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Abstract

We present XHATE-999, a multi-domain and multilingual evaluation data set for abusive language 
detection. By aligning test instances across six typologically diverse languages, XHATE-999 for 
the first time allows for disentanglement of the domain transfer and language transfer effects in 
abusive language detection. We conduct a series of domain- and language-transfer experiments 
with state-of-the-art monolingual and multilingual transformer models, setting strong baseline 
results and profiling XHATE-999 as a comprehensive evaluation resource for abusive language 
detection. Finally, we show that domain- and language-adaptation, via intermediate masked 
language modeling on abusive corpora in the target language, can lead to substantially improved 
abusive language detection in the target language in the zero-shot transfer setups.

1 Introduction

In the era of ever-growing amounts of user-generated online content it is becoming increasingly difficult to
scale up moderation efforts (Nobata et al., 2016). However, the need for moderation is rapidly increasing
due to escalated toxic behavior online, enabled by “hiding” behind anonymous profiles, lack of physical
contact between participants (i.e., the communication is then typically perceived as less personal), and lack
of direct negative societal consequences (Perse and Lambe, 2016). Consequently, research on automated
methods for detecting abusive language in user-generated content is becoming increasingly important.
While such methods cannot completely replace human moderators, they are very helpful as assistance
tools, offering moderation suggestions, thus partially automating and expediting human moderation work.

The focus of abusive language detection is still predominantly on a single language – English, and
single-domain setups (e.g., Twitter). However, some recent initiatives have aspired to broaden the scope of
abusive detection methodology to other languages, showcasing the usefulness of cross-lingual transfer for
the task (Sohn and Lee, 2019; Stappen et al., 2020; Pamungkas and Patti, 2019; Wiedemann et al., 2020,
inter alia). Another line of research (Wiegand et al., 2018a; Karan and Šnajder, 2018; Waseem et al., 2018,
inter alia) focuses on benefits of cross-domain transfer in monolingual settings. An interesting aspect,
currently lacking in prior work, is the interaction of cross-lingual and cross-domain settings. Furthermore,
except for some notable exceptions discussed in §2, previous work in cross-lingual setups is still tied to
resource-rich and typologically similar languages (e.g., English, German, Spanish, Italian) (Stappen et
al., 2020). We aim to fill both these gaps by introducing XHATE-999, a multilingual data set annotated
for abusive language in three domains, and carefully manually translated from English to 5 typologically
diverse languages, with 999 semantically aligned test instances across all languages.

Unlike other abusive language detection data (surveyed in §2), XHATE-999 allows us to separate
the effects that occur due to domain shift from the effects related to language shift. Current data sets
typically confound the two: i.e., a switch to a test set from a different language also implies a change of
the topic/domain. Having an identical domain in the source language and the target language enables
research questions such as: Is domain shift or language shift more instrumental to performance decrease
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in transfer settings? Are these patterns consistent across different domains and languages? Moreover,
covering semantically aligned test instances, XHATE-999 enables direct comparisons on different target
languages, giving rise to the following research questions: How consistent is model behavior across
languages? Ceteris paribus, is abusive language detection in some languages inherently more difficult
than in the others? Is this behavior consistent across different domains?

Besides offering XHATE-999 as the new evaluation resource to the community, in this work we also
aim to provide answers to the questions posed above. We evaluate state-of-the-art transfer learning
methodology based on pretrained monolingual and multilingual Transformer models – RoBERTa (Liu
et al., 2019), monolingual English BERT and multilingual BERT (mBERT) (Devlin et al., 2019), and
XLM-R (Conneau et al., 2020) – in a range of in-domain and cross-domain monolingual and cross-lingual
experimental setups. These evaluations set strong and challenging baseline results on XHATE-999, and
show that cross-lingual performance drops depend, among other aspects, 1) on the actual domain and
corresponding abusive language properties (e.g., abusive unigrams versus abusive phrases), and 2) on
typological properties of the target language and linguistic distance to English as the source language
(e.g., smaller drops are observed on German as the target language than for Turkish or Albanian). We also
empirically verify that training data augmentation by merging training examples from different domains
can be very detrimental to both monolingual and cross-lingual performance in cases where the abusive
language domains are too distant.

Finally, we introduce a simple transfer model adaptation that yields improved performance in cross-
lingual transfer for abusive language detection. Inspired by recent work on additional domain-adaptive
pretraining (Gururangan et al., 2020) as well as additional target language pretraining (Ponti et al., 2020;
Glavaš and Vulić, 2020a), we propose to continue training mBERT and XLM-R via masked language
modeling (MLM) (i.e., the so-called intermediate MLM-ing) on automatically extracted “hateful” raw
text in the target languages.1 We show that this additional language and domain adaptation of the base
massively multilingual model can yield further performance gains: we obtain higher scores than MLM-ing
on randomly sampled raw text of the same size, confirming that both language adaptation and adaptation
to abusive language are required to boost transfer performance.

2 Related Work and Motivation

Variants of Abusive Language. Abusive language appears in many flavors, including sexism, racism
(Waseem and Hovy, 2016; Waseem, 2016), toxicity (Kolhatkar et al., 2019), hatefulness (Gao and Huang,
2017), aggression (Kumar et al., 2018), attack (Wulczyn et al., 2017), cyberbullying (Van Hee et al., 2015;
Sprugnoli et al., 2018), misogyny (Fersini et al., 2018), obscenity, threats, and insults. Waseem et al.
(2017) proposed a systematic typology of toxic language. Another typology focusing more on the nature
of targets of abusive texts was proposed by Zampieri et al. (2019). A similar scheme, expanded to include
the personal sentiments of annotators, was introduced by Ousidhoum et al. (2019). A very fine-grained
hierarchical annotation scheme including 81 different types of annotations was used to label the data set
of Fortuna et al. (2019). Furthermore, Founta et al. (2018) propose an iterative crowdsourcing-based
approach to derive a set of high-quality abusive language labels. Recently, it has been pointed out that
existing abusive language data sets are biased towards certain types of abuse (Jurgens et al., 2019; Vidgen
and Derczynski, 2020) and domains/topics (Wiegand et al., 2019). In this work, we combine three different
abusive language variants – hatefulness (Gao and Huang, 2017), aggression (Kumar et al., 2018), and
attack (Wulczyn et al., 2017) – spanning three distinct data sources (comments under Fox News stories,
Twitter/Facebook posts, and Wikipedia edit messages, respectively) into an integrated and cross-language
aligned multilingual evaluation resource.

Multilingual and Cross-Lingual Abusive Language Detection. There is a growing body of work
on abusive language detection for other languages, realized mostly through shared tasks. The recent
OffenseEval task (Zampieri et al., 2020) introduced a multilingual data set for 5 languages (English,
Arabic, Danish, Hebrew, Turkish), which was expanded to German and Italian by Casula (2020). The

1In the actual experiments, we do not assess if the raw text is considered abusive - the criterion for sentence inclusion is that
it simply contains at least one cue word that is considered abusive - e.g., stupid, racist, hate, fool, kill, ridiculous.
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HatEval shared task (Basile et al., 2019) spans only English and German, and other works (Steinberger et
al., 2017; Sohn and Lee, 2019; Ousidhoum et al., 2019; Steimel et al., 2019; Stappen et al., 2020; Corazza
et al., 2020, inter alia) similarly target only major European languages such as French, German, Italian,
Czech, and Spanish.2 As indicated by Stappen et al. (2020), annotated evaluation data for more diverse
and resource-poor languages is a prerequisite to develop portable and widely reachable abusive language
detection methodology. With XHATE-999, we make a step towards reaching out also to such languages.

In the cross-lingual settings, Steinberger et al. (2017) train separate detection models for several
languages, but link results via named entities and dictionaries for use in a search engine. A more
sophisticated transfer between languages is explored by Corazza et al. (2020) based on shared cross-
lingual word embeddings (Ruder et al., 2019). The most recent work (Sohn and Lee, 2019; Stappen et
al., 2020; Wiedemann et al., 2020) has naturally shifted towards the current state-of-the-art cross-lingual
transfer paradigm (Hu et al., 2020): large multilingual Transformer-based (Vaswani et al., 2017) models
such as multilingual BERT (Devlin et al., 2019) and XLM(-R) (Conneau and Lample, 2019; Conneau
et al., 2020), pretrained via masked language modeling (MLM). The usefulness of machine translation
systems (Sohn and Lee, 2019), cross-attention (Stappen et al., 2020), and readily available dictionaries
such as HurtLex (Bassignana et al., 2018) has also been explored (Pamungkas and Patti, 2019).

Cross-Domain Abusive Language Detection. A comprehensive analysis of cross-domain models is
provided by Waseem et al. (2018), who experiment with multi-task learning for domain transfer on three
data sets. In a similar vein, Karan and Šnajder (2018) employ frustratingly easy domain adaptation
(Daumé III, 2007) to experiment with domain transfer on a wide range of abusive language data sets.
Some cross-domain approaches rely on term analysis, e.g., Wiegand et al. (2018a) start from a manually
constructed sample of abusive terms and augment it automatically to aid domain adaptation, while Rizoiu
et al. (2019) aim to construct task-agnostic representations of abusive language. This stands in contrast
with insights from Swamy et al. (2019), which suggest that the high variation in abusive language typically
precludes wide generalisations and domain adaptation. The work of Pamungkas and Patti (2019) is closest
to ours, as they provide some preliminary experiments on domain transfer across languages, mostly
indicating its complexity, key challenges, and usefulness of available abusive language lexicons. However,
they focus on readily available and unaligned data sets in major European languages (English, German,
Italian, Spanish), do not provide direct comparisons across languages, now enabled by XHATE-999, and
do not investigate isolating the effects of language versus domain transfer.

3 New Multilingual Data Set: XHATE-999

Initial Data Preparation. In order to build a data set that comprises multiple variants (i.e., tasks) of
abusive language detection, we sampled annotated examples from three well-known and diverse English
data sets: (Gao and Huang, 2017) (termed GAO henceforth, capturing hatefulness), (Kumar et al., 2018)
(TRAC, agression), and (Wulczyn et al., 2017) (WUL, attack). The motivation for these particular data sets
is twofold. First, they span three distinct data domains: Fox News (GAO), Twitter/Facebook (TRAC), and
Wikipedia (WUL). Second, they focus on three domains with varying amounts of annotated data available
for training in English: WUL comprises 71,754 training examples (and 24,130 validation examples),
while the respective numbers are 10,341 (2,593) for TRAC, and only 919 (218) for GAO. Training and
validation splits from the original work were retained for all three data sets. We next map the labels of each
data set into the binary labels: abusive vs. non-abusive. GAO and WUL already come with binary labels,
while the original TRAC uses three labels: non-aggressive, covertly-aggressive, and openly-aggresive.
We relabel the first as non-abusive, and the other two as abusive.

We then sample test instances from the respective test portions of all three data sources.3 For quality
2There are also approaches which target monolingual settings with a language that is not English. A non-exhaustive list

includes Arabic (Mubarak et al., 2017; Chowdhury et al., 2020), Danish (Sigurbergsson and Derczynski, 2020), German (Jaki
and De Smedt, 2019; Wiegand et al., 2018b), Hindi (Saroj and Pal, 2020), Italian (Bosco et al., 2018; Fersini et al., 2018), Polish
(Ptaszynski et al., 2019), Portuguese (Fortuna et al., 2019), Dutch (Tulkens et al., 2016), and Slovene (Fišer et al., 2017). There
is also some work on specific language variants, like Hindi–English code-switched language (Mathur et al., 2018a; Mathur et al.,
2018b) or South African English (Oriola and Kotzé, 2020).

3Downsampling was conducted to enable translation into a sufficiently large sample of target language under budget
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Text Data Label

Now Indian government must have to take powerful Action against Bluddy Pakistan.... TRAC Y
Leonidas was sent into the wild... to learn how to survive ..... TRAC N
get off me you disease, i want my name of this crappy site. Avoid what? everyone knows what Ive done WUL Y
Of course, I am willing to negotiate this in a way that we can agree on. I just want to say I’m sorry. WUL N
Cicero Black lives of murderers, criminals and rioters do not matter. GAO Y
MarineAssassin That stuff is funny dont care who ya are GAO N

Table 1: Examples from the test partition of English XHATE-999. Y=abusive; N=non-abusive.

assurance, each test example candidate has been manually checked by the authors, and replaced by another
sample if it (i) comprises only a single non-indicative word, (ii) it is not written in English, or (iii) it relies
on world knowledge which is too specific or geographically localized or on contextual information which
hinders proper translation. The final English XHATE-999 test set comprises 600, 300 and 99 instances
from WUL, TRAC, and GAO, respectively. Some English test examples are provided in Table 1.

Manual Translation. The pivotal objectives in XHATE-999 creation were: 1) to create a multilingual
data set that is aligned across diverse target languages, in order to enable direct performance comparisons
across languages, and 2) to ensure high quality, fluency, naturalness, and idiomacity of monolingual
data sets in each target language. To achieve this, we followed a carefully monitored translation-based
approach, recently used to collect a multilingual commonsense reasoning evaluation resource (Ponti et
al., 2020). The main idea is, instead of using fast-turnaround, but low-quality crowdsourcing solutions
(Lavee et al., 2019), 1) to run the translation task with a small number of carefully selected translators
per target language, and 2) to provide opportunity for necessary target-language adjustments (e.g., using
multi-word paraphrases, culturally more adequate substitutes or near-synonyms) without hurting “the
abusiveness level” of the English instance. To this effect, the translators were allowed to introduce slight
modifications into their translation in order to reflect and maintain the level of abuse present in the original
instance. Such modifications were necessary in cases where a literal translation would lose its abusive
nature in the target language. For instance, this happens with English-specific phrases that do not exist in
the target language. Another example are English word plays (e.g., merging personal names with terms for
animal species and using the portmanteau as an insult, see an example in the Appendix); in these cases the
translators were instructed to make up a roughly equivalent insult of the same type in the target language.
The chosen translators were human experts who were fluent in English while the target language was
their native language. While detailed translation guidelines are available in the Appendix, the crucial
guidelines can be summarized as follows:

Given a piece of text, translate it from English (the source language) into your mother tongue (the target
language). The translation should be as accurate as possible, but under the constraint that the level of
abuse present in the original text is well preserved in the translation.

We have translated the 999 test instances from the English (EN) XHATE-999 to five target languages:
Albanian (SQ), Croatian (HR), German (DE), Russian (RU), and Turkish (TR). The choice of the target
languages has been guided by the following (sometimes competing) criteria: a) availability of trusted
translators per target language; b) translation budget; and c) relative typological and etymological diversity
of the language sample, along with the general availability of linguistic resources for the language (e.g.,
English and German as resource-rich languages versus Albanian as a resource-lean language). The
translation effort was approximately 45 person-hours per target language.

The advantage of the translation-based approach adapted from Ponti et al. (2020) is twofold. First, it
allows for disentangling the impact of language versus domain shift: the alignment between the source and
the target language test data ensures that any performance loss of a cross-lingual transfer approach is solely
due to language shift. Second, the alignment of test data across languages allows for a cleaner and more
meaningful cross-language comparison of (transfer) results. This opens up new research opportunities
related to studying abusive language detection across a larger number of typologically diverse languages.

restrictions. The number of final test instances also partially reflects the size differences of the original test sets.
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BERT (Base) RoBERTa (Base)
Train & Dev / Test WUL TRAC GAO WUL TRAC GAO

WUL 89.0 53.8 56.0 87.8 50.4 44.1
TRAC 77.1 76.0 60.5 82.6 77.2 62.6
GAO 43.9 71.1 48.9 54.8 57.1 70.3
ALL 90.6 75.9 54.3 90.7 77.3 59.8

Table 2: Monolingual evaluation on English subset of XHATE-999; we used the corresponding readily
available English training sets. ALL: training on the concatenation of all three training sets. All scores are
F1 × 100%. Highest scores for each test subset are in boldface, the second best scores are underlined.

4 Monolingual Evaluation: Analyses across Domains

We rely on English training data for WUL, TRAC, and GAO (see §3) in all monolingual and cross-lingual
experiments. We first focus on cross-domain experiments in monolingual English settings. In short, we
analyze the difference in performance when training 1) on all available training data from all three data
sets (WUL+TRAC+GAO; this setup is labeled ALL); 2) only on the training set which corresponds to the
particular test subset (e.g., when testing on WUL we train only on WUL training data; this setup is labeled
SAME); and 3) on a non-corresponding training set (e.g., when testing on WUL, we train on TRAC or
GAO training data), probing the impact of domain shift.

Experimental Setup. We experiment with two pretrained monolingual English transformer models:
BERT (Devlin et al., 2019) Base Cased, and RoBERTa (Liu et al., 2019) Base,4 both with L = 12
transformer layers, hidden state size of H = 768, and A = 12 self-attention heads. We adopt the standard
fine-tuning architecture for sequence classification tasks: we add a simple feed-forward classification head
taking as input the transformed representation of the sequence start token ([CLS] for BERT, <s> for
RoBERTa) xss ∈ RH , i.e., ŷ = softmax (xssWcl + bcl), with Wcl ∈ RH×2 and bcl ∈ R2 as classifier’s
parameters. We tune the parameters by minimizing the standard cross-entropy loss.

For both BERT and RoBERTa we search the following hyperparameter grid: learning rate ∈ {5 ·
10−6, 10−5, 3 · 10−5}, dropout rate (applied to the output layer of the transformer) ∈ {0, 0.1}, and batch
size ∈ {16, 32}. We found the following hyperparameter configuration to be optimal in all experiments:
learning rate = 10−5, batch size = 32, and dropout rate = 0.1. We opt for early stopping based on the
development set performance (F1 score). We measure the development set performance after every 500
updates for the WUL training set (as well as the ALL setup in which we train on the concatenation of
all three training sets), every 100 updates for TRAC, and every 20 updates for GAO. We stop training if
there is no development set performance improvement over 10 consecutive evaluations. We optimize the
parameters with the Adam algorithm (Kingma and Ba, 2015) (ε = 10−8, no weight decay nor warmup)
and clip the norms of gradients for individual updates to 1.0. We report the results in terms of F1 scores.

Results and Discussion. The main results of all in-domain and cross-domain experiments are sum-
marized in Table 2. We observe several interesting phenomena. First, as expected, RoBERTa provides
peak scores across all three test subsets, but there is some variation in performance; BERT outperforms
RoBERTa for a few training–test combinations. For instance, BERT has a slight edge over RoBERTa in
the WUL-WUL SAME setup, and it is also on-par in the ALL-WUL setup. However, RoBERTa seems as a
more robust choice overall, especially in the ALL and SAME (WUL-WUL, TRAC-TRAC, and GAO-GAO)
setups. We observe a particularly substantial gain in the low-data GAO-GAO setup (with only 919 training
instances available): this confirms recent findings in other language understanding tasks (Lauscher et al.,
2020; Brown et al., 2020) that few-shot fine-tuning works much better with pretrained language models
which were exposed to more text during pretraining.

Cross-domain experiments also lead to several insights. Augmenting heterogeneous training data (as
done in the ALL setup) is not necessarily useful: for instance, we do not see any gains moving from

4Our code is built on top of the HuggingFace Transformers framework: https://github.com/huggingface/
transformers. We used these monolingual English models: bert-base-cased and roberta-base.
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Figure 1: Zero-shot cross-lingual transfer of abusive language detection. EN is the source language in
all experiments. Upper Figure: transfer via mBERT; Lower Figure: transfer via XLM-R. Stripped bars
denote the training setup in English where we merge ALL three training sets; the other bars denote the
training setup where the training and test data are from the SAME domain: i.e., WUL, GAO, or TRAC.

the TRAC-TRAC setup to the ALL-TRAC setup, but we see small benefits moving from WUL-WUL to
ALL-WUL. ALL and SAME setups score much higher than cross-domain training for WUL and TRAC.
A large drop in performance on TRAC when training on the large WUL training data set is particularly
indicative: it suggests that having more training data (from another abusive language detection task)
does not imply better detection scores if there is a domain/task mismatch such as the one between WUL
(detecting attacks in Wikipedia comments) and TRAC (detecting aggression in social media). The same
trend is visible also when training on TRAC and testing on WUL, but this could also be partially attributed
to a smaller TRAC training set (see §3). The scores also indicate that, due to a similar domain mismatch,
WUL is a less appropriate training set for GAO test data: we see higher scores when training on smaller
TRAC data than on larger WUL training data, both for BERT and RoBERTa. Interestingly, we also see
smaller drops on the TRAC test data when training on the extremely small GAO training data versus large
WUL data. This again hints that having more similar data domains for cross-domain transfer is more
important than having very large data sets in more distant abusive language domains.

5 Cross-Lingual Transfer and Evaluation

In our zero-shot language transfer experiments, the focus is on the ALL and SAME setups, which provided
the peak scores in the English monolingual experiments in §4.5 In the cross-lingual ALL setup, we again
train on the merged WUL+TRAC+GAO English training data, while in the SAME setup, we train on one
of the three English training portions, and test on the corresponding test subset in the target language (i.e.,
we evaluate WUL-WUL, TRAC-TRAC, and GAO-GAO training–test combinations).

5We provide the detailed results of simultaneous domain- and language-transfer results in the Appendix.
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Transfer Setup. We adopt the massively multilingual pretrained Transformers as a state-of-the-art
mechanism for zero-shot language transfer. Concretely, we conduct our experiments using multilingual
BERT (mBERT) (Devlin et al., 2019) and XLM-on-RoBERTa (XLM-R) (Conneau et al., 2020).6,7

Training, validation, and optimization procedures as well as the hyperparameters are exactly the same as
those reported for monolingual English experiments (see Experimental Setup in §4).

Results and Discussion. A summary of the cross-lingual transfer results on all test XHATE-999 subsets
in all target languages is provided in Figure 1. First, comparing the results of massively multilingual
models versus English-specific pretrained LMs on the English test sets (still no transfer involved), we
now report slight performance drops: peak scores with EN RoBERTa versus XLM-R decrease from
90.7 to 89.2 on WUL, from 77.3 to 76.0 on TRAC, and from 70.3 to 59.3 on GAO. Similar trends are
observed in the BERT versus mBERT comparison. This is expected and can be explained through the
well-known “curse of multilinguality” (Conneau et al., 2020; Lauscher et al., 2020; Pfeiffer et al., 2020),
where multilingual models with limited capacity trade off their performance in a particular language for
much higher portability and transfer ability.8 XLM-R generally offers stronger transfer performance than
mBERT for abusive language detection, which is in line with findings from other tasks (Hu et al., 2020).

We observe large performance drops in the WUL SAME and ALL setups with mBERT. The drops,
although smaller, are also pronounced when using XLM-R. However, transfer performance is much higher
and more stable in the SAME setup for the other two domains – TRAC and GAO – while there are still
conspicuous performance drops in the ALL setup. We hypothesise that, due to a large English WUL
training set, the models overfit to the English data much more than when trained on significantly smaller
TRAC and GAO training sets. We also speculate that the drops are due to the nature of the WUL data,
which does not come from social media, so it typically contains longer and more complex utterances
(WUL utterances are on average 25% and 30% longer than TRAC and GAO utterances, respectively). This
means that the abusive language detection model is more likely to overfit to abusive idiomatic expressions
in English, which are more difficult to semantically align to similar expressions in target languages via the
shared multilingual semantic representation space.

When testing on TRAC and GAO, the results suggest that it is more effective to transfer the model
trained on their respective in-domain training portions than the model trained on the merged ALL data.
Effectively, this implies that the detection model cannot handle both domain and language transfer
simultaneously for these two domains. Language transfer without any domain shift outperforms transfer
with more (but also more out-of-domain) training data: the useful signal for the two test sets gets
overwritten by the much larger WUL training data, and the model then tends to overfit to WUL. However,
the opposite is true with WUL test data: we see improvements in the ALL setup over the SAME setup for
all target languages. We hypothesize that, again due to a large WUL EN training corpus, adding training
data from other two domains in fact acts as a regularization mechanism: it can impede the idiomatic
overfitting to English which is difficult to transfer to other languages.

Besides the actual domain (and its shift), the properties of the target language also impact transfer perfor-
mance. The pattern is especially visible in WUL evaluations for both training setups: performance drops
are much lower for German, the target language most similar to EN (i.e., both are Germanic languages),
while we note the highest drop on TR as the only non-Indo-European language and agglutinative language
in our target language sample. However, this pattern does not hold on TRAC and GAO evaluations: e.g.,
absolute results on TR GAO are higher than in any other target language, and we observe a similarly
strong result on TR TRAC. While the variation might be partially due to small training and test GAO data,

6We have also benchmarked another strand of cross-lingual models that conduct the transfer via static projection-based
cross-lingual word embeddings (Artetxe et al., 2018; Glavaš et al., 2019; Ruder et al., 2019; Vulić et al., 2019; Glavaš and Vulić,
2020b). Similar to what was observed in other language transfer tasks recently (Hu et al., 2020), these methods have in our
experiments been consistently outperformed by transfer methods based on massively multilingual transformers (mBERT and
XLM-R). Therefore, we do not report these results for brevity and to avoid clutter.

7Models from HuggingFace Transformers: bert-base-multilingual-cased and xlm-roberta-cased.
8The only exception is mBERT outperforming English BERT on GAO: while it is difficult to draw general conclusions due to

the small respective training and test set, this could mean that multilingual pretraining with lower capacity for English-specific
representations avoids overfitting to small training sets during fine-tuning.
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Figure 2: Cross-lingual transfer of abusive language detection with different variants of intermediate
masked language modeling (MLM), see §6: no additional intermediate MLM-ing (None); intermediate
MLM-ing in the target language on N randomly sampled sentences (Rand); intermediate MLM-ing on N
non-randomly filtered sentences that contain abusive cue words (Filt). We report the results in the SAME

setup (e.g., training on EN WUL, testing on target language WUL portions) with XLM-R.

stable results in transfer experiments on TRAC across all target languages suggest that the complexity (or
rather simplicity) of the abusive language domain and data also plays a role in transfer capability.

Overall, the results indicate that the success of cross-lingual transfer depends on a multitude of factors
such as the actual task formulation (i.e., abusive language domain) and the nature of abusive language
data, (dis)similarity between the source and the target language, the actual transfer methodology, and
in-domain versus cross-domain training. Our work has aimed to disentangle all these factors in order to
measure their contribution to the final transfer performance, and future work should pay more attention to
their complex interactions in transfer experiments for abusive language detection.

Brief Error Analysis. The instance-level alignment of XHATE-999 portions in different languages now
enables a comparative cross-language analysis of classification errors. Target language misclassifications,
with correctly classified English counterparts, in 90% of the cases represent false negatives, i.e., cases with
undetected abusive language. We identified these to predominantly be the instances: 1) requiring extensive
world knowledge (e.g., give the old yeller treatment), 2) containing idiomatic EN abusive phrases (bird
brain), 3) containing (deliberately) mistyped insults and profane words (id1ot), 4) with polysemous EN

words used in abusive sense, but with a non-abusive dominant sense (balls), and 5) with abusive content
packed into compounds (feminazi). In all these cases, the multilingual transformers (mBERT and XLM-R)
fail to align the meaning of the abusive clue from the original English utterance with the meaning of
the corresponding (in most cases non-literal) abusive translation in the target language. We leave more
extensive qualitative analyses for future work.

6 Intermediate Masked Language Modeling on Filtered Text

Motivation and Approach. Language models such as mBERT and XLM-R are pretrained on large
general-purpose and massively multilingual corpora (100+ languages). While this makes them versatile
and widely applicable, it does not make them acquire “abusive language” and also leads to the “curse
of multilinguality”, i.e., suboptimal representations for individual languages, due to constrained model
capacity (Conneau et al., 2020). We thus hypothesize that 1) adapting them to particular target languages,
and 2) exposing them to additional abusive (instead of general-purpose) language might lead to perfor-
mance gains, especially in cross-lingual transfer. We opt to achieve these adaptations through additional
intermediate masked language modeling in the target languages as follows.

We explore three scenarios: 1) no intermediate MLM-ing (None; results from §5), 2) intermediate
MLM-ing on N randomly sampled sentences in the target language (Rand), and 3) intermediate MLM-ing
on the same number of target language sentences N , but now filtered from large corpora to contain
salient abusive terms (Filt), which should consequently better adapt the models to abusive language. The
Rand MLM-ing provides target language adaptation of a massively multilingual model (Pfeiffer et al.,
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English German Russian Croatian Albanian Turkish

GAO

slave Sklave рабыня rob rob köle
ugly hässlich уродливый ružan i shëmtuar çirkin

useless nutzlos бесполезный beskoristan i kotë Faydasız
racist Rassist расист rasistički racist ırkçı

immigrants Einwanderer иммигранты imigranti emigrantët göçmenler
harassment Belästigung домогательство uznemiravanje ngacmim rahatsızlık

TRAC

stupid blöd глупый glup budalla Aptal
fool täuschen дурачить budala budalla aptal

terrorist Terrorist террорист terorista terrorist terörist
communists Kommunisten коммунисты komunisti komunistët komünistler

hell Hölle ад pakao ferr cehennem
gay Fröhlich гей homoseksualac homoseksual eşcinsel
dick Schwanz Дик kurac kar çük

WUL

hell Hölle ад pakao ferr cehennem
gay Fröhlich гей homoseksualac homoseksual eşcinsel
dick Schwanz Дик kurac kar çük
nazis Nazis гитлеровцы nacisti nazistët Naziler
screw Schraube винт vijak vidhos vida
fascist faschistisch фашист fašistički fashist faşist

Table 3: Some of the abusive English terms and corresponding target language translations obtained
automatically using Google Translate, used for filtering corpora for intermediate MLM-ing.

2020), which should partially alleviate the issues arising due to limited model capacity and the “curse of
multilinguality” (Conneau et al., 2020; Lauscher et al., 2020), but without any domain adaptation. The
Filt variant ideally offers both language adaptation and (at least crude) adaptation to abusive language.

Corpora, Filtering, and MLM Training. We first semi-automatically obtain lists of abusive terms
related to our abusive language domains, based on the English WUL, GAO, and TRAC training sets. In
short, we train a logistic regression classifier on each training set separately, rank the words according to
the weights associated with the abusive class, and retain only the ones which occur in the top 10k most
frequent English words in the ukWaC corpus (Ferraresi et al., 2008). A manual inspection reveals that
many words in the lists are only topically related without being abusive terms (e.g., mother, cake, vision):
therefore, in the next step the list is manually filtered to retain only salient abusive terms. This yields
the final lists of 10 (GAO), 8 (TRAC), and 27 (WUL) abusive terms in English, which are automatically
translated to the target languages via Google Translate without any subsequent manual correction. Some
examples of abusive clues obtained through this semi-automatic procedure are shown in Table 3.

For the Filt intermediate MLM-ing, we then extract at most 200K sentences that contain at least one
term from at least one list of abusive terms from a large corpus. For all languages we rely on readily
available web-crawled corpora: ukWaC and deWaC (Ferraresi et al., 2008) for EN and DE, hrWaC
(Ljubešić and Erjavec, 2011; Šnajder et al., 2013) for HR, the OSCAR data (Suárez et al., 2019) for TR

and SQ, and the Araneum corpora (Benko, 2014) for RU. The total number of extracted sentences per
language is 193K (DE), 200K (EN), 97K (HR), 65K (RU), 27K (SQ), and 200K (TR). For Rand MLM-ing,
we simply randomly sample the same number of sentences as for Filt from the same web-crawled corpora.

We execute the intermediate MLM training in Rand and Filt scenarios by dynamically masking 15% of
the subword tokens in order to predict them from the context. We train for 30 epochs, in batches of 32
sentences, by minimizing the cross-entropy loss with the Adam algorithm (Kingma and Ba, 2015).

Results and Discussion. The cross-lingual experimental setup is identical to the one in §5, with the
exception of experimenting with mBERT and XLM-R under different intermediate MLM-ing scenarios
(None, Rand, Filt). We show results only with XLM-R as the better-performing multilingual transformer.
The results for WUL and TRAC in the SAME setup (see §5) are summarized in Figure 2 (full results
available in the Appendix). The scores clearly suggest the usefulness of the language and domain
adaptation, especially on WUL, while the positive trends, although present, are less pronounced on TRAC.
On WUL, we observe improvements over the baseline (None; no intermediate MLM-ing) for all 5/5
target languages for both Rand and Filt. On top of this, Filt offers some gains over Rand in 5/5 transfer
experiments, with the average of 73.9 F1 for Filt and 72.2 for Rand. On TRAC, Filt outperforms None on
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4/5 target languages (i.e., the only exception is German).
Furthermore, intermediate MLM-ing (Rand and Filt) yields the highest gains for two target languages

that are most distant from EN: SQ and TR. The gains for Turkish are particularly large: e.g., Filt gains
on WUL amount to +8.1 F1 points in the ALL setup and +16.5 points in the SAME training setup. This
is mostly due to language adaptation to TR. Turkish is an extremely morphologically rich language
written in Latin script, which means that it is not sufficiently represented in the joint multilingual subword
vocabulary of XLM-R: both Rand and Filt intermediate MLM-ing therefore adapt/specialize the shared
subwords towards Turkish; additional slight gains with Filt are due to more in-domain MLM-ing. In sum,
the improvements with Rand indicate that adaptation to the particular target language is important for
enhanced abusive language detection, but further improvements can be achieved by customizing XLM-R
with filtered sentences containing lexical clues of abusive language.

From another perspective, our experiments have verified that both language-adaptive additional pretrain-
ing (Pfeiffer et al., 2020; Ponti et al., 2020; Glavaš and Vulić, 2020a) as well as domain-adaptive additional
pretraining (Gururangan et al., 2020) of general-purpose language models have a synergistic positive
impact on cross-lingual transfer for abusive language detection. However, the scores from Figure 2 also
indicate that there is still ample room for improvement, particularly in resource-lean and distant languages
(SQ and TR). Additional advances might be met through techniques such as selective sharing and more
sophisticated typologically driven adaptation in transfer (Ponti et al., 2018; Nikolaev et al., 2020), using
larger and manually compiled lexicons of abusive language (Bassignana et al., 2018) instead of small,
noisy and inexpensively built lexicons as in this work, or choosing more suitable source languages (Lin et
al., 2019) and source domains (Gururangan et al., 2020). Few-shot transfer, requiring a small number
of labeled target-language instances, is another strategy that has, in the context of language transfer via
multilingual transformers, been shown to lead to large gains over zero-shot transfer (Lauscher et al., 2020).

Brief Error Analysis. Finally, we perform a closer inspection of target language test instances that
have been misclassified after the intermediate MLM training on the random corpus (Rand), yet correctly
classified after MLM-training on the corpus filtered with the list of abusive words (Filt). We discovered
that many of such instances – 47% for SQ, 57% for HR, 40% for DE, 48% for RU, and 53% for TR– contain
at least one of the abusive cue words that we used to create the corpus for MLM-ing in Filt.

7 Conclusion and Future Work

We have presented XHATE-999, a data set enabling evaluation of both cross-domain and cross-lingual
abusive language detection, and in-depth explorations of the interplay between language shift and domain
shift. XHATE-999 spans three diverse abusive language domains and six diverse languages. The semantic
alignment between test instances in all languages for the first time enables comparative analyses of
model behavior across domains and languages. We have also profiled the potential of XHATE-999 as
a comprehensive resource for evaluating abusive language detection through a series of in-domain and
cross-domain experiments in monolingual and cross-lingual setups with state-of-the-art transfer learning
models. We have then demonstrated that domain-adaptive and language-adaptive additional pretraining of
general-purpose multilingual models (multilingual BERT and XLM-R) can yield further performance
gains in transfer experiments, especially for resource-lean languages.

We hope that XHATE-999 will inspire and instigate deeper understanding of the underlying phenomena
and further research on cross-lingual and cross-domain abusive language detection, with a stronger focus
towards diverse and resource-lean languages and domains. We make the XHATE-999 data set publicly
available at https://github.com/codogogo/xhate.
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Goran Glavaš and Ivan Vulić. 2020a. Is supervised syntactic parsing beneficial for language understanding? an
empirical investigation. arXiv preprint arXiv:2008.06788.
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Appendix

A Translation Instructions

We give below the full unedited version of the translation instructions given to the translators and discussed
with them in the initial meeting.

-----

These are the guidelines for the task of translating datasets annotated for the presence of abusive language from English (the
source language) to other (target) languages. The purpose of this annotation is to obtain annotated data in the target languages
which can be used to develop and evaluate cross-lingual machine learning models to automate the detection task.

Disclaimer: The rest of these instructions and (somewhat more so) the data in this task contain some very explicit and strong
language. This is unavoidable due to the nature of the task. If you feel this would be too unsettling for you, please stop reading
after this paragraph and simply let us know you are no longer interested.

Your task in this annotation is as follows:

Given a piece of text, translate it from English (the source language) into your mother tongue (the target language). The
translation should be as accurate as possible, but under the constraint that the level of abuse present in the original text is well
preserved in the translation.

You will not have to do the entire translation manually from scratch, but you will rather edit and correct the outputs of Google
Translate. This should save you some time. We recommend that you go about translating each text in two steps. First, correct
any mistakes in the outputs of Google Translate and make sure that the translation is accurate. Second, asses whether the level of
abuse you perceive in the original English text is roughly equivalent to the level of abuse in your translation. If there is a notable
difference then tweak your translation a bit to reduce the difference. The tweaked translation will be slightly less accurate (as in
less literal) but is preferable since it better preserves the level of abuse.

The first step above is simply translation. The second step though warrants some examples (all examples are from English to
Croatian):

1. Sometimes you will need to make no modifications e.g. “shit” can be literally translated as “sranje”, wich carries roughly
the same level of abuse in Croatian.

2. Sometimes you will need to make minor semantic modifications, e.g. “piece of shit” cannot be translated directly (there
is no croatian phrase for that), but you can translate it as “govno” which literally means “shit” (without the “piece of”
semantics) and is used in roughly the same context as the english phrase. This slightly changes the meaning but retains the
level of abuse.

3. Sometimes major semantic changes will be needed e.g., “scumbag” also has no Croatian translation, and has no croatian
insult that is similar. You could simply translate it as “gad” or “d̄ubre” (“bastard” or “shit”). These have a different
meaning but carry roughly the same level of abuse and are appropriate translations.

4. You will often encounter abuse in much more subtle ways. A text can be aggressive without explicitly using swearing. E.g.,
someone might refer to a person as a “failed abortion”. Even more subtly someone might consistently use the “It” pronoun
when referring to a particular person. Be sure to preserve these subtle nuances when translating. This is particularly
important, as we expect that Google Translate will often fail to preserve these details which can mean the difference
between abuse and non-abuse.

5. You will sometimes need to dig deeper to fully understand some of the text. For example the word “Hildebeest” is not
clear at first glance. A short search reveals it is mocking Hillary Clinton via fusing “Hillary” with “wildebeest”. This
information is important to properly retain the level of abuse in the translation. In this particular case you would ideally
have to come up with a similar mocking play on words in your own language. If that is difficult or unnatural in your
language, you could alternatively translate this using any “standard” insult in your language, which carries roughly the
same level of abuse as “Hildebeest”.

Finally, keep in mind that not all texts you need to translate are abusive (around 50% of them are). So try to not have any bias
that would push your translations to become generally more or less abusive than they need to be. Simply read the texts carefully
and recreate the level of abuse in your translations. In an ideal scenario the translations are exactly as abusive (or non abusive) as
the original texts.
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None Rand Filt

Train & Dev / Test WUL TRAC GAO WUL TRAC GAO WUL TRAC GAO

WUL 87.8 50.4 44.1 89.8 58.6 56.5 88.4 46.4 31.3
TRAC 82.6 77.2 62.6 79.5 76.2 64.0 80.8 75.6 61.1
GAO 54.8 57.1 70.3 58.8 58.1 60.8 46.6 59.4 61.7
ALL 90.7 77.3 59.8 90.1 76.5 63.1 90.3 76.9 63.2

Table 4: Domain transfer performance of monolingual English RoBERTa-based models; we used the
corresponding readily available English training sets. ALL: training on the concatenation of all three
training sets. All scores are F1 × 100%.

None Rand Filt

Train setup / Test set WUL TRAC GAO WUL TRAC GAO WUL TRAC GAO

DE-ALL 83.2 73.1 44.7 79.7 72.8 50.0 82.7 73.9 60.0
DE-SAME 74.6 75.1 58.9 79.3 73.2 63.8 81.4 73.9 54.1

HR-ALL 75.1 74.9 36.4 76.6 72.9 58.1 74.1 73.9 54.0
HR-SAME 65.4 75.8 55.6 71.5 73.8 59.8 74.2 76.3 60.9

RU-ALL 76.6 70.9 25.4 75.5 70.8 37.1 72.3 66.0 24.6
RU-SAME 64.4 71.2 54.3 72.0 73.3 51.9 73.8 73.4 44.2

SQ-ALL 77.0 74.0 60.2 80.4 73.9 59.1 79.5 74.9 56.1
SQ-SAME 64.7 73.5 61.4 73.2 73.3 54.3 74.6 75.1 66.7

TR-ALL 66.1 71.8 44.2 72.0 74.0 43.2 74.2 74.9 49.4
TR-SAME 48.8 74.9 62.6 65.2 77.1 62.5 65.3 76.2 63.6

Table 5: Full domain- and language-transfer results for the XLM-R-based models. The ALL setup denotes
the model was trained on all train data, while the SAME setup denotes the model was trained on the train
set corresponding to the test set. All scores are F1 × 100%.

B Full Domain- and Language-Transfer Results

Full monolingual (English) domain-transfer results and full cross-lingual (domain- and language-transfer)
results are displayed in Tables 4 and 5, respectively.


