
Proceedings of the 28th International Conference on Computational Linguistics, pages 6126–6138
Barcelona, Spain (Online), December 8-13, 2020

6126

How coherent are neural models of coherence?

Leila Pishdad Federico Fancellu Ran Zhang Afsaneh Fazly
Samsung AI Centre Toronto (SAIC Toronto)

{leila.p, federico.f, ran.zhang, a.fazly}@samsung.com

Abstract

Despite the recent advances in coherence modelling, most such models including state-of-the-art
neural ones, are evaluated on either contrived proxy tasks such as the standard order discrimination
benchmark, or tasks that require special expert annotation. Moreover, most evaluations are
conducted on small newswire corpora. To address these shortcomings, in this paper we propose
four generic evaluation tasks that draw on different aspects of coherence at both the lexical and
document levels, and can be applied to any corpora. In designing these tasks, we aim at capturing
coherence-specific properties, such as the correct use of discourse connectives, lexical cohesion,
as well as the overall temporal and causal consistency among events and participants in a story.
Importantly, our proposed tasks either rely on automatically-generated data, or data annotated
for other purposes, hence alleviating the need for annotation specifically targeted to the task of
coherence modelling. We perform experiments with several existing state-of-the-art neural models
of coherence on these tasks, across large corpora from different domains, including newswire,
dialogue, as well as narrative and instructional text. Our findings point to a strong need for
revisiting the common practices in the development and evaluation of coherence models.

1 Introduction

A variety of research has focused on modelling textual coherence, with the goal of distinguishing coherent
from incoherent documents. This distinction has important repercussions for a variety of downstream tasks,
including automatic essay scoring, document summarization, and natural language generation (Jernite et
al., 2017; Li and Jurafsky, 2017; Wu and Hu, 2018). Given the importance of the task, there is a long line
of approaches proposed for modelling coherence.

Most earlier models leverage linguistic features to discriminate between coherent and incoherent
documents: The classic work of Barzilay and Lapata (2008), and several follow-up studies (Elsner and
Charniak, 2011; Guinaudeau and Strube, 2013; Zhang et al., 2015) model coherence by using entity
transitions — information about how semantic roles change across sentences. Lin et al. (2011) and Feng
et al. (2014) rely on discourse relation transitions, whereas Louis and Nenkova (2012) focus on patterns
of syntactic transition extracted from a constituency tree. Alternatively, other models have drawn on topic
transitions across sentences in a document to assess its coherence (Morris and Hirst, 1991; Somasundaran
et al., 2014; Mesgar and Strube, 2016).

Recent models on the other hand, rely on neural architectures with little to no feature engineering
required. Nguyen and Joty (2017) and Mohiuddin et al. (2018) propose neural variants of the entity
transition model of Barzilay and Lapata (2008), while others devise approaches to learning distributed
representations of sentences/documents that also encode coherence (Li and Hovy, 2014; Jernite et al.,
2017; Li and Jurafsky, 2017; Logeswaran et al., 2018). These specialized encoders often claim to combine
various aspects of coherence into a unified framework (Mesgar and Strube, 2018; Mim et al., 2019; Moon
et al., 2019). However, despite the recent advances in coherence modeling, most approaches are still
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evaluated using a benchmark known as the order discrimination task, where the goal is to discriminate
between an original coherent document and its variants in which sentences are randomly shuffled.

While this method allows to train and evaluate models of coherence without the need for expensive
human annotations, an important question left unanswered is what aspects of coherence this evaluation
captures. High performance on such a proxy task does not necessarily mean that a model is capable of
identifying naturally-incoherent documents, as noted by many researchers, and empirically demonstrated
in a recent study by Lai and Tetreault (2018). Despite this important limitation, a majority of coherence
models focus on optimizing performance on the order discrimination task, and mainly on news corpora
(such as the Wall Street Journal). Although such standardization of task and data makes comparison
across models easy, it also undesirably encourages the community to gradually move away from the real
goal of modelling coherence, and towards optimizing performance on the specific test itself.

To address the above concerns, we propose four new tasks for evaluating different aspects of coherence,
including appropriate use of connectives, consistency in topics, as well as overall temporal and causal
cohesion among events and participants. We perform extensive evaluation of several existing state-of-the-
art (SOTA) models on these tasks, across a variety of corpora from different domains, including news,
dialogue, as well as narrative and instructional text. Importantly, our proposed evaluation tasks do not
require specialized human annotations, and instead levarage automatic methods or pre-existing annotated
corpora. Similar to the standard order discrimination task, our proposed tasks also aim at distinguishing
an original coherent document from an incoherent variant generated by manipulating certain elements of
the original document. Our results show a complex landscape of model performances that vary across
tasks and corpora.

2 Background

Models of coherence can be divided into two main general approaches, with implications on how these
models are evaluated. One group is concerned with directly measuring human ratings of coherence and/or
text quality, with applications in language learning and automatic essay scoring (Pitler and Nenkova, 2008;
Somasundaran et al., 2014; Clercq and Hoste, 2016; Mesgar and Strube, 2016; Mesgar and Strube, 2018;
Lai and Tetreault, 2018; Mim et al., 2019). A second group of studies focuses on modeling coherence for
the purpose of learning better representations that can improve downstream natural language processing
applications, such as summarization and generation (Barzilay and Lapata, 2008; Elsner and Charniak,
2011; Lin et al., 2011; Louis and Nenkova, 2012; Guinaudeau and Strube, 2013; Feng et al., 2014; Li and
Hovy, 2014; Zhang et al., 2015; Li and Jurafsky, 2017; Nguyen and Joty, 2017; Jernite et al., 2017; Wu
and Hu, 2018; Mohiuddin et al., 2018; Logeswaran et al., 2018; Moon et al., 2019). The former group
evaluates models by examining their correlation with human ratings of coherence and readability, whereas
the latter develops proxies of coherence, such as the sentence order discrimination task. This second
group is the most relevant to our study, and as such we further elaborate on several proxy tasks that have
been commonly used for evaluating and comparing models of coherence.

By far the most common evaluation technique is the order discrimination task, where a coherence model
is required to distinguish between an original document and a set of incoherent variants automatically
generated by randomly shuffling the sentences in the original text. Earlier studies simply assumed that
a shuffled variant of a document is less coherent than the original, an assumption later verified by Lin
et al. (2011). This task was initially proposed by Barzilay and Lapata (2008), and has since become a
standard benchmark for developing and evaluating coherence models. However, as noted by Barzilay
and Lapata (2008), “the synthetic data used in the [order discrimination] task only partially approximates
coherence violations that human readers encounter”. Others have also noted that the order discrimination
may be much easier than the actual task of coherence rating, hence proposing improved variants of this
task. For example, Elsner and Charniak (2011) suggest the insertion task, which evaluates a coherence
model based on how well it can predict the original position of each sentence within a document. Moon
et al. (2019) evaluate their model on a more challenging local discrimination task, where the random
shuffling is performed locally (e.g., within a 3-sentence window) to generate incoherent variants of an
original document. Jernite et al. (2017) propose next sentence prediction that aims to predict which of the
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next 5 sentences in a document is the correct continuation given a history/context — a task they use as a
discourse-based objective to learn text representations that also encode coherence.

Recognizing the limitations of the order discrimination task, many evaluate their models on additional
tasks that aim at rating the overall quality of text, including summary coherence rating, readability
assessment, and essay scoring (Barzilay and Lapata, 2008; Guinaudeau and Strube, 2013; Feng et al.,
2014; Li and Hovy, 2014; Zhang et al., 2015; Nguyen and Joty, 2017). In the summary coherence rating
task, the goal is to rank a human-generated document summary higher than a machine-generated summary
of an original document, whereas for readability assessment a model must discriminate between an
original difficult-to-read document and its easy-to-read simplified variant. Although such evaluation tasks
complement the order discrimination task and its variants, they still lack full interpretability since the
overall quality and/or readability of a document depends on many factors of which coherence is one. Lai
and Tetreault (2018) address this limitation by compiling a new annotated dataset to evaluate coherence
“in the wild”. Their dataset contains “real-world” user-generated text, such as emails and online reviews,
each annotated by experts to reflect its level of coherence. We take a significant step further from the
above work and propose four new evaluation tasks that each capture a different aspect of coherence,
without requiring coherence-specific annotations.

3 Our proposed tasks

We propose four tasks that capture various aspects of coherence, by manipulating a text at the local lexical
and global document levels. At the lexical level, we focus on the role of discourse connectives (connective
substitution), and overall lexical cohesion (sentence cloze). At the document level, we assess whether
coherence models can detect a sudden shift in topic (topic switching), and whether they can predict the
correct last sentence of a document to create a coherent story (story cloze).

3.1 Connective substitution
Discourse connectives are linguistic expressions (words or phrases) that signal semantic relations, such as
condition or result, between two text units; and are known to significantly contribute to text coherence
and readability (Halliday and Hasan, 1976). Our goal is to automatically generate incoherent variants
of a document (negative samples) via manipulating the connectives. We simulate incoherence in the use
of connectives by replacing them with other connectives that are a good fit within the sentence context,
but carry a different discourse relation (across sentences) then the original ones. For instance in (1),
the connective ‘at the same time’ which signals that two events happen concurrently is substituted by
‘thereafter’, which instead means that one event follows another.

(1) a. At the same time, six ANC colleagues, [...] were reunited with their families
b. Thereafter, six ANC colleagues, [...] were reunited with their families

Our task requires that we know which discourse connectives to target, and what meaning they convey.
We thus use the Penn Discourse Treebank (PDTB; Prasad et al. (2008)),1 in which each connective is
tagged with a main and a secondary semantic category. We propose four strategies for generating negative
samples, based on the cross-combination of the following conditions:

• In the different condition, we ensure that the semantic categories of the original and the substituted
connectives are different. In the same condition, the two come from the same category, but a different
subcategory (to allow for some degree of discourse meaning shift).

• In the full condition, we modify all sentences in a document that contain a connective, replacing one
connective at random if a sentence contains more than one. In the half condition, we replace 50% of
the sentences at random.

Given an original sentence containing a connective, we need to ensure that the replacement, i.e., the
substitute connective, results in a natural English sentence. For this purpose, we use BERT (Devlin

1https://www.seas.upenn.edu/˜pdtb/
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et al., 2018).2 Specifically, we mask the connective in the original sentence, and select our candidate
replacements from the top-20 predictions output by BERT.3 In the absence of human judgement, this
procedure is a proxy to ensure that individual sentences in the new document are syntactically and
semantically valid, while the overall coherence of the document has changed due to modifying the
semantics of the discourse relations conveyed through connectives.

3.2 Sentence cloze
Our sentence cloze task is inspired by language proficiency tests, such as the cloze test, and the multiple-
choice reading comprehension tests for language learners. Variants of the cloze task (Taylor, 1953; Deyes,
1984; Chambers and Jurafsky, 2008) assess language proficiency in a system (or human) by removing a
random word from a sentence, and asking the system/human to fill in the blank, e.g., Today, I went to the
... to send a letter. These tests can evaluate syntactic, semantic, or discourse knowledge, depending on the
type of the word that is removed. Inspired by the approach of Susanti et al. (2018), we generate incoherent
variants of a document by replacing a randomly-selected word (noun or verb) in every sentence in the
original text with an automatically-generated distractor. The distractors are chosen such that they fit in
the sentence, but have a different meaning, e.g., we may replace sold for bought. Replacing a verb/noun
in each sentence of a document is expected to change the overall discourse structure of the document, by
changing the temporal and/or causal relations among the events and entities. To generate distractors, we
first sample candidates amongst antonyms, hypernyms and hyponyms of the original word using WordNet,
to ensure that the meaning of the distractor is semantically related to the original word. We then select
the top 5 candidates by ranking the sentences with the distractors using the GPT-2 model (Radford et al.,
2019).4 We expect this process to generate less coherent documents, by lowering the lexical cohesion in
the original documents, which is defined as the overall connectedness arising from semantic relationships
between words across sentences (Halliday and Hasan, 1976; Morris and Hirst, 1991).

Similar to the connective substitution task, we experiment with two different conditions: a) The full
substitution condition, where we substitute one noun/verb for every sentence in a document, and b) The
half condition where we substitute one word in only 50% of the sentences chosen at random.

3.3 Topic switching
A major issue with the standard order discrimination task is that the automatically-generated incoherent
documents (with random sentence shuffling) would have very low readability because they lack any topic
structure. We would like to test coherence models on their ability to detect a shift in topics, as opposed
to a complete loss of structure. Thus, we aim to generate variants of an original document that preserve
some of the topic structure, but introduce a shift in topics half-way through the document. To achieve this
goal, we glue together one half of an original document with a second half from another document. We
propose two variants of the topic switching:

• The controlled mixing approach that ensures little overlap between the topics of the two documents
to be mixed, based on topics automatically learned using the Latent Dirichlet Allocation (LDA)
method of Blei et al. (2003).5

• The random mixing approach randomly mixes two documents, without explicitly controlling for
degree of topic overlap between the documents. In order for the models not to be biased by the order
of the halves, we randomly select if it is the first or the second half to be substituted.

3.4 Story cloze
Story cloze is a task originally proposed by Mostafazadeh et al. (2016) for story understanding and
generation, with the goal of capturing temporal and causal relations between events as a central component

2Available through the HuggingFace Transformers library (Wolf et al., 2019) at https://huggingface.co/
3The average rank of the candidate replacement is 5.53.
4Similar to BERT, this is also available through the HuggingFace Transformers library.
5In order to obtain meaningful topics and to get rid of noisy high frequency words, we only consider the top n% vocabulary

ranked using TF-IDF, where n is determined empirically for each corpus.
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of coherence. Importantly, Mostafazadeh et al. (2016) also create a collection of non-fictional short stories,
noting that the key property in the collection of these stories has been that “the story should read like a
coherent story”. We propose to use two variants of the story cloze test for the evaluation of coherence
models. In the original story cloze test, each story is comprised of a short context (one or a few sentences)
followed by two or more possible endings. A model is asked to choose between the correct ending that
presents a coherent continuation of the context, and incorrect endings (or distractors) that are relevant in
terms of topic, action and participants involved but would lead to an incoherent story. See example (2)
where b) is a plausible story ending for a), but c) contradicts it, although the participants are the same.

(2) a. Karen was assigned a roommate her first year of college. Her roommate asked her to go to a
nearby city for a concert. Karen agreed happily. The show was absolutely exhilarating.

b. Karen became good friends with her roommate.
c. Karen hated her roommate.

4 Selected coherence models

We select four existing neural coherence models to carry out evaluations on, based on two criteria:
performance-wise, they were shown to yield good performance on the order discrimination task; model-
wise, we wanted models that differ in their underlying architecture to assess whether this has an impact
on the different coherence tasks. Specifically, we focus on models that build upon and are extensions of
raw text encoders; this choice is mainly dictated by the nature of some of our tasks where we require a
model to make a local choice (at the word or sentence level) depending on the surrounding context. We
do not consider models that are based on entity grids since they require an added level of abstraction
(i.e., grammatical roles extracted from constituency trees), and encode context as a simple chain of
noun-specific grammatical roles. We briefly describe the four models next.

Sentence averaging (SentAvg). SentAvg is a simple model proposed by Lai and Tetreault (2018) that
learns a document representation by averaging over sentence embeddings, which are in turn learned
using a single-layer LSTM (Hochreiter and Schmidhuber, 1997) over pre-trained GloVe (Pennington et
al., 2014) word embeddings. The document-level embedding vectors are then passed through a linear
transformation and a softmax layer to predict each document’s coherence level.

Paragraph sequence (ParSeq). SentAvg is a simple model that ignores structure of documents. To
address this limitation, Lai and Tetreault (2018) proposed ParSeq that takes into account paragraph
structure within a document, as well as the order of sentences in each paragraph. ParSeq extends SentAvg
to include three stacked LSTMs: a sentence LSTM layer first learns sentence embeddings from input
GloVe word embeddings; a paragraph LSTM layer then takes these sentence embeddings and outputs a
paragraph vector; and finally, a document LSTM layer takes these paragraph embeddings and learns a
document-level vector. Similar to SentAvg, a linear transformation and a softmax layer are then applied to
predict the coherence of a document.

Neural local coherence model (CohLSTM). Similar to SentAvg and ParSeq, the CohLSTM model
of Mesgar and Strube (2018) learns sentence embeddings using a layer of LSTM over pre-trained word
embeddings. However, CohLSTM captures the salient semantic information that connects two consecutive
sentences by taking the average of their most similar LSTM hidden states, where similarity is captured by
the dot-product of the corresponding vectors. These average vectors are then passed through a function
that takes the pair-wise similarity scores of consecutive vectors (representing consecutive sentence pairs)
normalized by the input length. Through the application of convolution on these vectors, Mesgar and
Strube (2018) extract and represent patterns of semantic (topic) changes in a document, which are then
used to calculate an overall coherence score.

Unified neural coherence model (UNC). The UNC model of Moon et al. (2019) aims to capture
both local and global aspects of coherence, where the former refers to the connection between adjacent
sentences, and the latter deals with coherence at the document level. Their model uses a Siamese
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VIZSIS ROCSTORIES SELFDIALOGUE FISHER HELLASWAG PDTB

training 40154 52665 16757 4351 14738 1743
validation 4989 1571 3592 930 1600 374
test 5054 1571 3594 934 1643 374

Table 1: Number of documents in the training, validation, and test portions of our six corpora.

architecture composed of two components: First component is a biLSTM sentence encoder that uses Elmo
(Peters et al., 2018) embeddings as input; pairs of adjacent sentence vectors are then passed through a
bilinear layer to obtain a combined vector representation of these. Second component is a lightweight
CNN with average pooling (Wu et al., 2019) that takes as input the sentence embeddings generated by
the sentence encoder, and outputs a vector summarizing the entire document. These two vectors are then
concatenated and passed through a linear layer to output a local coherence score. The global coherence
score for a document is calculated by summing up the local scores.

5 Experimental setup

5.1 Corpora
We carry out extensive evaluation on corpora from a number of different domains, namely:

Narration: VISUAL STORYTELLING (VIZSIS) (Huang et al., 2016) and ROCSTORIES (Mostafazadeh
et al., 2016) both contain crowdsourced short stories containing ∼5 sentences, where participants are
prompted with a visual/verbal cue, and are asked to generate a coherent story containing the relevant
entities and events.

Dialogue: FISHER (Cieri et al., 2004) contains phone conversations between two speakers whereas
SELFDIALOGUE (Fainberg et al., 2018) contains fictional conversations imagined by a speaker. We
choose these two corpora given that they prompt the speakers for conversations around well-defined topics,
ranging from everyday subjects, such as food, family, and friends, to more specific issues/entities, such as
airport security, Lady Gaga, etc.

Instructional text: HELLASWAG (Zellers et al., 2019) is a collection of instructional short texts from
WikiHow, combined with short temporal descriptions of everyday human activities from ActivityNet
Captions (Krishna et al., 2017). The dataset was originally compiled for the task of common-sense
reasoning, and contains one correct ending (last sentence) and three automatically-generated incorrect
endings (distractors) per document.

News: We also conduct experiments on the Penn Discourse Treebank (PDTB) portion (Prasad et al.,
2008) of the Wall Street Journal corpus, as commonly used for the evaluation of coherence models.

The VIZSIS, HELLASWAG, and ROCSTORIES6 corpora come already partitioned into training, validation
and test sets. For the remaining corpora we adopt a 70/15/15 training/validation/test set split. For
ROCSTORIES in story cloze task, we need access to the correct and incorrect endings of each story for
evaluation. Since this information is only available for the validation portion, we use this as our final test
set. In all our experiments, we use the validation set to choose the best epoch for the models, and report
the results on the test set for that epoch. The only exception is ROCSTORIES story cloze, where we use
the validation set both for selecting the best epoch and for reporting accuracy. The number of documents
in each set for every corpora is provided in Table 1.

For all corpora and tasks we filter out documents with less than 2 sentences, except for topic switching
where we set the minimum document length to 4 for LDA to learn robust topic distributions. We tune the
parameters of the LDA topic modeling independently for each corpora. These parameters include the
number of topics, and the percentage of top-ranked words based on TF-IDF scoring to be used as topic
vocabulary. Final values of these two parameters are reported in Appendix A, along with the total number
of training/validation/test pairs.

6We use the winter 2017 training set and the StoryCloze Test Winter 2018 validation set available upon request.
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VIZSIS ROCSTORIES SELFDIALOGUE FISHER HELLASWAG PDTB

ParSeq 75.35 77.84 88.40 93.48 86.67 91.00
CohLSTM 82.25 89.55 90.79 99.20 69.38 61.96
UNC 88.42 94.80 97.21 n/a 83.92 92.85

Table 2: Accuracy of models on order discrimination, excluding SentAvg as it does not capture order.

same-full same-half different-full different-half
SentAvg 74.62 67.93 79.74 68.06
ParSeq 70.7 61.59 63.71 57.68
CohLSTM 84.99 78.76 79.04 74.11
UNC 96.46 96.77 95.11 96.89

Table 3: Accuracy of all models for the connective substitution task on the PDTB test set.

5.2 Model implementations and evaluation metric

For the models in our study (explained in Section 4), we use the codes provided by the authors,7 with
minimal changes required to enable working with the different datasets. We do not do any hyperparameter
tuning and use the reported hyperparameters in the corresponding papers. Following previous work,
for every task we create up to 20 incoherent texts per coherent document. In all experiments, we use
accuracy to assess the performance of the models. Every sample in our data consists of a pair of {coherent,
incoherent} documents, and thus accuracy for a model is measured as the number of times that the model
ranks a coherent document in a pair higher than the incoherent one, divided by the total number of test
pairs.

6 Results

6.1 Order discrimination

We start by presenting results on the standard order discrimination task to better understand the connection
between the performance on this vs. the tasks we designed. Results for the task of order discrimination
are given in Table 2.8 Our results generally confirm that the UNC model of Moon et al. (2019) is indeed
SOTA on this particular task: it outperforms the other models on five out of the six corpora, with a large
margin on three of them (VIZSIS, ROCSTORIES, and SELFDIALOGUE). Both UNC and CohLSTM show a
notable drop in performance on HELLASWAG, while the accuracy of CohLSTM is above 99% on FISHER.
This is indeed an interesting observation: HELLASWAG contains short stories, with more than 90% of
them being 2–3 sentences long, whereas FISHER has very long documents, with an average of more than
150 sentences per document. As noted by Elsner and Charniak (2011), order discrimination is easier for
longer documents, especially for models that have been optimized for this task. CohLSTM also shows a
significant drop in performance on PDTB, while ParSeq performs poorly on the two narrative datasets
(VIZSIS and ROCSTORIES).

6.2 Connective substitution

Results for the task of connective substitution are shown in Table 3; because for this task we need to identify
connectives, we only report results on the PDTB corpus that contains such annotations. Interestingly, the
UNC model outperforms all other models by a large margin: UNC specifically models global coherence
patterns using a convolution-pooling mechanism, which we believe enables the model to capture correct
vs. incorrect use of connectives across sentences. As expected, it is generally easier to identify incoherent

7For SentAvg and ParSeq, we follow https://github.com/aylai/GCDC-corpus as suggested by the authors. For
CohLSTM, we use the online repo provided at https://github.com/MMesgar/neural_coherence_model, and
for UNC we use the provided code at https://github.com/taasnim/unified-coherence-model.

8Due to its complexity, UNC does not run on very long documents with a length of greater than 100; the original model
filters out such documents. In both training and test portions of FISHER, more than 95% of documents are thus filtered out, and
as such we cannot report reliable performance numbers for UNC on this data set.
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VIZSIS ROCSTORIES SELFDIALOGUE FISHER PDTB

controlled mixing (random mixing)
SentAvg 71.87 (63.28) 74.17 (54.08) 80.54 (54.20) 83.02 (50.96) 48.56 (49.33)
ParSeq 82.85 (85.37) 91.99 (90.73) 81.46 (87.44) 72.53 (48.66) 70.33 (65.56)
CohLSTM 64.81 (52.23) 67.85 (59.09) 68.41 (53.74) 82.55 (53.05) 52.33 (47.89)
UNC 92.10 (88.40) 94.62 (92.20) 71.74 (83.85) n/a 70.89 (61.73)

Table 4: Accuracy for both topic switching conditions, with random mixing results reported in parentheses.

documents that arise from replacing connectives in all sentences (full conditions; columns 2 & 4 from the
left); this is the case for all models except UNC that performs well across all conditions. No consistent
patterns are observed between the same and different conditions.

We expected the incoherent documents arising from connective substitution to be harder to discriminate
compared to the shuffled documents. Comparing the results on the connective substitution task (Table 3)
with those on order discrimination on PDTB (Table 2; right-most column), we can see that while this is
the case for ParSeq (with substantially lower performance on connective substitution), it does not hold
true for the other two models: Whereas UNC performs equally well on both tasks, CohLSTM performs
better on the connective substitution task. Some initial analysis of our data generation process for this
task shows biases in the substitution of high-frequency connectives (e.g., and, but, also) — that is, not
only there are a few very high-frequency connectives, but also they tend to be mainly substituted with
only a few other high-frequency connectives. For instance, more than 85% of occurrences of and are
substituted by three high-frequency connectives, namely but, or, and as. Further analysis is required to
understand whether any component of CohLSTM or UNC makes them susceptible to using this bias to
their advantage, hence performing well on this task without actually learning about coherence.

6.3 Sentence cloze

Results for the task of sentence cloze can be seen in Table 5a where we report results on PDTB. On this task,
CohLSTM outperforms the other models, including UNC, with a notable margin. Recall that in sentence
cloze we specifically manipulate lexical cohesion, and CohLSTM is a model designed particularly to
capture this aspect of coherence through “encod[ing] the perceived coherence of a text by a vector, which
represents patterns of changes in salient information that relates adjacent sentences” (Mesgar and Strube,
2018). Indeed, CohLSTM performs much better on sentence cloze compared to order discrimination on
the same corpus (cf. right-most column of Table 2). Interestingly, both SentAvg and ParSeq perform
relatively poorly on this task, most likely because this information is lost either due to averaging across all
word vectors (SentAvg) or due to the complex multi-layer recurrent architecture (ParSeq).

6.4 Topic switching

Results for the task of topic mixing are given in Table 4; we exclude HELLASWAG from these experiments
because its documents tend to be very short. For all models and across all corpora, performances in the
controlled mixing condition are generally higher or comparable to those for random mixing. This is in
line with our expectation that the random mixing would be the harder of the two conditions: it is possible
for randomly-mixed documents to have similar topics since we do not control for their degree of topic
overlap. For this condition, the two best-performing models are UNC and ParSeq (with the exception of
FISHER), both of them showing performance drops on corpora with long documents, namely FISHER

(with an average document length of ∼ 150) and PDTB (with an average of ∼ 30 sentences per document).
This is an interesting, yet expected, observation: when we mix two halves from long documents, the
resulting document is still somewhat coherent as the two halves would have a big impact on the overall
coherence of the combined document. In both conditions, CohLSTM generally performs poorly on this
task, although it has been designed to capture local topic transitions.
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full substitution half substitution
SentAvg 69.47 59.63
ParSeq 48.48 59.22
CohLSTM 98.19 95.88
UNC 94.41 96.00

(a) Accuracy for the sentence cloze task on PDTB test set.

HELLASWAG ROCSTORIES

original random
SentAvg 56.32 50.86 75.18
ParSeq 55.97 50.48 81.41
CohLSTM 51.31 49.97 92.62
UNC 34.03 73.87 92.22

(b) Accuracy for story cloze task.

Table 5: Accuracy for the two cloze tasks.

6.5 Story cloze

Results for the task of story cloze are shown in Table 5b. Here, we report results for the original test set of
HELLASWAG as well as the original validation set of ROCSTORIES that contain a correct ending and one
or more incorrect endings.9 In addition, we also include results on a modified version of the ROCSTORIES

validation set where we generate a random incorrect ending instead of the originally-provided incorrect
ending. The reason is that the training portion of this data set does not include human-generated incorrect
endings, and as such we do generate those randomly.10 We thus provide results on a similarly generated
set for comparison. Of course we expect the random endings to be much easier to identify compared to
the original human-written endings, which is confirmed by the much higher accuracies of all models for
this condition compared to the original condition.

On the original story cloze task, we can see that all models perform much worse than other tasks (order
discrimination, connective substitution, sentence cloze and topic switching). This is expected as story cloze
is designed to require some degree of common-sense reasoning and inference, in addition to understanding
coherence. Still, the UNC model of Moon et al. (2019) has the best performance on ROCSTORIES

(∼ 74% accuracy on the original task). The rather poor performance of UNC on HELLASWAG is possibly
due to document length, and the reliance of UNC on contextual information. Note that HELLASWAG

has been designed to be particularly difficult for deep learning models by providing little contextual
information (Zellers et al., 2019). Although we can see that a simple model such as SentAvg can
still do reasonably well even without any common-sense reasoning (note the baseline performance on
HELLASWAG is 25% since there are three incorrect endings per correct ending for each test story).

7 Discussion and conclusions

Our results point to a first important conclusion: the task of order discrimination paints only a partial
picture of what is SOTA in modelling coherence, as also noted by other researchers (Lai and Tetreault
(2018) inter alia). This conclusion is evident from the high variability in performance of models across
tasks and corpora. Particularly, we observe that some models exhibit clear advantage over others on certain
tasks and/or corpora, e.g., CohLSTM does particularly well on the sentence cloze task which manipulates
the degree of lexical cohesion in a document. In other words, different models seem to fit some tasks
and corpora better than the others. In addition, certain properties of the corpora affect different models
differently. We observe that document length is of particular importance for models that represent the
overall coherence of an entire document either via convolution (UNC), or LSTM (ParSeq), as attested by
their results on document-level tasks, namely topic switching and story cloze. For topic mixing, this is
observed in the two corpora with long documents (FISHER and PDTB), and for story cloze, by the poor
performance on HELLASWAG.

Finally, all models still struggle with common-sense reasoning, especially when there is little context
available. We believe this kind of common-sense reasoning over short stories is an integral aspect of
overall coherence, and as such we see this relevant to coherence modeling. Results comparing randomly-
generated incorrect endings vs. human generated ones strengthen our initial claim: the fact that random

9As noted previously, we report these results on the validation set of ROCSTORIES since their test set does not come with the
annotation of correct/incorrect endings.

10We do this by substituting the last sentence in the positive document with a random final sentence from another document.
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alternatives/distractors can be easily spotted by existing SOTA models does not necessarily mean that
these models are capturing true aspects of coherence that human readers are sensitive to.

All in all, our findings have important implications, both for the design of coherence models, and
for their proper evaluation. Specifically, the two should not be seen as independent goals, but rather
they should inform each other: by designing appropriate and diverse evaluation tasks, we can design
multi-faceted models that capture all aspects of coherence. At the same time better models require better
evaluation techniques that clearly showcase their strengths and shortcomings.

Future work should aim at extending this line of work to other domains. For instance, these tasks could
be easily applied to measure the coherence of texts produced by L2 learners or on machine translation
output. Furthermore, the tasks we propose could be further refined. For instance, in the Sentence Cloze
task we pooled hypernyms, hyponyms and antonyms together to generate distractors but models might be
more sensitive to one of these classes; similarly, the topic switching did not look at the similarity between
topics which could also affect model performance. Finally, one could also experiment with even lower
levels of distortion than just half the sentences in the document.
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A Topic switching - parameters and data statistics

VIZSIS ROCSTORIES SELFDIALOGUE FISHER PDTB

# topics 30 30 30 30 20
top-% 50 50 50 15 20
# training pairs 505,800 (12.6) 665,860 (12.6) 187,724 (11.2) 55,080 (12.7) 18,420 (12)
# validation pairs 62,480 (12.6) 19,680 (12.5) 13,726 (3.8) 2,311 (2.5) 3,804 (12)
# test pairs 64,340 (12.7) 20,100 (12.8) 14,600 (4.1) 6,992 (7.5) 3,600 (12)

Table 6: Parameter values of the LDA model, and number of pairs in each training/validation/test split.
The numbers in parentheses show the average number of negative samples generated per positive.


