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Abstract

In this paper we present the first work on the automated scoring of mindreading ability in middle
childhood and early adolescence. We create MIND-CA, a new corpus of 11,311 question-answer
pairs in English from 1,066 children aged 7 to 14. We perform machine learning experiments
and carry out extensive quantitative and qualitative evaluation. We obtain promising results,
demonstrating the applicability of state-of-the-art NLP solutions to a new domain and task.

1 Introduction

Successfully navigating day-to-day social interactions often hinges on being able to recognize that others
can hold different beliefs, thoughts, ideas, intentions and desires. Popular culture and literature are
replete with instances that require us to enter into the mind of someone else in order to explain their
actions. For example, the final scene of Shakespeare’s Romeo and Juliet is made all the more poignant
because the audience know that Juliet is still alive and that Romeo has killed himself because he had a
mistaken belief that she was dead. The audience is able to understand both the state of the world (i.e.:
Juliet is still alive) and the mistaken belief of Romeo (i.e.: Juliet is dead).

The ability to attribute mental states to others in order to explain or predict behavior, called “theory
of mind” or “mindreading” has intrigued researchers in disciplines as diverse as psychology, philoso-
phy, neuroscience, economics, and literary theory for four decades (Hughes and Devine, 2015). The
long-standing interest in mindreading is not surprising as children’s performance on standard tests of
mindreading has real-world significance. Longitudinal studies demonstrate that children who excel at
tests of mindreading are more likely than their peers to be identified as popular by classmates (Banerjee
et al., 2011), have reciprocated friendships (Fink et al., 2015), and be viewed by their teachers as socially
competent (Devine et al., 2016). Furthermore, case-control studies show that deficits in mindreading
are more common among individuals with a range of mental health problems and neuro-developmental
conditions associated with poorer social functioning (Cotter et al., 2018). Given the prognostic impor-
tance of mindreading in children, in this paper we present the joint work of an inter-disciplinary team
of psychologists, computer scientists, and linguists on the automatic scoring of mindreading ability in
middle childhood and early adolescence.

The great majority of studies on mindreading have focused on identifying the age at which preschool
children recognize that others have desires, beliefs and knowledge that differ from their own (Wellman
and Liu, 2004). However, the past decade has witnessed increased interest in the continued growth of
children’s understanding of mind in middle childhood and early adolescence (Devine and Hughes, 2013;
Dumontheil et al., 2010; Lagattuta et al., 2016). There is currently no consensus on how best to measure
mindreading in middle childhood and adolescence but standardized open-ended tests in which children
are asked to explain the behavior of a character depicted in short vignettes (Happé, 1994; Banerjee et
al., 2011) or in animations or film clips (Castelli et al., 2000; Devine and Hughes, 2013) are increasingly
used. While promising, open-ended responses to test questions are currently manually rated by trained
experts limiting the potential utility of these measures in large-scale research. This challenge is not
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unique to research on mindreading as open-ended text response assessments are widely-used in clinical
and educational research (He et al., 2017; Lee et al., 2019; Zehner et al., 2016). Automated scoring
systems have the potential to enhance reliability and minimize the amount of labor required to administer
tests at scale.

To address this problem, we gathered, digitalized, and manually rated responses to two tests of min-
dreading: the Strange Stories task (Happé, 1994) and the Silent Film task (Devine and Hughes, 2013).
The new corpus, that we call MIND-CA, contains 11,311 open ended responses in English from children
aged 7 to 14. We used MIND-CA to train and evaluate several different Machine Learning systems. We
performed an extensive quantitative and qualitative evaluation and error analysis to measure the applica-
bility of the automated systems.

Our findings demonstrate that NLP can be used to aid the work of psychologists, educational re-
searchers, clinicians and psycho-linguists. State-of-the-art text classification systems report very good
quantitative results when scoring children’s mindreading capabilities. At the same time, the in-depth
analysis of the performance indicates that there is still room for improvement and future work.

The rest of this article is organized as follows. Section 2 presents related work. Section 3 provides
details about the creation of the dataset. Section 4 describes the experimental setup and the evaluated
systems. Section 5 presents the results of the automatic scoring and the qualitative error analysis. Section
6 discusses the implications of the findings of this work. Finally, Section 7 presents the conclusions and
outlines directions for future research.

2 Related Work

The extension of research on mindreading into middle childhood and adolescence has stimulated the
creation of new tests because the standard tasks used to measure mindreading in early childhood (e.g.,
the false belief task) exhibit marked ceiling effects by age 6 (Wellman et al., 2001). Advanced tests
of mindreading used in middle childhood and adolescence employ a range of stimuli (e.g., vignettes,
animations, film clips) and appear to target distinct skills (e.g., perspective taking, intention attribution,
explaining behavior) (Banerjee et al., 2011; Dumontheil et al., 2010; Castelli et al., 2000). Despite
these in-roads, research with school-aged children has revealed limited convergence between tasks (i.e.,
suggested tasks may not capture the same underlying ability) (Warnell and Redcay, 2019) and limited
discriminating power in some tasks (i.e., suggested tasks may not capture sufficient variance in middle
childhood) (Cooper et al., 2019; Osterhaus et al., 2016).

In contrast with these results, studies of children aged between 7 and 13 years have shown consis-
tent associations between children’s performance on two tests: the Strange Stories (Happé, 1994) and
the Silent Film task (Devine and Hughes, 2013). The Strange Stories task was developed for study-
ing mindreading in adolescents and adults with autism. In this task participants answer questions about
characters in short vignettes depicting instances of mistaken beliefs, misunderstanding, double-bluff
or deception. Supporting its validity, adolescents and adults with autism (a condition associated with
impaired social and communicative ability) were less likely than ’neurotypical’ controls to explain char-
acters’ behaviours with reference to their thoughts, feelings and desires (White et al., 2009). Building
on this work, Devine and Hughes (2013) devised the Silent Film task in an effort to create a measure
of individual differences in mindreading suitable for use in middle childhood and adolescence. Like the
Strange Stories task, the Silent Film task requires participants to answer open-ended questions about
a character’s behavior with reference to the character’s mental states but uses brief clips taken from a
classic silent comedy. The two tests show convergent validity in middle childhood and early adolescence
and marked individual differences in performance in each age group studied (Devine and Hughes, 2013;
Devine and Hughes, 2016). The two tasks exhibit strong one-month test-retest reliability (Devine and
Hughes, 2016) and the validity of these tasks is bolstered by evidence of correlations between test perfor-
mance and measures of children’s social competence in middle childhood and early adolescence (Devine
et al., 2016).

The Strange Stories and Silent Film tasks are promising measures with robust psychometric properties.
However, like other open-ended measures in psychology, children’s responses to the test questions on
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the Strange Stories and Silent Film tasks are manually rated by trained researchers limiting the potential
utility of these measures in large-scale research for two reasons. First, manual coding of open-ended
text responses (even short responses) is labor-intensive and time-consuming. Second, even trained re-
searchers may change the way they apply scoring rubrics over time or make errors in applying a scoring
rubric. Such “drift” is not detected in standard inter-rater agreement assessments and potentially under-
mines the reliability of manual ratings (Kazdin, 1977). The creation of an automated scoring platform for
the Strange Stories and Silent Film tasks raises the possibility of rapid, reliable assessment of individual
differences in mindreading ability across middle childhood and adolescence.

Automated scoring is not a novel application within NLP. It is usually deployed in the educational
domain. Burrows et al. (2015), Zesch et al. (2015), and Sultan et al. (2016) present different work on
automated scoring. The ASAP1 and ASAP22 as well as the SemEval 2013 shared task 7 (Dzikovska et
al., 2013) helped popularize the topic within NLP researchers. While the majority of the work is focused
on essay grading, Zehner et al. (2016) implement and integrate baselines of NLP for the automated
coding of short text responses. Lee et al. (2019) describe an automated scoring and feedback system that
can help students revise and improve their scientific argumentation.

Madnani and Cahill (2018) present a position paper about using NLP for automated scoring. They
argue that automatic scoring is a complex problem with multiple perspectives, and “stakeholder” impli-
cations. As such, they suggest that designing a successful automated scoring solution requires collab-
oration between NLP researchers, subject matter experts, and score users. They also point out that the
nature and importance of automated scoring requires a much more thorough evaluation and analysis.

In this paper we present the first work on the automated scoring of children’s open-ended responses
to tests of mindreading ability. We follow the best practices in automated scoring in order to ensure the
applicability and quality of the proposed solution.

3 Dataset Creation

In this section, we present the process of creating a novel NLP resource - the MIND-CA corpus. Section
3.1 describes in more details the two mindreading tests that we use: the Strange Stories Task and the
Silent Film Task. Section 3.2 details the corpus creation process, the format of the final corpus, as well
as some statistical information.

3.1 Strange Story Task and Silent Film Task
In the Strange Stories Task (Happé, 1994) children listen to the researcher read five vignettes depicting
different social situations (e.g., lying, misunderstanding, double bluffing) while the story text remains
visible on a large screen. Each story is followed by a single open-response question in which the children
are required to explain a character’s behavior with reference to the character’s mental states.

In the Silent Film Task (Devine and Hughes, 2013) children watch five short film clips on a large screen.
The clips were taken from a classic silent comedy and depicted instances of deception, misunderstanding,
and false belief. Children watch each clip once and respond to a question read aloud by the researcher
after each clip (the first clip is followed by two questions). Children record their responses in writing.

Children’s performance on the two tasks is scored manually by trained experts3. The scoring scheme
for each item on the two tasks has three possible grades. Score 0 - failure to mindread or inappropriate
mindreading given the context; Score 1 - reference to mind or mental state but partially inappropri-
ate explanation/interpretation; Score 2 - reference to mind or mental state with appropriate explana-
tion/interpretation. Scores across all items are then used to create total scores to capture individual
differences in mindreading (Devine and Hughes, 2013).

3.2 The MIND-CA Corpus
The dataset creation process has three steps: 1) gathering children’s responses; 2) digitalization and
scoring of responses; 3) anonymization, reformatting, and pre-processing the data for NLP purposes.

1https://www.kaggle.com/c/asap-aes
2https://www.kaggle.com/c/asap-sas
3The full guidelines for scoring are available at https://github.com/venelink/mindreading-coling
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Gathering children responses We recruited 1,066 English-speaking children aged between 7.25 and
13.53 years, Mage = 10.32 years, SD = 1.43, from 46 classrooms in 13 primary and 4 secondary schools
in England between 2014 and 2019. The children took part in a whole-class testing session lasting
approximately 1 hour led by a trained research assistant using a scripted protocol (Devine and Hughes,
2016). Each child answered 11 questions - five in the Strange Story Task and six in the Silent Film Task.
We obtained a total of 11,726 question-answer pairs.

Digitalization and scoring The paper test booklets were digitalized and manually scored by two post-
graduate research assistants and the test developer. Each booklet was scored by one research assistant
and difficult cases were discussed during weekly meetings. To ensure the quality and consistency of the
scoring, the annotators were trained for the task on a held out set of 30 cases for each task and reported
an inter-annotator agreement with the test developer of 94.4% and a Fleiss’ Kappa of .91. The inter-
annotator agreement was measured again on a second held-out set at the end of the annotation, and the
results were consistent with the training. During the digitalization of children’s written responses, the
annotators were instructed to preserve the original spelling and grammar where possible. We also created
a dictionary of the most common spelling mistakes.

Corpus preprocessing After all responses were digitalized and scored, we anonymized them by re-
moving any personal information that can be used to identify the participants. We kept only the infor-
mation considered to be relevant for the rating and the analysis of the results. We used the spaCy Python
library (Honnibal and Montani, 2017) to run basic linguistic pre-processing of the corpus (tokenization,
part of speech tagging) and the NLTK Python library (Bird et al., 2009) to obtain basic corpus statistics.

Final corpus format Table 1 shows a sample of the final corpus. It contains the following columns:
1) the question; 2) the open-text response; 3) the gold-standard score; 4) the age of the participant; 5) the
gender of the participant. We created a second version of the corpus where we explicitly incorporated the
question in the “Response” column. That is, in the “full” version of the corpus, the “Response” column
of the first entry in Table 1 is “Why did the men hide ? Because they did n’t want the woman to find
them”. All other columns remain the same. In our experiments we use both versions of the corpus4 and
compare the performance of the automated systems.

Question Response Score Age Gender
Why did the men hide? Because they did n’t want the woman to find

them
2.0 9 0

Why did the men hide? Because they Were n’t supose to be there 0.0 9 1
Why did the men hide? they have a seccret 0.0 9 0
Why did the men hide? because they didnt whant to get cort 1.0 9 0
Why did the men hide? Because they did n’t want the woman to see them 1.0 9 1

Table 1: Examples from the Corpus MIND-CA

Corpus statistics After filtering unreadable and missing data, the final corpus contains 11,311
question-answer pairs from 1,048 unique participants. In terms of gender 5,682 of the question-answer
pairs are from girls, 5,596 of the answers are from boys. The age of the participants ranges from 7 to 14,
and the distribution is as follows: 102 answers from participant at the age of 7; 668 at the age of 8; 2,809
at the age of 9; 3,061 at the age of 10; 2,163 at the age of 11; 1,333 at the age of 12; 1,142 at the age of
13; and 33 at the age of 14. The distribution of labels in the full corpus is well balanced: 3,517 pairs (31
%) with a score of 0; 3,822 pairs (33.8 %) with a score of 1; and 3,972 pairs (35.1 %) with a score of 2.
The average length of responses (in tokens) is 10.1, and it varies per question from 8.25 to 11.64.

4 Experimental Setup

The main objective of this work was to create and evaluate an automated solution for scoring children’s
mindreading ability from open-ended responses to two standardized tests. A successful solution will

4The corpora is publicly available at https://github.com/venelink/mindreading-coling
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facilitate large scale psychological research on mindreading. We formally defined the task of automatic
scoring as a classification problem. We chose classification over regression taking in account the specifics
of the original tasks and the data, and the need to have item-level scores for future research. For our
experimental setup, we selected four different machine learning architectures. The systems were chosen
based on two main criteria: 1) they represent qualitatively different approaches to the formalization and
processing of the data; 2) they are sufficiently lightweight in terms of computational requirements to be
implemented in a web-based end-to-end application for researchers in psychology. The systems are:

• An SVM classifier, trained with basic linguistic features (bag of words, bag of word ngrams, bag of
character ngrams, part of speech frequencies). We tested both raw frequencies and tf-idf weighting.

• A Bi-LSTM neural network.

• A self-attention based neural network.

• A pre-trained DistilBERT transformer, finetuned on the dataset.

The systems were implemented using Scikit-Learn (Pedregosa et al., 2011), TensorFlow 2.0 (Abadi et
al., 2015), HuggingFace (Wolf et al., 2019), and KTrain (Maiya, 2020) libraries for Python5. All models
were trained on a single GPU. For each of the systems we tested both formats of the input described
in Section 3.2. In the response-only setup we only provided the systems with the open-ended response
and the corresponding score. In the full setup the “Response” column also included the question. For
the Bi-LSTM and the self-attention based models, we tried two different ways of initialization: random
initialization and initialization with pre-trained FastText embeddings (Bojanowski et al., 2016). FastText
performed much better in the first few training epochs, however after the 15th epoch the performance of
the two initializations is almost identical. We report the results obtained from the random initialization.

5 Experimental Results

We performed a 10-fold cross validation on the data. We further split each training set to 75% training
and 25% validation. We report the average performance across the 10 runs for each system.

We evaluated the performance of the automated systems in four different ways. In Section 5.1 we
report the overall performance of the systems, measured in Accuracy and Macro-F1. In Section 5.2 we
discuss the performance of the systems on scoring each of the 11 different questions. In Section 5.3 we
analyze the variance of the performance of the systems in terms of the age of the participants. Finally, in
Section 5.4 we present a human analysis of the incorrect predictions made by two of the systems.

5.1 Overall Performance

System Name Response-Only Full
Acc Macro-F1 Acc Macro-F1

Majority Baseline .35 .33 .35 .33
SVM .69 .69 .71 .71
BiLSTM .81 .81 .83 .83
Attention .81 .81 .83 .83
DistilBERT .89 .89 .91 .91

Table 2: Overall System Performance on the Full Test Set

Table 2 shows the performance of each system on the full test dataset. For each system we report
the Accuracy and the Macro-F1 score. We also include a majority baseline, that is, predicting the most
frequent class. All the models obtained very good results and improved substantially over the majority
baseline. Furthermore, the three deep learning models outperformed the SVM by over .10. The best

5The code for all experiments is available at https://github.com/venelink/mindreading-coling
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performing system was DistilBERT (.89 accuracy in “response-only” and .91 accuracy in “full”). Adding
the questions to the input increased the accuracy of all systems by .2 - .3. When evaluating the systems
on the full corpus, we found no difference between the Accuracy and the Macro-F1 scores. These
quantitative results demonstrate that the problem of automatically evaluating children’s mindreading can
successfully be framed and processed as an NLP task.

5.2 Performance by Question

After obtaining high overall performance, we were interested in evaluating the consistency of the systems
across the 11 questions. Table 3 shows a list of the question, their code (F1–F6 for Silent Film and S1–S5
for Strange Story) as well as some context for each question.

Question Code Context
Silent film 1 F1 Recognize that character intends to deceive another character
Silent film 2 F2 Attribute mistaken belief to character
Silent film 3 F3 Attribute ignorance/lack of knowledge to a character
Silent film 4 F4 Attribute emotion to character based on character’s previous

mistaken belief
Silent film 5 F5 Recognize character’s mistaken belief
Silent film 6 F6 Recognize that one character intends to deceive another char-

acter
Strange story “Brian” S1 Recognize character is attempting to deceive another character
Strange story “Peabody” S2 Recognize one character’s mistaken beliefs about another

character’s intentions
Strange story “Prisoner” S3 Recognize double bluff
Strange story “Simon” S4 Recognize awareness of deception
Strange story “Burglar” S5 Recognize character holds mistaken belief about another char-

acter’s beliefs

Table 3: Questions from the Strange Story Task and the Silent Film Task

Table 4 shows the performance of each system on the portion of the test set that corresponds to each
of the 11 questions. Table 4a shows the performance in terms of Accuracy, and Table 4b shows the
performance in terms of Macro-F1. To obtain the performance per question, we trained the system on
the full train set and we only evaluated on the portion corresponding to the particular question. We report
the average for the 10 runs in the 10-fold cross validation. For reference we also include the performance
on the full test set and the simple average of all 11 questions. The success of this methodology for
in-depth evaluation was demonstrated by Kovatchev et al. (2019).

Performance of the systems on the different questions varies both in terms of Accuracy and Macro-
F1. Furthermore, while on the full test set there is no difference between Accuracy and Macro-F1,
the Macro-F1 score is much lower than Accuracy when evaluating per question. Further analysis of
the data revealed that while the three classes have roughly the same frequency in the full corpus, their
distribution is not uniform across the different questions. In order to determine whether the variance of
the system performance was statistically significant, we carried out a Friedman-Nemenyi test (Friedman,
1940; Nemenyi, 1963; Demšar, 2006) as implemented by the Autorank package for Python (Herbold,
2020). We used the Accuracy scores to perform a statistical analysis of k = 11 different questions and
N = 80 paired samples (4 systems, 2 input formats, 10 runs per system). The Friedman test showed a
statistically significant difference between the median values of the questions at p <0.001.

Figure 1 shows the Critical Difference (CD) diagram of the post-hoc Nemenyi test. Each question is
plotted with its average rank. Questions that are not connected with a horizontal line have a statistically
significant difference between their median rank. From the figure it is evident that the there was a
significant difference between two groups of questions. Easy-to-score Questions: Silent Film questions



6223

(a) System Performance by Question (Accuracy)

System Name All Avg Silent Film Task Strange Story Task
F1 F2 F3 F4 F5 F6 S1 S2 S3 S4 S5

SVM (r-only) .69 .69 .65 .67 .73 .69 .78 .56 .78 .80 .61 .78 .54
BiLSTM (r-only) .81 .81 .81 .77 .86 .78 .84 .75 .84 .84 .80 .85 .79
Attention (r-only) .81 .81 .80 .78 .84 .80 .83 .76 .85 .85 .79 .85 .75
DistilBERT (r-only) .89 .89 .88 .86 .91 .86 .88 .84 .92 .92 .85 .92 .89
SVM (full) .71 .71 .71 .65 .70 .68 .72 .61 .81 .81 .63 .73 .74
BiLSTM (full) .83 .83 .80 .76 .87 .80 .87 .77 .85 .87 .82 .85 .83
Attention (full) .83 .83 .81 .76 .86 .81 .85 .77 .86 .89 .80 .86 .86
DistilBERT (full) .91 .91 .93 .88 .94 .89 .91 .89 .94 .94 .90 .93 .93

(b) System Performance by Question (F1)

System Name All Avg Silent Film Task Strange Story Task
F1 F2 F3 F4 F5 F6 S1 S2 S3 S4 S5

SVM (r-only) .69 .57 .40 .49 .57 .63 .71 .50 .51 .65 .54 .69 .51
BiLSTM (r-only) .81 .73 .66 .69 .78 .75 .79 .71 .65 .69 .77 .78 .75
Attention (r-only) .81 .72 .65 .69 .77 .77 .79 .72 .67 .68 .75 .77 .71
DistilBERT (r-only) .89 .83 .83 .80 .86 .84 .85 .80 .84 .75 .82 .87 .87
SVM (full) .71 .49 .34 .38 .47 .54 .51 .43 .37 .62 .55 .53 .68
BiLSTM (full) .83 .73 .59 .67 .81 .73 .83 .73 .62 .70 .78 .70 .80
Attention (full) .83 .73 .62 .66 .80 .74 .81 .73 .63 .73 .76 .74 .82
DistilBERT (full) .91 .87 .90 .82 .90 .86 .89 .87 .84 .80 .88 .88 .91

Table 4: Comparing the System Performance by Question

#3 and #5 and Strange Story questions ”Brian”, ”Peabody”, and ”Simon” were consistently easier for
the automated systems to score correctly. Hard-to-score Questions: Silent Film Questions #1, #2, #4,
and #6 and Strange Story questions ”Prisoner” and ”Burglar” were consistently more challenging for the
automated systems to score correctly.

Figure 1: Critical Difference Diagram of the Average Rank of Each Question

The difference between easy-to-score and hard-to-score questions can also be seen in Table 4. The
three hardest questions (SFQuestion 2 – F2, SFQuestion 6 – F6, SS Prisoner – S3) obtained consistently
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lower than average accuracy for all systems, ranging from .3 to .8 lower than All. The three easiest
questions (”Brian” (S1), ”Peabody” (S2), and ”Simon” (S4)) obtained consistently higher accuracy than
All, ranging from .2 to .4. Our annotators confirmed that the same questions were easier or more difficult
to score for human experts as well.

5.3 Performance by Age

The Standards for 2014 Educational and Psychological Testing require that we “report evidence of the
variety of score interpretations for relevant subgroups in the intended population”. In the current study,
the participants were grouped in terms of their age. Table 5 shows the performance of each system on
the portion of the test set that corresponds to participants of each age group. Unlike the performance
per question, in the performance per age we did not find significant differences between Accuracy and
F1, so we only report the performance measured in Accuracy. The Friedman test shows that there was
a statistically significant difference between the median values of accuracy across ages at p <0.001.
However, the statistical analysis indicated that the performance of the systems across ages was more
consistent than their performance across questions. The results indicate that the open-ended responses
from younger children were generally harder to score automatically6.

System All 7 8 9 10 11 12 13 14
SVM (r-only) .68 .66 .69 .68 .67 .69 .68 .69 .78
BiLSTM (r-only) .80 .75 .77 .80 .81 .81 .80 .81 .84
Attention (r-only) .81 .74 .78 .82 .81 .83 .80 .82 .81
DistilBERT (r-only) .88 .85 .86 .89 .88 .88 .88 .90 .93
SVM (full) .70 .71 .70 .71 .69 .72 .69 .71 .59
BiLSTM (full) .82 .83 .82 .82 .82 .84 .82 .82 .86
Attention (full) .83 .83 .80 .83 .83 .84 .82 .83 .91
DistilBERT (full) .91 .86 .88 .91 .91 .91 .89 .92 .94

Table 5: Comparing the System Performance by Age (Accuracy)

5.4 Qualitative Error Analysis

To understand the capabilities and limitations of the automated systems we preformed a manual analysis
of a portion of the incorrect predictions for two of the systems: the BiLSTM and the DistilBERT models,
trained on the “full” data. For each of the two models, we selected 20 incorrect predictions per question,
a total of 220 incorrect predictions per model.

Our trained annotators analyzed the open-ended response for each of the selected incorrect predictions.
The objective of the analysis was to determine the characteristics of the responses and to identify potential
systematic sources of errors. Table 6 shows the characteristics used in the analysis. Each characteristic
was scored in a binary “yes”/“no” manner to quantify the performance of the systems.

Table 7 shows the result of the expert analysis of the errors. We report the percentage of incorrectly
predicted responses that contain each characteristic. Since one incorrectly predicted response can have
multiple characteristics, the sum of all responses exceeds 100. We found that 14% of the incorrect pre-
dictions made by the BiLSTM model are “acceptable”, while for the DistilBERT model, the percentage
is 23. The majority of the errors are still considered unacceptable by our experts.

Both models have difficulty dealing with infrequent or unique responses (23% for BiLSTM and 46%
for DistilBERT), inappropriate mentalizing (20% for BiLSTM and 23% for DistilBERT), and similar
to (in)correct (14% for BiLSTM and 28% for DistilBERT). The lower performance on these types of
responses indicates that the systems are potentially overfitting on the more frequent responses and are
having some problems with the generalization.

6The full statistical analysis per age and the CD diagram per age groups are available at https://github.com/
venelink/mindreading-coling
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Code Characteristics
Acceptable The discrepancy between human and computer rating is reasonable. (e.g.:

answer could reasonably fall between 1 and 2 due to ambiguity)
Inappropriate Uses mental state language (e.g. thinks, knows, pretends) that goes beyond

the material or is inappropriate (e.g. in SS5 “The burglar doesn’t want to
get shot”).

Take Voice Writes what the character might say/think
Similar to (in)correct A correct answer which resembles an answer that is incorrect. Can also

apply to an incorrect answer that resembles a correct answer.
Spelling Errors Contains spelling errors in key words that affect the overall meaning.
Grammar Errors Contains grammatical errors or poor sentence construction that affect the

overall meaning of the answer.
Long Answer Answer is over 20 words long and there is relevant information after the

20-word cut-off point.
Multiple Answers Contains at least 2 distinct answers that would be assigned different codes

to one another if they appeared on their own.
Uncommon answer Contains content that does not often occur in answers to this question.
Unclear Error None of the other criteria can explain the error. This would be a straight-

forward answer for a human to code based on the current coding scheme.

Table 6: Instructions for Qualitative Evaluation

Spelling mistakes (25% for Bi-LSTM and 19% for DistilBERT) and Grammar mistakes (9% for BiL-
STM and 11% for DistilBERT) were also found to be a frequent source of error for both models. The
high frequency of mistakes is specific to the writing of younger children. In order to improve the auto-
matic scoring performance, we attempted to pre-process the corpus with existing spelling and grammar
correcting libraries. However we did not see improvement on the task. Furthermore when manually
evaluating the workings of the automatic spelling and grammar correcting tools we determined that the
quality was not satisfactory in this corpus.

The length of the responses did not affect the performance of the models, even though both models
used fixed length padding and truncating. However both models showed inconsistency when the partici-
pant included more than one response to the question (11% for the BiLSTM and 17% for DistilBERT).
In this case the annotators were trained to score the “best” of the multiple responses. In 12% of the
BiLSTM incorrect predictions and in 9% of the DistilBERT ones, the experts were not able to determine
any systematic source of error.

Characteristics BiLSTM DistilBERT
Acceptable 14 23
Inappropriate 20 23
Take Voice 0 4
Similar to (in)correct 14 28
Spelling mistakes 25 19
Grammar mistakes 9 11
Long Response 0 2
Multiple Responses 11 17
Unique Response 23 46
Unclear Error 12 9

Table 7: Expert Error Analysis. Frequency of Error Types (in Percentage)
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6 Discussion of the Results

In Section 2 we pointed out two main limitations of the manual scoring of tests for mindreading: 1) it
is labour-intensive and 2) even trained researchers may change the way they apply scoring rubrics over
time. The goal of our work was to to address both of these problems.

To the best of our knowledge, this is the first work that applies NLP techniques to the automatic scoring
of children’s open-ended responses to experimental tests of mindreading. We demonstrated that state-
of-the-art NLP systems can obtain high accuracy on the task. We also proposed a methodology for an
in-depth evaluation and error analysis. We showed that while the overall accuracy and macro-F1 are very
high, the performance varies significantly per question. The automated systems also faced problems
when the answers were more creative and unique. The performance of the systems also dropped due
to spelling and grammar errors. The in-depth evaluation and error analysis gives clear directions for
improvement before an automated solution can be implemented in practice.

This work, and in particular the expert error analysis also helped to re-evaluate and improve the origi-
nal tasks. During the qualitative analysis trained test raters developed suggestions on how to improve the
existing guidelines for human annotators. This will improve the consistency of the human annotation in
further studies7.

This paper emphasizes the advantages of inter-disciplinary work and shows the importance of incorpo-
rating in-domain experts (in our case developmental psychologists) when designing and implementing
a novel NLP solution. The collaboration between researchers from different fields provides different
perspectives on the problem. It benefits the formalization of the task and the evaluation of the systems.

7 Conclusions and Future Work

In this paper we presented the first NLP approach for the automated scoring of mindreading in mid-
dle childhood and early adolescence. An inter-disciplinary team of psychologists, computer scientists,
and linguists created MIND-CA - a corpus of 11,311 responses from 1,066 children aged from 7 to 14.
We trained and evaluated four different Machine Learning systems on the data and obtained promis-
ing results. We presented a novel methodology for evaluation and error analysis inspired by the inter-
disciplinary collaboration between psychologists and NLP researchers.

In future work we want to move towards designing a web application that can be used to gather the
responses from the children and score them automatically in an end-to-end manner. To ensure the quality
of an end-to-end solution and the reliability of the automated scoring, we will further test the capabilities
of the automated scoring systems and ensure that they can generalize well to novel data. We are in the
process of digitalizing and scoring the responses of 1,000 more 8- to 13-year-old children, gathered in
a different time span and from different schools than MIND-CA. This way we will double the existing
corpus size and will also be able to test the performance of the systems on further, unseen data.

We are also exploring the possibilities to use data augmentation on the current corpus. Data augmenta-
tion can be used to address the problem of imbalanced distribution of labels for some of the questions. In
the experimental setup we plan to incorporate more extra-linguistic data into the evaluation, for example
the gender of the participants and their responses to standardized language ability tests and psychopathol-
ogy.

Finally, the analysis of the performance of the systems showed that spelling and grammar mistakes
were a systematic source of error and the out-of-the-box correction systems were not well adapted to
deal with children’s open-ended text responses. We will examine the possibility of developing a spelling
correction system designed to work with participants in middle childhood and early adolescence.
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Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7:1–30,
December.

R.T. Devine and C. Hughes. 2013. Silent films and strange stories: theory of mind, gender, and social experiences
in middle childhood. Child Development, 82:989–1003.

R. T. Devine and C. Hughes. 2016. Measuring theory of mind across middle childhood: Reliability and validity
of the silent films and strange stories tasks. Journal of experimental child psychology, 149:23–40.

Rory T Devine, Naomi White, Rosie Ensor, and Claire Hughes. 2016. Theory of mind in middle child-
hood: Longitudinal associations with executive function and social competence. Developmental psychology,
52(5):758—771, May.

Iroise Dumontheil, Ian A. Apperly, and Sarah-Jayne Blakemore. 2010. Online usage of theory of mind continues
to develop in late adolescence. Developmental Science, 13(2):331–338.

Myroslava Dzikovska, Rodney Nielsen, Chris Brew, Claudia Leacock, Danilo Giampiccolo, Luisa Bentivogli,
Peter Clark, Ido Dagan, and Hoa Trang Dang. 2013. SemEval-2013 task 7: The joint student response analysis
and 8th recognizing textual entailment challenge. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation
(SemEval 2013), pages 263–274, Atlanta, Georgia, USA, June. Association for Computational Linguistics.

Elian Fink, Sander Begeer, Candida C. Peterson, Virginia Slaughter, and Marc de Rosnay. 2015. Friendlessness
and theory of mind: A prospective longitudinal study. British Journal of Developmental Psychology, 33(1):1–
17.

M. Friedman. 1940. A comparison of alternative tests of significance for the problem of m rankings. The Annals
of Mathematical Statistics, 11(1):86–92, March.
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