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Abstract

Learning a mapping between word embeddings of two languages given a dictionary is an important
problem with several applications. A common mapping approach is using an orthogonal matrix.
The Orthogonal Procrustes Analysis (PA) algorithm can be applied to find the optimal orthogonal
matrix. This solution restricts the expressiveness of the translation model which may result in
sub-optimal translations. We propose a natural extension of the PA algorithm that uses multiple
orthogonal translation matrices to model the mapping and derive an algorithm to learn these
multiple matrices. We achieve better performance in a bilingual word translation task and a cross
lingual word similarity task compared to the single matrix baseline. We also show how multiple
matrices can model multiple senses of a word.

1 Introduction

Continuous word embeddings are a standard component in many NLP applications. The embedding
spaces can exhibit similar structures across languages. Several studies (Mikolov et al., 2013; Klementiev et
al., 2012) have exploited this similarity by learning a linear mapping from a source to a target embedding
space, and demonstrated this approach on word translation tasks. Xing et al. (2015) showed that using
orthogonal matrices can significantly improve performance. Since then, several studies have aimed at
improving these bilingual word embeddings by using bilingual word dictionaries generated in either
supervised or unsupervised manner.

A multi-sense word in the source language can be translated into several different words in the target
language. Studies have shown that for the multi-lingual translation problem, enforcing the transformation
to be strictly orthogonal is too restrictive and performance can be improved by relaxing this constraint. It
was shown that using orthogonalization as regularization rather than a strict constraint (Chen and Cardie,
2018), yields matrices that are close to orthogonal but are not necessarily exactly orthogonal, and improves
performance (Taitelbaum et al., 2019a; Taitelbaum et al., 2019b). A single matrix however, whether
orthogonal or not, cannot model the case of translating a multi-sense word.

In this study, motivated by the multi-sense word situation, we investigated another way to relax the
common modeling assumption that a single orthogonal transformation is suitable for translating all the
words of a source language into a target language. In our approach, the word translation procedure is
modeled by a set of orthogonal matrices where each word is translated by one of the matrices. The words
are grouped according to their associated matrix. This grouping is determined by applying a clustering
procedure on the vocabulary words. Next, for each cluster we learn a separate orthogonal matrix. The
word mapping function is thus modeled by a local orthogonal transformation. When translating a new
word, we select the most suitable matrix for this specific translation task. We illustrate our approach on
several standard word translation tasks and we show performance improvement compared to translation
based on a single matrix.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Multi-Matrix Translation

Suppose we are given d dimensional word embeddings of a source language S and a target language
T and a training dictionary of corresponding S-T word pairs. Denote this embedding dictionary by
(X,Y ) = {(xt, yt)}nt=1. The objective is to learn a mapping Q from the source space to the target space,
such that, a source word is mapped to a vector that is close to its corresponding word in the target language.

Previous studies (Mikolov et al., 2013; Klementiev et al., 2012) have found that there is a linear
correlation between the vector spaces of the two languages, thus, it is best to use a linear mapping. Xing
et al. (2015) and Artetxe et al. (2016) showed that restricting the linear mapping Q to be orthogonal
improves performance. The optimal mapping is found by minimizing the following cost function (F
denotes the Frobenius norm):

Q̂ = arg min
Q
‖QX − Y ‖2F . (1)

The solution to Eq. (1) is well-established and is known as the Procrustes Analysis (PA) algorithm
(Schönemann, 1966). The optimal orthogonal mappings is obtained by Q̂ = UV > where UΣV > is
the Singular Value Decomposition (SVD) of M = Y X>. This method has been used in many recent
cross-lingual studies (Xing et al., 2015; Artetxe et al., 2016; Artetxe et al., 2017a; Conneau et al., 2017).
However, it was shown that using one orthogonal matrix to map a vector space into another one can be
too restrictive in some cases (Taitelbaum et al., 2019a).

We hypothesized that using multiple matrices would improve translation by relaxing the restrictive
assumption of the ordinary PA solution (single matrix). The goal is to model the word translation by a
set of matrices Q1, ..., Qk. The proposed algorithm is an extension of the single-matrix PA algorithm
that was described above where the optimization goal remains minimizing the mean square error. The
objective function we want to minimize is thus:

S(Q1, ..., Qk) =
n∑

t=1

k
min
i=1
‖Qixt − yt‖2. (2)

By minimizing the score (2) the aim is to simultaneously cluster the word pairs into k groups and assign the
optimal translation matrix to each group separately. There is no closed form solution for this minimization
problem. Instead we use an iterative procedure that resembles the k-means algorithm. Each iteration
consists of two stages. In the first step we reassign each word pair to one of the clusters:

ct = arg
k

min
i=1
‖Qixt − yt‖2. (3)

In the second step we re-estimate the translation matrices. The updated matrix Qi is obtained by
minimizing the following score.

S(Qi) =
∑
t|ct=i

‖Qixt − yt‖2. (4)

The minimization of Eq. (4) can be efficiently computed by the PA algorithm. The alternate minimization
procedure guarantees a monotone improvement of the score (2) until convergence to a local minima.

For alternate minimization algorithms, a good initialization is crucial for fast convergence. In our case
it is reasonable to assume that two words whose embedding vectors are close should be translated by
the same matrix. Thus, in order to find the initial cluster we can apply standard a k-means procedure on
a transformation of the word embedding vectors. We adapt a dense transformation of the word vectors
based on an auto-encoder representation. The autoencoder 1 is trained to minimize the reconstruction loss
over the concatenation of source and target word embedding pairs. Then, k-means is applied on the latent
representation of the word embedding vectors. Note that the k-means algorithm is also sensitive to the
initialization. However, this problem is well-studied and there are good stable algorithms for k-means
optimization such as k-means++ (Arthur and Vassilvitskii, 2007). Our training algorithm is summarized
in Algorithm 1.

1The model dimension is 600× 100× 30× 100× 600 neurons. The k-means step uses the 30-dimensional representation.
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Algorithm 1 Multi-Matrix Translation Algorithm.
Required: Aligned set of dictionary word embeddings (xt, yt), t = 1, ..., n.
Task: Cluster the dictionary word pairs into k clusters.
Output: k mapping matrices {Qi, i = 1, ..., k}.

while Not converged do

• Reassign each word pair to one of the clusters:

ct = arg
k

min
i=1
‖Qixt − yt‖2, t = 1, ..., n.

• Re-estimate the translation matrices by minimizing the following score:

S(Qi) =
∑
t|ct=i

‖Qixt − yt‖2, i = 1, ..., k.

end

Inference: The translation of a source word x to the target language is:

ŷ = arg max
y∈V

(max
i

sim(Qix, y)

In the case where the translation is done by a single matrix Q, the standard inference procedure is the
following. The translation of a source word embedding x to the target language is obtained by:

ŷ = arg max
y∈V

sim(Qx, y) (5)

where V is the vocabulary of the target language. sim(x, y) can be, for example, the cosine similarity.
However, in our case, there are k matrices which produce a different k word translations and we need to
select the most suitable one. A natural solution is to use the translation similarity measure to decide on
the correct matrix:

ŷ = arg max
y∈V

(max
i

sim(Qix, y)). (6)

We dub this inference process Max-Scoring inference. We dub the entire proposed procedure Multi-Matrix
Model (MMM).

3 Experiments

Experimental Setup. In this experiment we empirically tested the advantages of using multiple matrices
for the word translation task. We used the publicly available MUSE dictionaries (Lample et al., 2018)2 for
supervised mapping learning and evaluation. We used 300-dimensional pre-trained fastText word vectors,
trained on Wikipedia (Bojanowski et al., 2017)3. The vectors were normalized to unit length and then
zero centered (Artetxe et al., 2016). We conducted several experiments, all with English (En) as either the
source or the target language. We report word translation results for De, Es, Fr, It, Pt in both directions.
Compared methods. We compared the following translation methods in our experiments:

(1) PA (Procrustes Analysis). The standard PA solution with one mapping from the source to the
target space. We applied the same training procedure as in the supervised version of (Lample et al., 2018)
and (Xing et al., 2015). Inference was done according to Eq. (5).

2https://github.com/facebookresearch/MUSE
3https://github.com/facebookresearch/fastText
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En-De De-En En-Es Es-En En-Fr Fr-En En-It It-En En-Pt Pt-En Avg.
PA 71.27 68.87 78.80 77.87 77.07 77.33 73.33 73.33 73.87 74.27 74.60

MMM 72.13 69.73 79.2 78.47 78.2 78.67 73.13 75.67 74 75.4 75.46

Table 1: Word translation accuracies (precision@1) for PA and MMM using the cosine similarity metric
for inference, averaged over 5 runs. Results in bold are the best for each pair.

En-De De-En En-Es Es-En En-Fr Fr-En En-It It-En En-Pt Pt-En Avg.
PA 74.6 72.87 81.33 82.6 81.27 82.53 76.6 77.07 79.67 79.53 78.81

MMM 74.53 72.33 81.67 82.8 81.87 83.13 76.67 78.47 80 79.6 79.11

Table 2: Word translation accuracies (precision@1) for PA and MMM using the CSLS metric for inference,
averaged over 5 runs. Results in bold are the best for each pair.

(2) MMM (Multi-Matrix Model). An extension of the PA algorithm, with 2 orthogonal matrices. For
k ≥ 3 the gain in accuracy was not significant although, the MSE objective (2) still went down. Inference
was done according to Eq. (6).

We report results for both cosine and Cross-domain Similarity Local Scaling (CSLS) (Lample et al.,
2018) similarity metrics as the sim function in Eq. (5) and (6).
Results and Analysis. Tables 1 and 2 list the word translation results in terms of precision@1. We see
that in most cases our Multi-Matrix model outperformed PA, indicating that using more than a single
mapping from the source to the target space benefits in word translation task. The benefit is larger for the
cosine similarity metric, which is expected since, our alternate minimization procedure uses Euclidean
distance.

In Table 3 we present several examples where our proposed algorithm predicted a correct translation
whereas the baseline method (PA) did not.

Pair S k = 1 k = 2

En-De fewer meisten weniger
En-De joke peinlich scherz
En-Fr pushing avançant pousser
Fr-En mesurer measured measuring
Fr-En piscine playground pool

Table 3: Instances from our experiment where the
single matrix method (k = 1) predicted a wrong
translation for the source word (S) whereas our pro-
posed method (k = 2) predicted a correct one.

To better understand the advantage of using
two clusters, we analyzed the best scoring output
from each cluster. We observed that multiple
clusters captured different possible translations
(and senses) of the same source word, as claimed
in Sec. 1. For a fair comparison we also look at
the top-k translations obtain by the PA solution,
where k is the number of mapping matrices.

For example, in Fr-En, measuring and mea-
surement are both correct translations of mesurer
(Fr), each obtained by a different mapping. How-
ever, the top-2 predictions using the single ma-
trix method are measured and quantify which are

both incorrect. Another example is when translating cumprimento from Portuguese to English. Both
compliance and fulfillment, which were produced by MMM, are correct translations, whereas the top-2
translations of PA were compliance (correct) and obligations (incorrect). Similarly, translating maßstab
from German to English with MMM resulted in yardstick and scale which are both correct translations,
whereas the top-2 translations of PA method were scale (correct) and reproducible (incorrect). In all of
these cases, having two separate clusters produced the two senses. This demonstrates that by using two
clusters we can better capture multiple senses of the source word. This phenomenon was observed across
all language pairs.

Another interesting observation for the En-Fr pair involves gender differences. In French, there are
different masculine and feminine translations for a word. The word colombian in English has separate
entries in French for colombian - colombien (masculine) and colombian - colombienne (feminine). A
single matrix predicted colombienne whereas using two matrices predicted colombien and colombienne.
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Further, we verified that the second best translation in the single matrix case was incorrect (vénézuélienne).
Another example is when translating Prussian (En) to French. The correct translations we obtained were
Prussien (masculine) and Prussienne (feminine). Whereas the top-2 predictions by the PA algorithm
were Prussienne and Prusse (meaning Prussia rather than Prussian). Each cluster in the two-matrix case
generated one of the correct translations.

pair NS k = 1 k = 2

En-Es 0.63 0.72 0.73
En-De 0.60 0.72 0.73
En-It 0.65 0.73 0.73
Es-It 0.60 0.75 0.75
De-Es 0.55 0.72 0.72
De-It 0.56 0.70 0.71
Avg 0.60 0.72 0.73

Table 4: Results of the cross-lingual
word similarity task. NS denotes the
NASARI baseline.

We further evaluated the quality of our translation matrices
using a word similarity task. We used the SemEval 2017 data
(Camacho-Collados et al., 2017) which has pairs of nominals
from the source and target languages respectively that are man-
ually scored on similarity on a scale between 1-5. We translated
each source embedding vector into the target embedding space
using a system of k matrices as described above and measured
how well it was correlated with the human labeled score using
the Spearman Rho correlation coefficient. We also report the
results of a baseline system, NASARI (Camacho-Collados et al.,
2016). Note that the best performing systems in the competition
used large knowledge bases such as ConceptNet whereas we
only relied on bilingual dictionaries. In Table 4, we show that
we obtained decent performance on this task by leveraging the

bilingual dictionaries and when using multiple matrices we outperformed the single matrix results in
(Lample et al., 2018). Using more than two matrices does not yield much improvement in the results.

4 Conclusion

In this paper, we presented a natural extension of the Procrustes Analysis algorithm that relaxes the current
single-matrix modeling assumption. We empirically demonstrated the superiority of our method on two
standard word translation tasks. Our proposed method based on multiple matrices can also be applied as a
natural extension to several other related settings. In the future, we plan to investigate an unsupervised
dictionary setting using our algorithm in the refinement steps (Artetxe et al., 2017b; Lample et al., 2018).
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