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Abstract

There is a large body of work on Biomedical Entity Recognition (Bio-NER) for English, but
there have only been a few attempts addressing NER for Chinese biomedical texts. Because of
the growing amount of Chinese biomedical discoveries being patented, and lack of NER models
for patent data, we train and evaluate NER models for the analysis of Chinese biomedical patent
data, based on BERT. By doing so, we show the value and potential of this domain-specific
NER task. For the evaluation of our methods we built our own Chinese biomedical patents
NER dataset, and our optimized model achieved an Fj score of 0.54+0.15. Further biomedical
analysis indicates that our solution can help detecting meaningful biomedical entities and novel
gene—gene interactions, with limited labeled data, training time and computing power.

1 Introduction

In the area of biomedical NLP, Named Entity Recognition (NER) is a widely discussed and studied topic.
The aim of the task is to identify biomedical entities such as genes, proteins, cell types, and diseases
in biomedical documents, to allow for knowledge discovery in this domain. Models for Biomedical
NER (Bio-NER) offer the opportunity to mine information and knowledge and thereby foster biomedical
and drug discovery research (Habibi et al., 2017). Several shared tasks addressing Bio-NER have been
organized. These attempts and tasks resulted in benchmark datasets for solving English Bio-NER tasks,
e.g. the GENIA corpus (Kim et al., 2003), JNLPBA (Kim et al., 2004), and BC2GM (Smith et al., 2008).

However, when turning our attention to Chinese bio-NER, only a few attempts have been made, and
these attempts either had limitations in text resource types and amount (Gu et al., 2008) or did not pre-
define biomedical named entity categories (Wang et al., 2019). Another limitation is that these attempts
mostly focus on clinical texts or biomedical scientific publications but not include other relevant text
resources, in particular biomedical patents. Many biomedical discoveries are patented in China, not only
because of the encouraging policy on patentability of genetic products, but also since the existence of the
speedily progressed and cheaper gene sequencing services (Du, 2018).

Patent texts are highly technical with long sentences (Verberne et al., 2010). Two additional challenges
of Chinese biomedical patents that we encountered are OCR errors and the heavy usage of code-mixing
expressions, mixing English and Chinese in one entity. This is mainly because the protein and gene
names are commonly written in English (or the English names are given after the Chinese ones), while
the disease names and other contents are written in Chinese. For this reason, it is not possible to directly
apply pre-trained NLP models to Chinese biomedical patents. Moreover, as mentioned before, because of
the lack of related studies, we not only lack pre-trained models which were trained on Chinese biomedical
text data, but also well-organized Chinese biomedical patents datasets.

The contributions of this paper are threefold. First, we release a hand-labeled dataset with 5,813
sentences and 2,267 unique named entities from 21 Chinese biomedical patents. Second, we obtain
promising results for the extraction of genes, proteins, and diseases with BERT models using our labeled
data in limited training time and with limited computing power. Third, we show that when we use our

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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NER model to extract entities from a large patent collection, we can potentially identify novel gene—gene
interactions. We release our data and code for use by others.!

In the following parts of this paper, we discuss previous attempts to solve Chinese Bio-NER tasks and
other related tasks in Section 2; our methods and implementation details are explained in Section 3; the
results of all experiments, along with the post analysis results, are described and discussed in Section 4;
in Section 5 we discuss challenges and limitations of our study, followed by conclusions in section 6.

2 Related Work

Given the abundance of work on English biomedical NER, we focus on Chinese NER in this section. A
commonly used state-of-art model for general-domain Chinese NER is the Chinese Lattice LSTM (Zhang
and Yang, 2018), which applied the Lattice-structured RNN framework and made some novel modifica-
tions to ensure that the original Lattice network can handle the segmentation-free Chinese NER task.

In the biomedical domain, the paper by Gu et al. (2008) is an early attempt to solve the Chinese
Bio-NER task for scientific literature. The authors designed several feature groups from a small labeled
dataset consisting of Chinese biomedical research abstracts, then applied a Conditional Random Fields
(CRF) model. Although they showed their best model obtained a 0.68+0.05 F} score among 50 runs,
since their dataset was small (481 sentences and 1062 entities in total), the train-test split may have
influenced the results. Another issue is that they split their train-test set by randomly selecting sentences
from their whole corpus, which might have led to overestimation of the quality of the model because
entities from the same document can then end up in both the train and test set, which may cause over-
fitting.

More recent work by Wang and Wu (2019) addresses open concept extraction from 4,931 biomedical
articles which contain 41,733 sentences and 97,373 entities in total. The NER part did not specify
different entity categories. Their NER method is based on dictionary matching and rules; the main
contribution of the paper is a classification model for relation extraction. The authors reported a 0.76
I score for their non-category-specific open concept NER and finally reached a 0.52 F} score for their
main relation extraction task.

Since the introduction of the BERT paradigm (Devlin et al., 2019) there have been attempts to solve
Chinese NER in different domains with BERT models.

There are three recent studies that used BERT models for Chinese biomedical NER, all three for
clinical data. Xue et al. (2019) address Chinese clinical NER and relation extraction using BERT. They
finetune the model on data from coronary arteriography reports in Shanghai Shuguang Hospital for five
entity types: negation, body part, degree, quantifier, and location. They obtain high precision and recall
scores with their model for these entity types (>0.95), thereby beating the Bi-LSTM baseline. Since the
entity types in this study are very different from the entities in our work, we cannot use this work as a
relevant comparison.

The papers by Dai et al. (2019) and Li et al. (2020) both use data from the CCKS competitions,
containing Chinese medical patient records. Six clinical entity types are defined in these data sets: dis-
eases and diagnosis, image inspection, laboratory inspection, operation, drug, and anatomic site. Dai
et al. (2019) compare multiple NER models and obtain the highest F-score (up to 75%) with a BERT-
BiLSTM-CRF model. The method by (Li et al., 2020), based on an optimized BERT model, outper-
formed all other methods in both the CCKS2017 and CCKS2018 clinical NER competitions, with aver-
age F-scores above 90%.

In this paper, we address a new biomedical text type for Chinese NER: patents. We use a pre-trained
Chinese BERT model, and compare different learning methods to finetune it to this highly specific do-
main and genre.

3 Methods

In this section we describe data collection and cleaning, data annotation, models and learning methods,
evaluation, and post-analysis.

'Our git repository can be accessed at: https://github.com/yukihuyt/Chinese_biomed_patents_NER
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3.1 Data Collection and Cleaning

We retrieved two sets of patents from Google Patents. The first set contains patents matching the query
“AZANDZ H” (“human AND gene”), from 1st January 2009 to Ist January 2019 with patent code
starting with ‘CN’. The second set contains patents matching the query “JLA% % ANDAE 4 4z 124>
(“breast cancer AND biomarker”), from 1st December 2012 to 1st January 2019 with patent code starting
with ‘CN’ as well. We call them HG and BC to refer to these two datasets in the remainder of the paper.
We added a patent code filter based on the International Patent Classification (IPC) system? to further
improve the relevance of the retrieved patents.> After this IPC code filtering, 2,659 patents and 53,007
patents were included in the BC and HG datasets, respectively.

As data cleaning we first removed blank lines and redundant whitespaces, then replaced whitespace
inside English and code-mixing parts with the hyphen symbol. These steps were motivated by the typical
Chinese language processing style, which is on the character level instead of the word level. The splitting
of sentences was then implemented by splitting on newlines.

3.2 Data annotation

After we obtained our cleaned unlabeled patents data, we built a small labeled dataset to be used for
training and evaluating the NER models. We randomly selected 21 patents from the total collection of
our two unlabeled datasets. Two annotators labeled gene, protein, and disease entities using IOB tagging
on the character level (for the Chinese, English and code-mixing parts).

The annotation guideline included the following instructions: First read the whole patent content to
understand the meaning of the terms. Then read each sentence separately to understand the contents and
contexts of the entities well. This is needed because the same term mention can refer to either the gene
or its corresponding protein, depending on the context. No nested or overlapping named entities were
allowed and the longest meaningful named entity should be annotated. In the case of a spelling or OCR
error, if an entity can be recognized by the annotator even with those errors, we still annotated the entity
without correcting it.

For each entity type, we set detailed rules on how to recognize and categorize them:

e The named entity should be annotated as protein in these cases: growth factor (e.g. cytokine and
other signal proteins); most enzymes, enzyme families, or one category of special enzymes (e.g.
DNA polymerase, acetyltransferase) except RNA enzymes (e.g. ribozyme); most antibiotics; pro-
tein family (e.g. histone, tubulin); protein expression of a specific gene; antibiotic drug conjugate
(e.g. ADC); peptide(s) or amino acid(s); part of a protein structure.

e The named entity should be annotated as gene in these cases: a protein coding gene; primer; nu-
cleotide(s), nucleotide analogs (e.g. adenine, 5-propanepyrimidine); ribozyme; gene probes, DNA
microarrays and other gene products; gene family (e.g. DNA damage repair genes); expression
vector: plasmid, specific ones constructed and named by the patent holder.

e The named entity should be annotated as disease in these cases: symptoms (e.g. headache, stom-
achache); disease names (e.g. B-cell lymphoma, breast cancer); a disease with some specific resis-
tance; early or advanced period of disease; tumor or cancer molecular subclasses (e.g. =¥ % /triple
negative breast cancer, B ¥ /% /gastric-like).

Five of the 21 patents were labelled by two annotators for the purpose of measuring the inter-rater
reliability.

Statistics of the resulting datasets are shown in Table 1. The annotation information of the labeled set
is shown in Table 2. The row names indicate whether the value in table shows the total number of items
or the unique count. The column names indicate each single category, while ‘all’ indicate all 3 types

https://www.wipo.int/classifications/ipc/en/

SWe kept patents with IPC code: A61, C07, C12N, C12Q, GOIN, G16B, G16C, G16H in dataset BC; and patents with the
following IPC codes: A61, C07, C12N, C12Q, C12Y, C12P, C12M, GO1N, G16B, G16C, G16H in dataset HG; any patent with
IPC code: AO1, A21, A23, B09, C02, C09, C10, C11, C05, HO1, HO4, Y02 were discarded from both datasets
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dataset name n.docs n._sents n_chars sents_per_patent chars_per_sent
BC (Unlabled) | 2,659 1.08M  161M 405 150
HG (Unlabled) | 53,007 21.75M  2.84B 410 130
Gold Standard 21 5,813  0.78M 277 134

Table 1: Statistics of our data sets. BC is the “breast cancer AND biomarker” data set and HG is the “human AND gene” data
set

Textual information

source | n.docs n_sents n_chars sents_per_patent chars_per_sent
From BC 12 3361 479837 280 143
From HG 9 2099 296832 233 141
Annotation statistics
source gene  protein disease all
From BC total 1203 2917 2534 6654
unique 199 695 698 1592
total 677 2096 202 2975
FromHG | ioue | 271 338 54 663
Total total 1888 5030 2739 9657
unique | 482 1053 732 2267

Table 2: Annotation statistics and sources of our labeled data set

of annotations. Since the Gold Standard dataset was derived by randomly selecting patents from both
BC and HG datasets, the composition of different patent source (from BC and HG datasets) in the Gold
Standard dataset was shown in Table 2.

3.3 Models and Learning methods

Our methods are based on pre-trained BERT models (see Section 4.2). We designed and implemented
three different learning methods to train our NER models using the labeled data (see also Figure 1):

e Supervised original: fine-tuning all weights (BERT model layers plus NER layer) using a relatively
small learning rate (5 * 10~°), with our labeled dataset;

o LM mixed fine-tuning: first tune the weights of the BERT language model layers with the unla-
beled dataset; then repeat the supervised original learning step;

o PartBERT+CREF fine-tuning: fine-tune the weights of part of the BERT model (last 4 layers) plus
an added CREF layer, trained with our labeled dataset.

We train our methods on existing infrastructures: the FlairNLP* package (Akbik et al., 2018), the
BERT pre-trained Chinese model in PyTorch® and the huggingface BERT implementation®. We used the
Bert-base-Chinese language model, which was trained on the whole Chinese Wikipedia (25M sentences)
in both simplified and traditional Chinese.” With this pre-trained model, we can continue fine-tuning
with our domain-specific data to make the language more suitable for our task.

For efficiency of the training process we create two smaller subsets out of our two large unlabeled
datasets to fine-tune the BERT model: ‘partBC’ and ‘partHG’. Both sets contain a train and test set to
train the language models. Detailed information of these 2 datasets are shown in Table 3.

‘nttps://github.com/flairNLP/flair
Shttps://github.com/Kyubyong/bert_ner
*https://github.com/huggingface/transformers
"nttps://github.com/google-research/bert/issues/155
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Original BER NER task
Language Model output layer

Supervised
original

Large
unlabeled ! .
Origin lw\ BERT NER task
LM mixed fine-runing Language Model output layer
\_’_l
Part of BERT CRF NERtask
(last 4 layers) layer output layer PartBERT+CRF fine-tuning

Figure 1: Overview of the three different learning methods that we compare.

dataset name | n_docs n_sents n_chars sents_per_patent chars_per_sent
partBC_train 100 41,016 6.13M 410 149
partBC_test 10 2,060 0.35M 206 172
partHG_train | 10,000 4.18M 0.54B 418 130
partHG _test 100 36,097 5.15M 361 143

Table 3: Statistics of the data sets used for fine-tuning the BERT language model.

3.4 Evaluation

Data Quality For most annotation tasks, Cohen’s Kappa is considered the standard metric to compute
inter-rater agreement. However, it has been shown that for NER tasks, Kappa does not seem to be the
best measure (Grouin et al., 2011). This is because Kappa needs the number of negative cases, which is
unknown for named entities. For that reason we calculated the mutual F} score of the 5 patents that were
annotated by both annotators. The mutual F3 score is computed as follows. Let A be the set of entities
labelled by annotator 1 and B the set of entities labelled by annotator 2. We can then define precision as

ANB ANB . . ..
p= |Q| | and recall as R = | ‘Jg‘ | (or vice versa) and F} as the harmonic mean of precision and recall:
_ PXR
F 1= 2 x PIR

Model Quality We make the train-test split on the document level, which means that one patent can
only appear in either the train or the test set and cannot appear in both. Our labeled set only contains
21 Chinese biomedical patents. Although it has more then 5.8k sentences and 2.2k unique named entity
appearance in total, it is still a relatively small dataset. We therefore used cross validation with the labeled
data set for evaluation of our models. We make five different splits of the labeled dataset; in each split
we use 18 patents as training set, 2 as test set and 1 as held-out development set in the case that we would
ned to do hyperparameter tuning.

We evaluate the NER models using precision, recall and F scores for each category of named entities
and we report Micro and Macro averages over the named entity categories. Afterwards, the average
and standard deviation among the 5 cross validation sets are calculated to monitor the stability of our
implemented models and learning methods.

3.5 Post-analysis of the large corpus

Based on the evaluation results, we select the best learning setting and train a model on the full collection
of our labeled dataset. The result is our final model. This model is then applied to large unlabeled datasets
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to extract biomedical entities from patent texts. We finally generated biomedical entity predictions from
all 2,659 patents in the BC dataset and 10,100 patents from the HG dataset.

In the BERT output it is possible that there are some meaningless named entities or the ‘IOB’ tags are
not generated in the correct order: a sequence of ‘I’ tags should always follow one ‘B’ tag and the type of
‘I’ tags cannot be mixed. The statistic results of the predictions generated on the whole BC dataset show
that among all 2.26M continuous non-‘O’ sequences, 5% (0.12M) are single characters, 5% (0.11M)
are sequences starting with tag ‘I’, 3% (58K) are sequences containing inconsistent category tags (for
example, the first tag is ‘B-protein’ and the second comes an ‘I-gene’), and 4% (98k) sequences contain
meaningless symbols in text regarding gene/protein/disease entities (such as ‘?°, “”* and the Chinese full
stop mark ‘- ’). Thus, before we start some biomedical analysis, some post-processing cleaning steps
are needed. We apply the following post-processing steps:

1. If one non-‘O’ sequence only contains one single character, discard it since we assume a single
character named entity of either gene, protein or disease category will be meaningless;®

2. Find any non-‘O’ sequence that starts with a B followed by only I-tags, and the sequence text should
not contain invalid symbols;

3. After step 2, if the tags belongs to the same category (gene, protein or disease), store it; else, only
store the first part with ‘BI..." tags that do belong to the same category; discard other parts.

With these cleaned named entities, we first generate basic statistics of all predictions, then we build
the gene—gene connection network based on co-occurrences. We assume that gene entities that fre-
quently co-occur are semantically connected. We use a context window of two sentences to determine
co-occurrence. The node weights and edge weights represent the number of patent documents which
mention that node or edge. To get better visualization performance we set a threshold on edge weights;
any edge with a weight smaller than the threshold will not be included in the final network that is visu-
alized. The edge weight threshold will be defined in Section 4 when we describe and explain the post
analysis results.

4 Experiments and Results

4.1 Data quality

4 For the inter-rater agreement, we obtained a 0.95 average F} for the five patents that were labelled by
both annotators, and 0.98, 0.91 and 0.97 F scores for gene, protein and disease type entities, respectively.
This indicates that the annotations are sufficiently reliable.

4.2 Model quality

We ran our training experiments with the three learning methods. For the final NER layer, each model
was trained for 40 epochs on the train set, then evaluated on the test sets as described in Section 3.4.

The results are in Table 4. Here we show the average Fj score and standard deviation of each model
for the five cross validation test sets. The row names ‘Supervised Original’, ‘BERT LM mixed’, and
‘PartBERT+CRF’ represent our three learning methods described in Section 3.3.

Table 4 shows that the BERT LM mixed model which was trained on the partHG dataset for only 1
epoch obtained the best results in all categories. It is suggested in the original BERT paper (Devlin et al.,
2019) that more training epochs can lead to better performance. Our results do not confirm that. We do
see a large standard deviation in the quality of the models for the different test folds, indicating that the
model stability is relatively low. More labelled training data could be needed to prevent this.

Another point is that these categories clearly result in lower scores than the clinical categories ad-
dressed in related work (Section 2). However, we do see all models achieve higher performance on
recognizing ‘disease’ entities than the other categories. This was probably mainly because most disease
names in Chinese biomedical patents dataset were written in Chinese without any code-mixing, and the

8 Almost all Chinese disease names end in a generic character, e.g. “#”(disease), “J% “(cancer), “ % ”(inflammation) or words

“@& %~ (infection), “%% % ”(stones), “%% &4 "(syndrome) and etc. This means that any Chinese disease name must contain more
than one character. For example, “fn & IR ”(hemophilia), <pr 38 ”(esophageal cancer), “HRGELER ”(salivary duct stones).
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average F score among 5 datasets | gene protein disease macro avg micro avg
Supervised Original 0.31+£0.21 0.34+0.11 0.60+0.09 | 0.42+0.09 0.49£0.16
BERT LM mixed (partBC_lepoch) |0.21£0.18 0.334+0.23 0.67+£0.16 | 0.40+0.06 0.51£0.15
BERT LM mixed (partBC_30epochs) | 0.26+0.19 0.36+0.24 0.67+0.12 | 0.43+0.06 0.52+0.15
BERT LM mixed (partHG_lepoch) |0.27£0.21 0.33£+0.22 0.70+0.12 | 0.43+-0.06 0.54+0.15
PartBERT+CRF 0.21£0.08 0.25+0.20 0.67£0.12]0.38£0.03 0.47+0.11

Table 4: NER experiments results (averaged over categories, excluding the ‘O’ labels). The ‘partBC’ and ‘partHG’ indicates
which unlabeled dataset the BERT language model was trained on, while the ‘lepoch’ and ‘30epochs’ denotes the number of
epochs the language model was trained for. The best results of each category has been marked with boldface in the table.

gene protein disease all
total 410,523 933,106 548,871 1,892,500
unique | 70,026 129,791 45,047 244,864
HER2 # 5%, FE LR (Monoclonal antibodies) FUM% 7% (Breast cancer) E W%
VEGFR2 F Bt 2B (Cysteine) M % (Lung cancer) T J&
EGFR R B B (Antibody fragment) AT 7| B J% (Prostate cancer) | A7 5| Ik /&
VEGFA EGFR Y9 £ % (Ovarian cancer) | ¥ L&A
topl0 | KRAS N 4%, # 7. (Bevacizumab) Ji& I% 9% (Pancreatic cancer) | 97 £ 5%
CDR3 A AL (Bispecific antibody) H % (Gastric cancer) )iy
c-MAF# B (c-MAF gene) | HER2 K #% (Liver cancer) B
PLGF %44 7T % R (Light chain variable region) | £ A% (Colon cancer) F Rt AR
CDR2 # 4% 7 & R (Heavy chain variable region) | # Bt % (Bladder Cancer) | A%
FGFR3 VEGF & f 9% (leukemia) L
Table 5: Statistics on the named entities extracted by our model from the large BC data set, with the top-10 most frequently

occurring entities for each category.

original pre-trained BERT model we applied was a Chinese language model trained on the general do-
main Wikipedia dataset. It seems reasonable that our trained model can solve recognizing pure Chinese
named entities better than code-mixing cases.

For example, our model annotated the string ‘£ — 1 &) 2 T’ (‘any item containing T” in English)
as a protein (false positive). The possible reason is that this string has a similar structure to a true protein
entity, such as ’ro-i9 % 5. £ 4u&" (‘The monoclonal antibodies of ro-i’ in English), which contains
English character(s) in the beginning or end, and the rest parts are all Chinese characters. Besides, some
non-recognized entities (false negatives) show that our model seems to have difficulties dealing with long
expressions, which is common in Chinese biomedical patent texts and even in protein and gene names.
For example, our model failed to detect the protein entity from the string ‘E6 5 E7# & &°, 4t #{plgR &
B 4R, and K4k A8 I BR 4h B A% 3£ 88 2 S (‘E6 and E7 oncoprotein’, ‘Antibodies against plgR
protein’, and ‘Long-chain fatty acid coenzyme A ligase subunit’ in English). The phenomenon is prob-
ably also because the model ‘got confused’ about the code-mixing expressions in Chinese biomedical
patent texts. It is hard for the model to distinguish which code-mixing part indicates a protein or gene
entity, and which part is just a common context, especially in a long sentence or expression.

4.3 Biomedical analysis of the large corpus

Most frequent entities in the data. We show the statistics of named entities extracted the large BC
dataset in Table 5 (predictions for HG gave similar results but not shown here because of limited space).

The table indicates that, although we obtained most predictions for protein entities, the top 10 common
protein mentions are actually the least meaningful compared to the other entity types. It is interesting
that with these limited training data and far from perfect NER classification performance, the detected
gene and disease entities are highly meaningful and the most common ones also seem very reasonable.
Besides, we can notice that our model can successfully recognize code-mixing entities, such as the c-
MAF# [ (c-MAF gene) in top 10 common gene mentions shown in Table 5. This indicates that our
model and solution at least partly solved the code-mixing problem of Chinese biomedical patents.
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Figure 2: Part of the gene—gene connection network for the HG dataset. The colors indicate gene clusters.
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Figure 3: Comparison of the BRCA1 gene network extracted from our data to the network based on an existing database. (a)
is the BRCA1 gene network generated by predictions of our BC dataset, yellow colored nodes are connected with BRCA1 with
top 10 edge weights; (b) is the BRCA1 gene network generated from the STRING database (Szklarczyk et al., 2016), yellow
colored nodes are the top 10 common neighbours of BRCA1 in STRING. Nodes enclosed in red circles are the matching nodes
between the two networks.

Relations between entities. We calculated and generated the gene—gene connection network from co-
occurrences of gene entity predictions on both datasets. In Figure 2 part of the gene network for the
HG dataset is shown, with an edge weight threshold of 2. This figure shows 3 different gene clusters
found by our method, which are meaningful and reasonable in the sense that all genes in the same cluster
indeed have real biological interactions or close relations (e.g. from the same gene family). There are
also a lot other similar clusters in both whole version networks, which indicates that our predictions and
co-occurrence network mining method can indeed find relatively reliable and meaningful connections
among genes.

We also calculated a small cluster network only focusing on interactions with the specific gene
‘BRCAL1’ in the BC dataset and its all first-degree neighbours. We compare the resulting network with
the STRING database (Szklarczyk et al., 2016).° We calculated the ‘BRCAI1’ gene cluster from BC
dataset since ‘BRCA1’ is a breast cancer related biomarker and BC dataset is also a breast cancer related
patents dataset. The visualization of our predicted BRCA1 network (edge weight threshold: 3), plus a
BRCAI1 network derived from STRING database with text mining edge sources (top 30 common first
degree neighbours), are shown in Figure 3a and 3b.

As shown in the figure, the nodes connected with BRCA1 with top 10 edge weights in our predicted
network match 4 genes (nodes) of the top 10 common neighbours of BRCAT1 in the STRING network,

‘https://string-db.org/
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and 6 nodes in our predicted network match nodes in the STRING BRCA1 network. Our predictions
contain novel gene nodes and edges compared to the relations included in STRING. Since we already
only retrieved the edges with text mining sources from the STRING database, this indicates that the novel
nodes and edges appeared in our predicted network are potentially new discoveries or some discoveries
patented in China but not in Europe.!® However, better performed NER classifiers and more network
comparisons are still needed to prove these assumptions.

5 Discussion

If we compare our quantitative results to the results reported by Li et al. (2020) (see Section 2), it appears
that NER in patents is a more difficult task than NER in clinical data. We have identified a number of
directions for future work that can be done for further improvement:

First is that we may need more pre-processing steps focusing on the specialty of Chinese biomedical
text. A vital problem of processing any Chinese text is that, if the source was PDF files or text converted
by PDF files using optical character recognition (OCR), then, because of the large variety of Chinese
characters and their complex shapes, the OCRed text will have relatively low quality compared with
OCRed English text. In the general domain, there are several well developed tools that can detect and
correct possible OCR errors automatically. But for domain-specific text, popular existing tools based on
simple rules can not handle OCR errors well, especially if there is complex and difficult terminology use
(D’hondt et al., 2016; Thompson et al., 2015). Facing this problem, it might be necessary to build an
OCR correction tool adapted for this domain and genre specifically (Zhang et al., 2019).

Another challenge of our task is that, similar to other Chinese biomedical text, Chinese biomedical
patents will have code-mixing or code-switching fragments, mainly because the protein and gene names
are commonly written in English (or the English names been noted after the Chinese one), while the
disease names and other contents will be written in Chinese. Moreover, even just inside each single
named entity, it is possible that the code-mixed expression still appears. There have been some attempts
trying to solve Chinese-English code-mixing problems in the general domain, and more commonly with
speech data since this code-mixing usage seems more possible to happen in non-official situations, for
example casual conversations or social media posts (Winata et al., 2018; Shen et al., 2011). Thus, it will
be interesting to try some code-mixing language model from the general domain to check whether it can
improve current biomedical NER performance.

In the final part of our study, we did some biological post analysis in order to mine some meaningful
information from our generated predictions. There are other interesting topics possible in mining mean-
ingful biological information from text mining resources, which we can try in the future. Our gene—gene
connection network is based on co-occurrence; it would be interesting to follow-up with more advanced
relation extraction methods to discover connections between entities.

6 Conclusions

In this study, we addressed Chinese biomedical NER for patents, which is a highly specific genre with
English-Chinese code-mixing and a complex text writing style. We developed our own Chinese Biomedi-
cal patents dataset, including a humanly labeled dataset which contains 5,813 sentences and 2,267 unique
named entities from 21 patent documents, and two large unlabeled datasets which contain 2,659 and
53,007 patent documents respectively.

After we implemented three different BERT models and learning methods, we trained and evaluated
them on our evaluation sets. The results showed that the BERT LM mixed model, which was trained on
a part of the human gene (HG) dataset containing 10,000 patents in the train set and 100 in the test set for
only 1 epoch, obtained the optimal results over all entity categories. But there were only small differences
between the models and training methods. The best model obtained a 0.54+0.15 micro average F7 score
among all entity types (among all evaluation sets). Although we consider these results to be reasonable,

!0This is because STRING is part of ELIXIR Core Data Resources, which are a set of European data resources: https:
//elixir—europe.org/platforms/data/core-data-resources
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one weakness is that the standard deviation between the different test folds is large. A larger training
data set might be needed to make the model more stable.

We finally generated predictions with the trained best model (trained on the whole labeled dataset) on
the large unlabeled datasets and then did some further biomedical analyses. These analyses indicate that
our model can detect meaningful biomedical entities and find some novel gene—gene interactions, just
with limited labeled data, training time and computing power.
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