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Abstract

Previous work on bridging anaphora recognition (Hou et al., 2013a) casts the problem as a subtask
of learning fine-grained information status (IS). However, these systems heavily depend on many
hand-crafted linguistic features. In this paper, we propose a simple discourse context-aware
BERT model for fine-grained IS classification. On the ISNotes corpus (Markert et al., 2012), our
model achieves new state-of-the-art performance on fine-grained IS classification, obtaining a
4.8 absolute overall accuracy improvement compared to Hou et al. (2013a). More importantly,
we also show an improvement of 10.5 F1 points for bridging anaphora recognition without using
any complex hand-crafted semantic features designed for capturing the bridging phenomenon.
We further analyze the trained model and find that the most attended signals for each IS category
correspond well to linguistic notions of information status.

1 Introduction

Information Structure (Halliday, 1967; Prince, 1981; Prince, 1992; Gundel et al., 1993; Lambrecht, 1994;
Birner and Ward, 1998; Kruijff-Korbayová and Steedman, 2003) studies structural and semantic properties
of a sentence according to its relation to the discourse context. Information structure affects how discourse
entities are referred to in a text, which is known as Information Status (Halliday, 1967; Prince, 1981;
Nissim et al., 2004). Specifically, information status (IS henceforth) reflects the accessibility of a discourse
entity based on the evolving discourse context and the speaker’s assumption about the hearer’s knowledge
and beliefs. For instance, according to Markert et al. (2012), old mentions1 refer to entities that have been
referred to previously; mediated mentions have not been mentioned before but are accessible to the hearer
by reference to another old mention or to prior world knowledge; and new mentions refer to entities that
are introduced to the discourse for the first time and are not known to the hearer before.

In this paper, we mainly follow the IS scheme proposed by Markert et al. (2012) and focus on learning
fine-grained IS on written texts. A mention’s semantic and syntactic properties can signal its information
status. For instance, indefinite NPs tend to be new and pronouns are likely to be old. Moreover, referential
patterns of how a mention is referred to in a sentence also affect this mention’s IS. In Example 1, “Friends”
is a bridging anaphor even if we do not know the antecedent (i.e., she); while the information status for
“Friends” in Example 2 is mediated/worldKnowledge. Section 3.1 analyzes the characteristics of each IS
category and the relations between IS and discourse context.

(1) [She]antecedent made money, but spent more. Friends pitched in.

(2) Friends are part of the glue that holds life and faith together.

In this work, we propose a simple yet effective discourse context-aware self-attention model based on
BERT (Devlin et al., 2019) for fine-grained IS classification. We find that the sentence containing the
target mention as well as the lexical overlap information between the target mention and the preceding

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1A mention is a noun phrase which refers to a discourse entity and carries information status.
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mentions are the most important discourse context when assigning IS for a mention. With the self-attention
mechanism, our model can capture important signals within a mention and the interactions between the
mention and its context. On the ISNotes corpus (Markert et al., 2012), our model achieves new state-of-the-
art performance on fine-grained IS classification, obtaining a 4.8 absolute overall accuracy improvement
compared to Hou et al. (2013a). More importantly, we also show an improvement of 10.5 F1 points for
bridging anaphora recognition without using any sophisticated hand-crafted semantic features.

Furthermore, to gain additional insights into our model’s predictions, we analyze the attention mecha-
nisms of our trained model. We find that the most attended tokens for each IS category correspond well
with linguistic features of information status. For instance, for the old IS category, the most attended
token list includes pronouns such as “she”, “her”, and “it”. While for the new category, the model pays
more attention to indefinite determiners such as “a” and “an”. Section 6 provides a detailed analysis of the
attention map for each IS category.

To summarize, the main contributions of our work are as follows:

• We propose a simple and effective model for fine-grained IS classification. The model uses a novel
approach for encoding information from the previous sentences along with the current sentence for
IS classification.

• Our proposed model achieves new state-of-the-art results for IS classification and bridging anaphora
recognition on the ISNotes corpus. Our model also achieves competitive results for fine-grained
IS classification on the Switchboard dialogue IS corpus (Nissim et al., 2004) that uses a different
IS scheme than the one in ISNotes. The processed datasets and code are publicly available at:
https://github.com/IBM/bridging-resolution.

• We carry out ablation studies to understand the effectiveness of each component in our model. We
further investigate the self-attention patterns in our model and find that the model does learn specific
linguistic features for predicting information status.

2 Related Work

IS classification and bridging anaphora recognition. Bridging resolution (Hou et al., 2014; Hou et
al., 2018) contains two sub tasks: identifying bridging anaphors (Markert et al., 2012; Hou et al., 2013a;
Hou, 2016a) and finding the correct antecedents among candidates (Hou et al., 2013b; Hou, 2018a; Hou,
2018b; Hou, 2020). Most previous studies handle bridging anaphora recognition as part of IS classification
problem. Markert et al. (2012) applied joint inference for IS classification on the ISNotes corpus but
reported very low results on bridging recognition. Building on this work, Hou et al. (2013a) designed
many linguistic features to capture bridging and integrated them into a cascading collective classification
algorithm. This approach later was integrated into a pipeline for bridging resolution (Hou, 2016b; Hou
et al., 2018). Differently, Hou (2016a) used an attention-based LSTM model based on GloVe vectors
and a small set of features for IS classification. The author reported similar results as Hou et al. (2013a)
regarding the overall IS classification accuracy but the result on bridging anaphora recognition is much
worse than Hou et al. (2013a).

Rahman and Ng (2012) incorporated carefully designed rules into an SVM algorithm for IS classification
on the Switchboard dialogue IS corpus (Nissim et al., 2004).2 The authors first designed a rule-based
system to assign IS classes to mentions on the basis of Nissim’s IS annotation guidelines (Nissim et al.,
2004). They then applied an SVMmulticlass algorithm for this task by combining the prediction from the
rule-based system, the ordering of the rules as well as two lexical features.

Another work on IS classification was carried out by Cahill and Riester (2012). They assumed that the
distribution of IS classes within sentences tends to have certain linear patterns, e.g., old > mediated > new.
Under this assumption, they trained a CRF model with syntactic and surface features for fine-grained IS
classification on the German DIRNDL radio news corpus (Riester et al., 2010). Recently, Rösiger (2019)

2It is worth noting that bridging antecedent information was not annotated in Switchboard. Also, bridging anaphora annotation
in Switchboard includes non-anaphoric cases.
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adapted eight rules from Hou et al. (2014) to recognize bridging anaphors and find their antecedents in the
improved annotations of the extended DIRNDL corpus (Björkelund et al., 2014).

Different from the above-mentioned work, we do not use any complicated hand-crafted features, and
our model improves the previous state-of-the-art results on both overall IS classification accuracy and
bridging recognition by a large margin on the ISNotes corpus. Our model also achieves competitive results
for fine-grained IS classification on Switchboard compared to the approach in Rahman and Ng (2012)
that uses the Stanford coreference resolver and an SVM classifier that explores 18 carefully designed
hand-crafted rules.

Fine-tuning with contextual word embeddings. Recent studies (Peters et al., 2018; Devlin et al.,
2019) have shown that a range of downstream NLP tasks benefit from fine-tuning task-specific parameters
with pre-trained contextual word representations. Our work belongs to this category and we fine-tune our
model based on BERT representations (Devlin et al., 2019). The novelty of our approach is that we create
a “pseudo sentence” for each mention that encodes the most effective local and global discourse context
for predicting the mention’s IS. The self-attention mechanism in Transformer’s self-attention encoder
(Ashish et al., 2017) allows our model to attend to both the context and the mention itself for clues that
are helpful to predict the mention’s IS.

Model probing. Recently, there have been a number of studies exploring the types of knowledge
encoded in the BERT model. Jawahar et al. (2019) found that internal vector representations in BERT
encode rich linguistic information, with surface information at the bottom layers, syntactic information
in the middle layers, and semantic information at the top layers. Clark et al. (2019) showed that certain
attention heads in BERT correspond well to the linguistic knowledge of syntax and coreference. In
our work, we demonstrate that the attention patterns in our trained model embed linguistic notions of
information status.

3 Approach

3.1 Information Status and Discourse Context
The IS scheme proposed by Markert et al. (2012) adopts three major course-grained IS categories (old,
new, and mediated) from Nissim et al. (2004) and distinguishes six subcategories for mediated. Below we
provide a brief description for the eight fine-grained IS classes in ISNotes.

Old mentions are coreferent with the already introduced entities. New mentions are entities that have
not been introduced into the discourse and the hearer/reader cannot infer them from either previously
mentioned entities or general world knowledge. Mediated mentions are discourse-new and hearer-old
(Prince, 1992). They have not been introduced into the discourse before but are accessible to the hearer by
reference to another mention or to prior world knowledge.

Among the mediated category, Mediated/worldKnowledge mentions are generally known to the
hearer. This category contains mostly proper names. Mediated/syntactic mentions are syntacti-
cally linked to other old or mediated mentions, such as “[[their]old father]m/syntactic” or “[a war in
[Africa]mediated]m/syntactic”. Mediated/aggregate mentions are coordinated NPs where at least one ele-
ment is old or mediated, such as “[[U.S.]mediated and [Canada]mediated]m/aggregate”. Mediated/function
mentions refer to a value of a previously explicitly mentioned function and this function needs to be able
to rise or fall (e.g., 6 cents in Example 3). Mediated/comparative mentions usually contain a premodifier
to indicate that this entity is compared to another preceding entity (antecedent) (e.g., further attacks
in Example 4). Finally, Mediated/bridging mentions are associative anaphors that link to previously
introduced related entities/events (e.g., Friends in Example 1).

(3) In trading on the American Stock Exchange, Delmed’s price [went down]function 6 cents.

(4) [The cyber attacks]antecedent were followed by further attacks on ZDNet.com, a news portal.

We characterize the linguistic factors that affect a mention’s IS into three categories: mention properties,
local context, as well as previous context. Table 1 lists the definitions for these IS categories and
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Factors affecting IS
Description Example Mention Local Previous

Properties Context Context
old coreferent with an already introduced entity he, the president X X X
m/worldKnow. generally known to the hearer Francis, the pope X X
m/syntactic syntactically linked to other old or mediated their father X

mentions a war in Africa
m/aggregate coordinated NPs where at least one element U.S. and Canada X

is old or mediated he and his son
m/function refer to a value of a previously explicitly (the price went X X

mentioned rise/fall function down) 6 cents
m/comparative usually contain a premodifier to indicate that another law X X X

this entity is compared to another entity further attacks
m/bridging associative anaphors which link to previously the price X X X

introduced related entities/events the reason
new introduced into the discourse for the first time a reader X X X

and not known to the hearer before politics

Table 1: Information status categories and their main affecting factors. “Local context” means the sentence
s which contains the target mention, “Previous context” indicates all sentences from the discourse which
occur before s.

summarizes the main affecting factors for each IS class. Note that we analyze the main affecting factors
for each IS class based on their definitions.

As described in Section 1, a mention’s internal syntactic and semantic properties can signal its IS. For
instance, a mention containing a possessive pronoun modifier is likely to be mediated/syntactic (e.g., their
father); and a mediated/comparative mention often contains a premodifier indicating that this entity is
compared to another preceding entity (e.g., further attacks).

In addition, for some IS classes, the “local context” (the sentence s which contains the target mention)
and “previous context” (sentences from the discourse which precede s) play an important role when
assigning IS to a mention. Example 1 and Example 2 in Section 1 demonstrate the role of the local context
for IS. In Example 1, the referential patterns in the local context indicate that “Friends” is a bridging
anaphor,3 whereas “Friends” in Example 2 is a generic NP.

Sometimes we need to look at the previous context when deciding IS for a mention. In Example 5,
without looking at the previous context, we tend to think the IS for “Poland” in the second sentence is
mediated/WorldKnowledge. Here the correct IS for “Poland” is old because it is mentioned before in the
previous context.

(5) [Previous context:] In Poland, only 4% of all investment goes toward making things farmers want; in
the West, it is closer to 20%.
[Local context:] A private farmer in Poland is free to buy and sell land.

3.2 IS Classification with Discourse Context-Aware Self-Attention
To account for the different factors described in the previous section when predicting IS for a mention,
we create a novel “pseudo sentence” for each mention and apply the multi-head self-attention encoder
(Ashish et al., 2017; Devlin et al., 2019) to this sentence.

Figure 1 depicts the high-level structure of our model. The pseudo sentence consists of five parts:
previous overlap info, local context, the delimiter token “[SEP]”, the content of the target mention, and
the IS prediction token “[CLS]”. The previous overlap info part contains two tokens, which indicate
whether the target mention has the same string/head with a mention from the preceding sentences. And
the local context is the sentence containing the target mention.

The final prediction is made based on the hidden state of the prediction token “[CLS]”. In principle,
this is similar to BERT’s “[CLS]a[SEP]b” framework, in which the special classification token ([CLS])

3Clark (1975) uses necessary, probable and inducible parts/roles to distinguish different types of bridging and argues that
only in the first case the antecedent triggers the bridging anaphor in the sense that we already spontaneously think of the anaphor
when we read/hear the antecedent. In the probable/inducible cases, the bridging anaphora accommodates itself into the context
and is induced by the need for an antecedent. Section 4.3 illustrates this using a wug-test example.
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False False A private farmer in Poland is free to buy and sell land [SEP] A private farmer [CLS] 

Previous overlap_info Local context Target mention Prediction token

Multi-head Self-Attention Encoder (BERT Fine-tuning)

IS: New

Figure 1: Fine-grained IS classification with discourse context-aware self-attention.

is added to every sequence as the first token and its hidden state is used as the aggregate sequence
representation for classification tasks. The novelty of our work is that we design the structure of a and b
in a way that embeds the most indicative information to predict a mention’s information status. During
the training stage, the mechanism of multi-head self-attention helps the model to learn the important cues
from both the mention itself and its discourse context when predicting IS.

There are other ways to encode a mention’s context information. For instance, one could try to add
more previous sentences in the local context or replace the current previous overlap info with all previous
sentences. In practice, we found that the current configuration yields the best results on the ISNotes and
Switchboard IS corpora. In particular, we notice that using all previous sentences as the discourse context
significantly decreases the results for IS classification.4 This is in line with the observation from Joshi et
al. (2019) that modeling the longer context in BERT provides no improvement for coreference resolution.

3.3 Model Parameters

We use the vanilla BERT (Devlin et al., 2019) for our experiments. We initialize our model using pre-
trained BERT contextual embeddings, which is trained on top of the BookCorpus (800M words) and
English Wikipedia (2,500M words). We then fine-tune the model for 3 epochs with the learning rate of
3e− 5 and a batch size of 32. During training and testing, the max token size of the pseudo sentence is set
as 128.5

4 Experiments on ISNotes

4.1 Experimental Setup

We perform experiments on the ISNotes corpus (Markert et al., 2012), which contains 10,980 mentions
annotated for information status in 50 news texts taken from the Wall Street Journal portion of the
OntoNotes corpus (Weischedel et al., 2011). Table 2 shows the IS distribution in ISNotes.

Following Hou et al. (2013a), all experiments are performed via 10-fold cross-validation on documents.
On each testing fold, the model is trained on the other nine folds. The hyper-parameters of 3 epochs and
the learning rate 3e− 5 were fixed during all training processes. We report overall accuracy as well as
precision, recall and F-score per IS class. In the following, we describe the baselines as well as our model
with different settings.

4When the pseudo sentence is longer than 512 tokens, we use a sliding window of 100 tokens to account for all previous
context of a mention.

5The length of 128 tokens covers all the cases in ISNotes. In practice, we truncate the local sentence if the whole pseudo
sentence is longer than 128 tokens.



6106

Mentions 10,980
old 3,237 29.5%
mediated 3,708 33.8%

syntactic 1,592 14.5%
world knowledge 924 8.4%

bridging 663 6.0%
comparative 253 2.3%

aggregate 211 1.9%
func 65 0.6%

new 4,035 36.7%

Table 2: IS distribution in ISNotes.

baselines this work
collective cascade collective incremental LSTM self-attention with self-attention with

Hou et al.(2013) Hou et al.(2013) Hou (2016) BERTBASE BERTLARGE

R P F R P F R P F R P F R P F

old 84.4 86.0 85.2 82.2 87.2 84.7 85.4 84.9 85.2 87.8 90.5 89.1 88.4 90.0 89.2
m/worldKnow. 67.4 77.3 72.0 67.2 77.2 71.9 67.1 74.5 70.6 74.9 77.8 76.3 77.7 79.5 78.6
m/syntactic 82.2 81.9 82.0 81.6 82.5 82.0 80.8 81.9 81.4 82.9 79.5 81.1 83.7 81.1 82.4
m/aggregate 64.5 79.5 71.2 63.5 77.9 70.0 67.8 84.6 75.3 76.8 74.7 75.7 80.1 79.3 79.7
m/function 67.7 72.1 69.8 67.7 72.1 69.8 64.6 76.4 70.0 35.9 62.2 45.5 73.4 85.5 79.0
m/comparative 81.8 82.1 82.0 86.6 78.2 82.2 77.9 83.1 80.4 88.1 84.8 86.4 90.5 86.7 88.6
m/bridging 19.3 39.0 25.8 44.9 39.8 42.2 15.7 32.3 21.1 43.3 49.6 46.2 51.0 54.5 52.7
new 86.5 76.1 81.0 83.0 78.1 80.5 87.2 74.8 80.5 85.7 82.5 84.1 86.6 85.2 85.9
acc 78.9 78.6 78.6 82.0 83.7

Table 3: Results of the discourse context-aware self-attention model compared to the baselines on ISNotes.
Bolded scores indicate the best performance for each IS class. The improvements of self-attention with
BERTBASE and self-attention with BERTLARGE over the baselines are statistically significant at p<0.01
using randomization test.

collective (baseline 1). Hou et al. (2013a) applied collective classification to account for the linguistic
relations among IS categories. They explored a wide range of features (34 in total), including a large
number of lexico-semantic features (for recognizing bridging) as well as a couple of surface features and
syntactic features.

cascaded collective (baseline 2). This is the cascading minority preference system for bridging anaphora
recognition from Hou et al. (2013a).

incremental LSTM (baseline 3). This is the attention-based LSTM model proposed by Hou (2016a).
The model uses one-hot vectors to encode IS classes and predicts information status for all mentions of a
document from left to right incrementally.

self-attention with BERTBASE . We fine-tune BERTBASE on the pseudo sentences described in Section
3. The model has 12 transformer blocks, 768 hidden units, and 12 self-attention heads.

self-attention with BERTLARGE . We fine-tune BERTLARGE on the pseudo sentences described in
Section 3. The model has 24 transformer blocks, 1024 hidden units, and 16 self-attention heads.

4.2 Results and Discussion

Table 3 shows the results of our models compared to the baselines. Our best model self-attention with
BERTLARGE improves over all baselines by a large margin on all IS categories. It achieves an overall
accuracy of 83.7% on fine-grained IS classification, obtaining a 4.8 and 5.1 absolute improvements in
accuracy over the two strong baselines (collective and cascade collective), respectively.
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self-attention with self-attention wo self-attention wo self-attention wo self-attention wo
BERTLARGE target mention local context pre overlap info local context

pre overlap info
R P F R P F R P F R P F R P F

old 88.4 90.0 89.2 78.2 75.8 77.0 87.1 90.8 88.9 80.8 87.4 84.0 74.8 84.9 79.5
m/worldKnow. 77.7 79.5 78.6 15.9 37.7 22.4 75.9 77.6 76.7 70.1 64.1 67.0 64.7 56.5 60.3
m/syntactic 83.7 81.1 82.4 23.8 42.8 30.6 85.1 81.2 83.1 85.6 81.4 83.4 84.6 80.3 82.4
m/aggregate 80.1 79.3 79.7 15.2 38.1 21.7 84.4 78.8 81.5 77.3 81.5 79.3 78.7 78.7 78.7
m/function 73.4 85.5 79.0 43.8 41.8 42.7 62.5 62.5 62.5 75.0 90.6 82.1 65.6 65.6 65.6
m/comparative 90.5 86.7 88.6 6.7 31.5 11.1 90.5 86.7 88.6 89.7 86.0 87.8 88.9 84.3 86.5
m/bridging 51.0 54.5 52.7 4.7 38.3 8.3 43.7 48.9 46.2 51.9 52.5 52.2 40.3 46.4 43.1
new 86.6 85.2 85.9 80.9 53.7 64.5 85.1 82.6 83.8 86.5 84.6 85.5 85.1 80.3 82.6
acc 83.7 58.5 82.3 81.1 77.4

Table 4: Ablation experiments results of self-attention with BERTLARGE for fine-grained IS classification.
Bolded scores indicate the best performance for each IS class. The differences between self-attention with
BERTLARGE and other variations are statistically significant at p<0.01 using randomization test.

It is worth noting that recognizing bridging anaphora is a challenging task (Markert et al., 2012). Hou
et al. (2013a) proposed a lot of discourse structure, lexico-semantic and genericity detection features to
capture the phenomenon. Their best model for bridging anaphora recognition (cascade collective) achieves
an F-score of 42.2. Overall, our model self-attention with BERTLARGE achieves the new state-of-the-art
performance for this task with an F-score of 52.7 without resorting to any hand-crafted sophisticated
semantic features. By comparing the confusion matrices of cascade collective and self-attention with
BERTLARGE , we find that the highest proportion of recall errors of bridging recognition in cascade
collective is due to the fact that a lot of bridging anaphors are misclassified as new. This can be explained
as the syntactic form of many new mentions and bridging anaphors are the same (see Example 1 and
Example 2 ), the lexico-semantic features in cascade collective only pick up on certain types of bridging.
In addition, most precision errors in cascade collective are new and old mentions being misclassified as
m/bridging. Both these recall and precision errors are less frequent in self-attention with BERTLARGE . It
seems that our model does capture properties of bridging anaphora better by only looking at a mention
and its interactions with the surrounding context.

4.3 Ablations
To better understand the impact of different components in our model, we carry out an ablation experiment.
We remove target mention, local context, previous overlap info, as well as all context information (local
context + previous overlap info) from our best model self-attention with BERTLARGE , respectively. Table
4 reports the results of different configurations for our model.

Surprisingly, the model considering only the content of mentions (see the last column of Table 4)
achieves competitive results as the baseline cascade collective which explores many hand-crafted linguistic
features. Also it outperforms the three baselines on several IS categories (m/syntactic, m/aggregate,
m/comparative, m/bridging and new). In Section 3.1, we analyze that m/syntactic and m/aggregate are
often signaled by mentions’ internal syntactic structures, and that the semantics of certain premodifiers
is a strong signal for m/comparative. The improvements on these categories show that our model can
capture the semantic/syntactic properties of a mention when predicting its IS.

Among all three components, it seems that the content of mentions has the most impact on the overall
results, while the local context has the least impact. Furthermore, we find that local context and previous
overlap info have different impacts on IS classes. More specifically, we notice that m/bridging, m/function
and new benefit most from local context, whereas old and m/worldKnowledge benefit most from previous
overlap info. This may seem counter-intuitive for m/bridging and m/worldKnowledge, as one expects that
m/bridging should benefit more from the previous context and m/worldKnowledge is a local phenomenon.
For m/worldKnowledge, this is explained by the fact that the system without previous context information
(self-attention wo pre overlap info) wrongly predicts a lot of old mentions as m/worldKnowledge, as
illustrated in Example 5.
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SVM + Stanford Coreference self-attention with
Rahman and Ng (2012) BERTLARGE

R P F R P F
old/ident 75.8 64.2 69.5 81.9 82.5 82.2
old/event 2.4 31.8 4.5 73.2 71.5 72.3
old/general 87.8 92.7 90.2 96.1 97.1 96.6
old/generic 39.9 85.9 54.5 77.4 73.7 75.5
old/ident generic 47.2 44.8 46.0 74.8 72.6 73.7
old/relative 99.0 37.5 54.4 97.4 95.4 96.4
med/general 84.0 72.2 77.7 85.3 74.6 79.6
med/bound 2.7 40.0 5.1 29.7 43.4 35.3
med/part 73.2 96.8 83.3 51.8 54.7 53.2
med/situation 68.0 97.7 80.2 22.4 38.7 28.4
med/event 46.3 100.0 63.3 16.2 22.9 19.0
med/set 88.4 86.0 87.2 78.1 71.9 74.9
med/poss 90.5 97.6 93.9 82.5 77.8 80.1
med/func value 88.1 85.9 87.0 40.0 10.5 16.7
med/aggregation 83.8 93.9 88.6 56.7 46.0 50.7
new 90.4 83.6 86.9 67.9 76.9 72.1
acc 78.7 79.3

Table 5: Results of our discourse context-aware self-attention model compared to the SVM + Stanford
Coreference model (Rahman and Ng, 2012) on the Switchboard dialogue IS corpus for fine-grained IS
classification.

For m/bridging, the big impact of the local context corresponds to Hou et al. (2013a)’s observa-
tion that some bridging can be indicated by referential patterns without world knowledge about the
anaphor/antecedent NPs. For instance, in the following sentence, “The blicket couldn’t be connected to
the dax. The wug failed.”, the mention “The wug” is likely a bridging anaphor, although we do not know
the antecedent.6 Similarly, Clark (1975) distinguishes between bridging via necessary, probable, and
inducible parts/roles. He states that only in the first case does the antecedent trigger the bridging anaphor
in the sense that we already spontaneously think of the anaphor when we read/hear the antecedent. In the
probable/inducible cases, bridging anaphora accommodates itself into the context and is induced by the
need for an antecedent.

In addition, we also tested whether a broader local context can help us to detect bridging better. In the
ISNotes corpus, 26% of bridging anaphors have the antecedents from the same sentence, and 77% of
anaphors have antecedents occurring in the same or up to two sentences prior to the anaphor. In practice,
we tried to add the previous k sentences (k = 1 and k = 2) into the current local context but found that
the overall results for bridging in both settings are similar to the current one.

5 Experimental Results on the Switchboard IS Corpus

In this section, we apply our discourse context-aware self-attention model to the Switchboard dialogue
IS corpus (Nissim et al., 2004). The corpus contains around 63k mentions annotated with IS types (i.e.,
old, mediated, and new) and subtypes. Note that the IS scheme in this corpus is different from the one in
ISNotes in terms of fine-grained IS classes. In general, bridging in this corpus includes non-anaphoric,
syntactically linked part-of and set-member relations (e.g., the house’s door), as well as comparative
anaphors that are marked by surface indicators such as “other” or “different”.7 Nevertheless, we think the

6We thank an anonymous reviewer for bringing up this example in one of our previous work (Hou et al., 2013a). We also
thank another anonymous reviewer of this work for pointing out that “The wug” could also be an epithet.

7We refer the readers to Nissim et al. (2004) for more details of fine-grained IS categories in the Switchboard dialogue IS
corpus.



6109

IS class Most attended tokens
old the, pre overlap2 = NA, pre overlap1 = NA, pre overlap2 = yes, pre overlap1 = yes,

it, her, she, that, they
m/worldKnow. pre overlap1 = no, pre overlap2 = no, the, month, year, and, of, to, this, said
m/syntactic pre overlap1 = no, the, pre overlap2 = no, of, ’s, her, in, its, pre overlap2 = yes, to
m/aggregate and, the, or, pre overlap1 = no, pre overlap2 = yes, her, oil, units, of, -
m/function %, units, pre overlap2 = yes, pre overlap1 = no, to, 8, fell, 5, 243, million
m/comparative pre overlap1 = no, more, pre overlap2 = no, other, pre overlap2 = yes, higher, com-

panies, some, of, that
m/bridging pre overlap1 = no, the, pre overlap2 = no, a, in, friends, year, demand, production, to
new pre overlap1 = no, pre overlap2 = no, the, a, an, of, to, -, magazines, but

Table 6: Top ten most attended tokens for each IS class in self-attention with BERTLARGE trained on
ISNotes.

three main linguistic factors affecting a mention’s IS analyzed in Section 3.1 still hold in the dialogue
domain.

Following Rahman and Ng (2012), we split the dataset into a training set containing 117 dialogues
and a testing set containing 30 dialogues. We train our model self-attention with BERTLARGE on the
training dataset using the parameters described in Section 3.3. Table 5 lists the results of our model
compared to Rahman and Ng (2012)’s system, which is an SVMmulticlass model based on predictions
from a rule-based system and the Stanford Deterministic Coreference Resolution System (Lee et al.,
2011). The rule-based system consists of 18 hand-crafted rules for assigning IS subtypes to mentions.
Some rules are based on the lexicon relations encoded in WordNet and FrameNet.

Note that the results of the two systems in Table 5 are not directly comparable due to the different
splits of the training/testing datasets.8 Neverthless, our model self-attention with BERTLARGE achieves
competitive performance compared to Rahman and Ng (2012)’s system in terms of the overall accuracy.
In general, it seems that our model is better at predicting old mentions. We also checked the confusion
matrix and found that the low results for med/situation, med/event and med/func value is due to the fact
that our model cannot distinguish these three categories from med/set.

6 Attention to Linguistic Features

In order to gain additional insights into our model’s predictions, we analyze the attention maps in our best
model (self-attention with BERTLARGE) that is trained on ISNotes. We aim to check to what extent the
most attended tokens correspond to the linguistic features for each IS class.

Specifically, we randomly choose one fold and apply the trained model to the testing dataset. Since
the “[CLS]” token is used for prediction, we analyze the attention weights assigned to other tokens from
“[CLS]” for each testing instance. The weight of each token is normalized by the sequence length. The
final attended score for each token is calculated by aggregating normalized attended weights across all
testing instances in all 16 heads from the last layer. This is because previous work suggests that the last
layer usually encodes the task-specific features in fine-tuning (Kovaleva et al., 2019).

Table 6 lists the top ten most attended tokens for each IS class. We exclude the separator tokens
([CLS]/[SEP]) and two punctuation tokens (comma and period) from the list, as suggested by Clark et al.
(2019) that these tokens are heavily attended in deep heads and might be used as a no-op for attention
heads. Note that pre overlap1 and pre overlap2 are the two tokens that indicate whether the target mention
has the same string/head with a mention from the preceding sentences. Both can have a value of “yes”,
“no”, or “NA”. Following Markert et al. (2012), “NA” means “non-applicable” and is mainly used for
pronouns.

8Rahman and Ng (2012) reported that their testing dataset contains 30 dialogues, but the split of the training/testing datasets
is not publicly available.
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We notice that a lot of the attended tokens in Table 6 correspond well with the linguistic features for
each IS class. For old mentions, the model attends to pronouns and signals that indicate string overlap,
while for new mentions, the model attends to tokens that indicate string non-overlap and the indefinite
determiners “a/an”.

It is interesting to note that the model seems to learn the internal syntactic/semantic structure for a few
IS classes. For instance, “of” and “’s” are strong signals for m/syntactic mentions that have a prepositional
structure or a possessive structure. Also m/aggregate mentions usually contain the tokens “and/or” that
indicate the coordination structure. Similarly, for m/comparative category, the model learns to focus on a
few premodifiers (e.g., “more”, “other”, and “higher”) that indicate the comparison between two entities.

Finally for m/function mentions, the model learns to mostly focus on numbers. Surprisingly, the model
also learns to attend the verb “fell”, which corresponds well with the definition of this IS class (see Section
3.1). For the most difficult category m/bridging, it seems that the model attends to some relational nouns
(e.g., “friends” or “demand”) that are likely used as bridging anaphors.

7 Conclusions

We propose a simple discourse context-aware self-attention model for IS classification based on the
BERT fine-tuning framework. We cast the IS classification problem as a sentence classification task by
creating a novel “pseudo sentence” for each mention. We design the “pseudo sentence” based on the
linguistic intuitions about IS and it contains most indicative context information to predict a mention’s
information status. Such design allows the model to capture both clues from the mention and its context
when predicting IS.

Our model does not contain any complex hand-crafted semantic features and achieves the new state-of-
the-art results for IS classification and bridging anaphora recognition on ISNotes that contains written
news articles. In another domain that consists of conversational dialogues (Switchboard), our model also
achieves competitive performance for fine-grained IS classification compared to previous work (Rahman
and Ng, 2012).

Finally, in order to better understand our model’s predictions, we probe our best model (self-attention
with BERTLARGE) on ISNotes. We find that our model learns to pay more attention to signals that
correspond well to the linguistic features of each IS class.
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