con-
text (Vaswani et al., 2017). Based on this mechanism, we propose relation query multi-head attention to
improve the ability of multi-head attention in extracting spotted and salient relation features regardless
of their irregular positions in the instance.

Formally, given an encoding instance H , we use the subtraction of two entities’ states hen1 and hen2
as the relation representation, as inspired by (Bordes et al., 2013). The relation representation acts as a
query vector as follows:

Qrel = (hen1 − hen2)WQ (4)

where WQ ∈ Rd×d is a weight matrix. The corresponding key K and value V vectors are defined:

K = HWK V = HW V (5)

where WK and W V ∈ Rd×d are weight matrices. Afterward, we calculate the logit similarity of the
relation query vector and word representation vectors as attention scores:

energy =
QrelKT

√
d

(6)

where the energy can measure the importance of each word to relation extraction, which is leveraged to
select salient and spotted relation features along the sequence:

ATT = softmax(energy)V (7)

To extract diverse relation features, we employ relation query attention into multi-head attention:

headi = ATT (Qrel
i ,Ki, Vi) (8)

Em = [head1;head2; · · · ;headn]W o (9)

where W o ∈ Rd×d is the weight matrix. Multiple heads can capture various semantic features.
After we acquire the output Em of multi-head attention, a Feed-Forward Network (FFN) is applied:

Hr = max(0, EmW f
1 + bf1)W

f
2 + bf2 (10)

where W f
1 ∈ Rd×d, W f

2 ∈ Rd×d′ , bf1 ∈ Rd and bf2 ∈ Rd′ are parameters.
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Disagreement Regularization on Multi-Head Attention
To further discriminate overlapped relation features from different heads in multi-head attention, we
introduce the disagreement regularization based on (Yang et al., 2018).

Formally, given n heads Head = [head1, head2, · · · , headn] as calculated in Eq. (8), we calculate
the cosine similarity cos(.) between the vector pair headi and headj in different value subspaces:

Dsub
ij = cos(headi, headj) =

headi · headj
‖headi‖‖headj‖

(11)

where ‖ ∗ ‖ represents the L2 norm of vectors. The average cosine distance among all heads is obtained:

Dsub =

∑
ij D

sub
ij

n2
(12)

Our goal is to minimize Dsub, which encourages the heads to be different from each other, improving
the diversity of subspaces among multiple heads. Accordingly, each head can discriminate overlapped
relation features more clearly.

3.3 Relation Gathering Layer

To form relation-specific features, the relation gathering layer gathers scattered relation features from
diverse low-level capsules using a dynamic routing algorithm.

Low-Level Capsules with Disagreement Regularization
The capsule network has been proven effective in discriminating overlapped features (Sabour et al., 2017;
Zhang et al., 2019). In our application, a capsule is a group of neural vectors within one-head attention
and regularized by a disagreement term. Thus, each capsule can capture relation features in an unique
semantic space. In detail, the orientation of the attention vector inside one head indicates one certain
factor of a specific relation, while its length means the probability that this relational factor exists.

We reorganize each attention head of Hr to form a low-level capsule denoted as u ∈ Rdu , where each
capsule captures information in a specific semantic space. Formally, the above process is as follows:

Hr = [hr1; ...;h
r
t ] (13)

uk = g(hrk) =
‖hrk‖

2

1 +
∥∥hrk∥∥2

hrk∥∥hrk∥∥ (14)

where t is the number of low-level capsules, which equals the quantity of heads. Eq. (14) is a squash
function, shrinking the length of vectors from 0 to 1 to express the probability.

To encourage the diversity of these capsules, disagreement regularization is applied to them:

Dcap
ij =

ui · uj
‖ui‖‖uj‖

(15)

Dcap =

∑
ij D

cap
ij

t2
(16)

To minimizeDcap, we can encourage the capsules to be different from each other, improving the diversity
of subspaces among multiple capsules and discriminating overlapped relation features more clearly.

The final disagreement regularization term is the average of multi-head and capsule disagreement:

D =
Dsub +Dcap

2
(17)

where D is the final disagreement regularization term which only works for the training process.
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High-Level Capsules with Dynamic Routing
After the low-level capsules capturing the different aspects of semantic information, the high-level cap-
sules r ∈ Rdr are produced from them to gather scattered information and form specific relation features,
which are calculated as follows:

rj = g(
∑

cijW
h
j ui) (18)

where W h
j ∈ Rdu×dr are parameters for high-level capsules and cij are coupling coefficients that are

determined by the dynamic routing process described in (Sabour et al., 2017).

Loss Function
The sliding-margin loss function used in the capsule network enables the prediction of multiple over-
lapped relations, which sums up the loss for both the relations present and absent from the instances.
This margin loss function is integrated into our model as follows:

Lj =Yjmax(0, (S + γ)− ‖rj‖)2+
λ(1− Yj)max(0, ‖rj‖ − (S − γ))2 (19)

where γ is the width of the margin, S is a learnable threshold for “no relation” (NA), and λ is the down-
weighting of the loss for absent relations. Yj = 1 if the relation corresponding to rj is present in the
sentence and Yj = 0 otherwise.

Afterward, the final loss is defined as follows:

loss =
∑
j

Lj + βD + β′‖θ‖2 (20)

where β and β′ are hyperparameters used to restrict the disagreement regularization andL2 regularization
of all parameters θ. In this paper, we use the Adam (Kingma and Ba, 2014) to minimize the final loss.

4 Experiments

Our experiments are devised to demonstrate that RA-CapNet can identify highly overlapped relations of
informal instances in distant supervision. In this section, we first introduce the dataset and experimental
setup. Then, we evaluate the overall performance of RA-CapNet and the effects of different parts of
RA-CapNet. Finally, we present the case study.

4.1 Dataset and Experimental Setup
Dataset. To evaluate the effects of RA-CapNet, we conduct experiments on two datasets. NYT-10 is
a standard dataset constructed by (Riedel et al., 2010), which aligns relational tuples in Freebase (Bol-
lacker et al., 2008) with the corpus of New York Times. Sentences from 2005-2006 are used as the
training set, while sentences from 2007 are used for testing. NYT-18 is a larger dataset constructed by
(Zhang et al., 2020) with the same creation method as NYT-10, which crawls 2008-2017 contexts from
the NYT. All the sentences are divided into five parts with the same relation distribution for five-fold
cross-validation. The details of the datasets are illustrated in Table 1.

Datasets
Training (k) Testing (k)

Rel.
Sen. Ent. Sen. Ent.

NYT-10 523 281 172 97 53
NYT-18 2446 1234 611 394 503

Table 1: The dataset information. Sen., Ent. and Rel. indicate numbers of sentences, entity pairs and
relations (including NA).

Evaluation Metric. As mentioned in (Mintz et al., 2009), we use the held-out metrics to evaluate
RA-CapNet. The held-out evaluation offers an automatic way to assess models with the PR curve and



6394

Precision at top 100 or 10k predictions (P@100 on NYT-10 or P@10k on NYT-18) at all numbers
of instances under each entity pair, which indicates that all instances under the entity pair are used to
represent the relation.
Parameter. In our work, we use the Skip-Gram (Mikolov et al., 2013) to pretrain our word embedding
matrices. The words of an entity are concatenated when it has multiple words. The grid search and cross-
validation are used to adjust important hyperparameters of the networks. Our final parameter settings are
illustrated in Table 2.

Parameter NYT-10 NYT-18

Batch size b 50 50
Word embedding size k 50 360

Position embedding size p 5 5
Sentence length l 100 100

LSTM hidden size d 256 256
Multi-head number n 16 16
FFN hidden size d′ 512 512

Capsule dimensions [du, dr] [16,16] [16,16]
Low-level capsule number t 16 16

Valid relation class m 52 502
Sliding margin γ 0.4 0.4

Down-weighting λ 1.0 1.0
Learning rate lr 0.0001 0.0001

Dropout probability p 0.5 0.5
Weight of disagreement β 0.001 0.001

L2 penalty β′ 1e-08 0.0

Table 2: Parameter settings.

4.2 Overall Performance
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Figure 4: Precision-recall curves on NYT-10.
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Figure 5: Precision-recall curves on NYT-18.

To evaluate our model, we select the following methods for comparison:
PCNN (Zeng et al., 2015) present a piecewise CNN for relation extraction.
PCNN+ATT (Lin et al., 2016) propose the selective attention mechanism with PCNN.
BGRU+ATT (Zhou et al., 2016) present a BGRU-based model with word-level attention.
BGRU+SET (Liu et al., 2018) propose a BGRU-based approach to reduce inner-sentence noise.
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PCNN+INTRA+INTER (Ye and Ling, 2019) propose to emphasize true labeled sentences and bags.
ATT+CAPNET (Zhang et al., 2019) put forward an attentive capsule network for relation extraction.
QARE+ATT (Zhang et al., 2020) propose improved multi-head attention with transfer learning.
We compare our method with baselines on two datasets. For both datasets, the PR curves on NYT-10

and NYT-18 are shown in Figure 4 and Figure 5. We find that: (1) BGRU+SET performs well on NYT-
10 but poorly on NYT-18. This demonstrates that BGRU+SET is not well-handled on highly informal
instances because the complex instances in NYT-18 are difficult to be parsed precisely by the conven-
tional parser. (2) RA-CapNet achieves the best PR curve among all baselines on both datasets, which
improves the PR curve significantly. This verifies that our model is effective in capturing overlapped and
scattered relation features. (3) RA-CapNet outperforms ATT+CAPNET, which indicates that the relation
query multi-head attention and disagreement regularization are useful for overlapped relation extraction.

Model
PR curve area

NYT-10 NYT-18

BGRU+ATT 0.337 0.596
PCNN+ATT 0.356 0.511
BGRU+SET 0.392 0.290
ATT-CAPNET 0.415 0.647
PCNN+INTRA+INTER 0.423 0.617
QARE+ATT 0.428 0.645
RA-CAPNET 0.526 0.780

Table 3: Precision-recall curve areas.

Model P@100 P@10k

PCNN 72.3 81.0
PCNN+ATT 82.0 82.2
BGRU+ATT 74.0 88.1
BGRU+SET 87.0 67.4
PCNN+INTRA+INTER 91.8 -
ATT+CAPNET 84.0 -
QARE+ATT 93.0 91.6
RA-CAPNET 98.0 96.6

Table 4: P@100 and P@10k.

A detailed comparison of all approaches, the areas of the PR curves, P@100 and P@10k on NYT-10
or NYT-18, are illustrated in Table 3 and Table 4. From the tables, we find that: (1) RA-CapNet is the
first method to increase the PR curve area over 0.5 on NYT-10 while improving it on NYT-18 to 0.7. In
P@100 and P@10k, our model also achieves superior performance. This result further demonstrates the
effectiveness of RA-CapNet with multi-instance learning on overlapped relation extraction. (2) Capnet-
based models achieve better performance on the highly complex NYT-18 dataset, which results from
their capability of handling overlapped relations and complex sentences.

4.3 Ablation Study

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

ATT-CAPNET
A-CAPNET
HR-CAPNET
CR-CAPNET
RA-CAPNET
R-MHATT

Figure 6: PR curves of our models.

Model PR curve area

R-MHATT 0.383
ATT-CAPNET 0.415
A-CAPNET 0.449
HR-CAPNET 0.493
CR-CAPNET 0.501
RA-CAPNET 0.526

Figure 7: PR curve areas of our models.

To further evaluate the impacts of different parts on RA-CapNet, we compare the performance on the
NYT-10 dataset of RA-CapNet with five settings:
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R-MHATT: Two multi-head attention layers with relation query attention.
ATT-CAPNET: The same as above.
A-CAPNET: RA-CapNet without disagreement regularization.
HR-CAPNET: RA-CapNet without capsule disagreement regularization.
CR-CAPNET: RA-CapNet without multi-head disagreement regularization.
RA-CAPNET: Our model.
In Figure 6 and 7, the result indicates that: (1) ATT-CAPNET improves the performance of R-MHATT

by incorporating the capsule network for handling the multiple relations. (2) Compared with ATT-
CAPNET, A-CAPNET improves the PR curve area from 0.415 to 0.449. This proves that relation query
multi-head attention helps the capsule network extract salient relation features from different represen-
tations at different positions. (3) HR-CAPNET further increases the PR curve area to 0.493, which
proves the effectiveness of our disagreement regularization on multiple heads in discriminating the di-
verse overlapped relation features. (4) Compared with A-CAPNET, CR-CAPNET achieves 0.501 of the
PR curve area. This demonstrates that disagreement regularization on the capsules helps models distin-
guish multiple relation features more clearly. (5) Our complete model, RA-CAPNET, achieves the best
performance, showing that the relation query multi-head attention and disagreement regularization term
are both effective for relation extraction.

4.4 Case Study

ID Instances

S1

that is one reason that [hunan]'s fast-growing provincial capital, [changsha], is beginning to siphon some workers.

Model PCNN+ATT BGRU+ATT ATT+CAPNET QARE+ATT RA-CAPNET

LLC ✗ ✗ ✓ ✗ ✓

LPC ✓ ✓ ✓ ✓ ✓

S2

the land is near calgary; while that is one of [alberta]’s largest cities, the capital is [edmonton].

Model PCNN+ATT BGRU+ATT ATT+CAPNET QARE+ATT RA-CAPNET

LLC ✗ ✗ ✗ ✗ ✓

LPC ✗ ✗ ✓ ✗ ✓

LCC ✓ ✓ ✓ ✓ ✓

Figure 7: Prediction results of different models on some samples. “LLC”, “LPC” and “LCC”
represent relation labels of “/location/location/contains”, ”/location/province/capital” and ”/loca-
tion/country/capital”.

In Figure 7, we randomly select two samples from NYT-10 to analyze the prediction performance of
different models, where the entities are labeled in the red and bold brackets. From the figure, we find
the following: (1) In S1 and S2, compared with CNN/RNN/Attention-based methods, the capsule-based
approaches can predict multiple similar relations. (2) In S2, only RA-CapNet predicts the correct relation
of “/location/location/contains”. This result demonstrates that by incorporating relation query multi-head
attention and disagreement regularization in the capsule network, RA-CapNet makes further progress in
discriminating overlapped relations.

5 Conclusion and Future Work

In this paper, we propose a novel regularized attentive capsule network for overlapped relation extrac-
tion. RA-CapNet embeds relation query multi-head attention into the capsule network and uses a novel
disagreement regularization term to encourage the diversity among heads and capsules, making it capa-
ble of gathering salient information from diverse semantic spaces. Our model is resistant to the noise of
distant supervision and achieves significant improvements on both standard and complex datasets.
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In the future, we will experiment with different forms of regularization terms and their application to
other components of our model.
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