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Abstract

Cross-lingual entity alignment, which aims to match equivalent entities in KGs with different lan-
guages, has attracted considerable focus in recent years. Recently, many graph neural network
(GNN) based methods are proposed for entity alignment and obtain promising results. How-
ever, existing GNN-based methods consider the two KGs independently and learn embeddings
for different KGs separately, which ignore the useful pre-aligned links between two KGs. In
this paper, we propose a novel Contextual Alignment Enhanced Cross Graph Attention Network
(CAECGAT) for the task of cross-lingual entity alignment, which is able to jointly learn the em-
beddings in different KGs by propagating cross-KG information through pre-aligned seed align-
ments. We conduct extensive experiments on three benchmark cross-lingual entity alignment
datasets. The experimental results demonstrate that our proposed method obtains remarkable
performance gains compared to state-of-the-art methods.

1 Introduction

Knowledge graphs (KGs) have recently demonstrated their potential in many natural language processing
(NLP) tasks, such as language modelling (Zhang et al., 2019) and question answering (Wu et al., 2019a).
With the rapid growth of multilingual KGs, such as DBpedia (Lehmann et al., 2015) and YAGO (Rebele
et al., 2016; Suchanek et al., 2008), cross-lingual entity alignment has attracted considerable focus due
to the lack of cross-lingual links. The task of cross-lingual entity alignment aims to automatically detect
equivalent entities from different monolingual KGs to bridge the language gap.

Most recently, many graph neural networks (GNNs) based methods are proposed for entity alignment
(Xu et al., 2019; Wang et al., 2018; Mao et al., 2020; Cao et al., 2019; Yang et al., 2019; Sun et al.,
2019). Since GNNs are powerful to model graph-structured data by aggregating neighborhood infor-
mation, the GNN-based methods have shown promising performance. However, existing GNN-based
methods model different KGs separately, which ignore the useful pre-aligned links between two KGs.
These GNN-based methods only use the pre-aligned seed alignments to optimize the objective function
during training and fail to take full use of seed alignments, which provide useful contextual alignment
information for entity alignment task. Intuitively, if two entities in different KGs share many pre-aligned
neighbors, they are most likely to be equivalent entities. Taking the example shown in Figure 1(a), al-
though the entity “哥威迅语(Gothic language)” in Chinese from G1 has the same translated surface
form with the entity “Gothic language” in English fromG2, the correct alignment for “哥威迅语(Gothic
language)” is the entity “Gwich’in language” in English. By considering the contextual alignments in
different KGs, such as “美国(United States)” and “United States”, “加拿大(Canada)” and “Canada”,
“纳－德内语系(Na de nene)” and “Na-Dene languages”, “德内语支(German language branch)” and
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“Athabaskan languages”, we can get more evidences that the embeddings of entity “哥威迅语(Gothic
language)” and entity “Gwich’in language” are equivalent with each other. Thus, the mismatch issue can
be easily corrected. The contextual alignments information is not explicitly considered in conventional
GNN-based methods, which leads to sub-optimal results.

(a) (b)

Figure 1: (a) An example of cross-lingual entity alignment in DBP15KZH−EN dataset. The translated
surface strings for Chinese entities are provided in original DBP15KZH−EN dataset (Sun et al., 2017).
The dashed lines represents the pre-aligned neighbors. (b) The comparison between conventional GNN-
based methods and the proposed CAECGAT model. Our aim is to predict whether the entity1 from G1

and entity1 from G2 are two equivalent entities.

Therefore, it is beneficial to take full advantage of contextual alignments for entity alignment task. To
this end, we propose a Contextual Alignment Enhanced Cross Graph Attention Network (CAECGAT)
for the task of cross-lingual entity alignment. CAECGAT is able to jointly learn the embeddings in
different KGs by propagating cross-KG information through pre-aligned seed alignments. Specifically,
we develop a new cross graph attention (CGAT) layer to learn cross-KG information. The CGAT layer
includes a cross-KG aggregation layer and an attention-based cross-KG propagation layer. We first use
the cross-KG aggregation layer to transfer the entity information across two KGs through the pre-aligned
seed entities. Thus, the embeddings of different KGs are mapped into the same semantic space by sharing
cross-KG information. Then, the attention-based cross-KG propagation layer is applied to focus on the
neighbors with important cross-KG information, so that the the semantic gap between different languages
can be alleviated by propagating the cross-KG information.

To train the model, we split the seed alignments into contextual seed alignments and objective seed
alignments during training. The contextual seed alignments are fed into the model, which provide pre-
aligned information and allow the entity information to propagate across different KGs. While the ob-
jective seed alignments are used to optimize parameters in the model. Figure 1(b) shows the comparison
between conventional GNN-based methods and the proposed CAECGAT model. It is noted that there
is a significant difference between the conventional GNN-based methods and our proposed CAECGAT
model. The conventional GNN-based methods regard all pre-aligned entity pairs as objective seed align-
ments for training and ignore the contextual aligned information to propagate across different KGs,
resulting in the sub-optimal results. On the contrary, our proposed CAECGAT model chooses one batch
seed alignment as objective seed alignments (e.g., entity1 in Figure 1(b)) and the rest as contextual seed
alignments (e.g., entity2 and entity3 in Figure 1(b)) with an iterative manner. In this case, we can better
learn the cross-KG embeddings by propagating contextual seed alignments across different KGs.

The main contributions of this study are summarised as follows:

• We propose a novel Contextual Alignment Enhanced Cross Graph Attention Network (CAECGAT)
for cross-lingual entities alignment, which can jointly learn cross-KG embeddings by propagating
information across different KGs.

• We propose a new training strategy by dividing the seed alignments into contextual and objective
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Table 1: Notation List.
Notation Description
G1, G2 The knowledge graphs in different languages.
E1, E2 The entities in G1 and G2.
R1, R2 The relations in G1 and G2.
T1, T2 The triples in G1 and G2.
A The seed alignments.
Actx, Aobj The contextual seed alignments and objective seed alignments.
E1,E2 The initial entity embeddings for G1 and G2.
Ē1, Ē2 The final entity embeddings for G1 and G2.
e1, e2 The initial entity vectors for e1 ∈ G1 and e2 ∈ G2

ē1, ē2 The final entity vectors for e1 ∈ G1 and e2 ∈ G2.
gate The gate mechanism to combine cross-KG embeddings.
crossAggr The function to aggregate cross-KG information.
crossAtt The function to propagate cross-KG information in different KGs.
L(φ;Aobj) The loss function of the proposed CAECGAT model.
φ The trainable parameters in the model.
D(ē1, ē2) The L1 distance between entity vectors ē1 and ē2

seed alignments with an iterative manner, enabling our model to capture the cross-KG information.

• We conduct extensive experiments on three benchmark datasets. The experimental results demon-
strate that our proposed method obtains remarkable performance gains compared to state-of-the-art
methods.

2 Approach

2.1 Overview

Figure 2 illustrates the structure of the proposed CAECGAT model, which consists of multiple CGAT
layers. A CGAT layer contains a cross-KG aggregation layer and an attention-based cross-KG propaga-
tion layer. As illustrated in Figure 2, given two different KGs G1 and G2, and a collection of pre-aligned
entity pairs, we first use the cross-KG aggregation layer to transfer the entity information across the two
KGs through the pre-aligned entity pairs. This operation is useful to map the entity embeddings in dif-
ferent KGs into the same semantic space by sharing cross-KG entity embeddings. Then, we applied the
attention-based cross-KG propagation layer to gather neighbors with important cross-KG information.
Thus, the cross-KG information can be propagated in two KGs. By stacking multiple CGAT layers, the
model is able to learn multi-hop cross-KG information. The main notations of this paper are summarized
in Table 1.

2.2 Cross-KG Aggregation

The cross-KG aggregation is used to transfer graph information across different KGs through seed align-
ments. By taking full advantage of pre-aligned entity pairs, we can make full use of pre-aligned neighbors
as contextual information to predict new alignments. This kind of cross-KG alignment information is
very useful for entity alignment task but ignored in previous methods. In this study, we take full ad-
vantage of the pre-aligned entity pairs to aggregate cross-KG information and mitigate the semantic gap
between different KGs.

Formally, give two different KGs G1 = (E1, R1, T1) and G2 = (E2, R2, T2), and a set of seed
alignments A = {(e1, e2)|e1 ∈ E1, e2 ∈ E2}. In this paper, we represent the entities in the two KGs as
k-dimensional embedding matrices E1 and E2. During training, we split all the seed alignments into a
set of contextual seed alignments Actx and a set of objective seed alignments Aobj . The contextual seed
alignments in Actx are used as bridge to transfer information across different KGs. Thus, the cross-KG
information provided by Actx can be used as contextual alignment information to predict the matching
scores for the entity pairs in objective seed alignments in Aobj .

Concretely, for each pre-aligned entity pair (e1, e2) ∈ Actx, we use a gate mechanism to update their
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Figure 2: The architecture of the proposed CAECGAT model. The cross-KG aggregation layer is used
to transfer cross-KG information across different KGs through contextual seed alignments. And the
attention-based cross-KG propagation layer is used to propagate the cross-KG information in these two
KGs. By stacking multiple CGAT layers, the cross-KG information can be propagated to multi-hop
neighbors.

embeddings by combing the embeddings of themselves and their counterpart entities from the other KGs:

hl
e1 = gate(el1, e

l
2) = gl1 · el1 + (1− gl1) · el2

hl
e2 = gate(el2, e

l
1) = gl2 · el2 + (1− gl1) · el1

(1)

where el1 and el2 are the vectors of entity e1 and e2 in the l-th layer, gl1 and gl2 are the gate mechanism to
control how much information flow across KGs, which is computed as:

gl1 = σ(Wl
1[e1||e2] + bl

1)

gl2 = σ(Wl
2[e1||e2] + bl

2)
(2)

where σ is the sigmoid activation function which can constrain the output values within the range of 0 to
1, Wl

{1,2} and bl
{1,2} are the parameters, || denotes the concatenation operation.

For the entities without pre-aligned counterpart entities in the other KGs, their embeddings do not
change in the cross-KG aggregation layer. By applying this cross-KG aggregation method, we can obtain
cross-KG embeddings Hl

1 and Hl
2 with sharing entity representations for equivalent entities. Formally,

the cross-KG embeddings is computed as:

Hl
1 = crossAggr(El

1,E
l
2, Actx)

Hl
2 = crossAggr(El

2,E
l
1, Actx)

(3)

where crossAggr denotes the cross-KG aggregation layer, which can be formulated as

crossAggr(el1,E
l
2, Actx) =

{
gate(el1, e

l
2), if (e1, e2) ∈ Actx

el1, otherwise
(4)

and crossAggr(el2,E
l
1, Actx) is computed in a similar form.

2.3 Attention-based Cross-KG Propagation
Recently, GNNs have been successfully applied for entity alignment. These preliminary studies use
GNNs to propagate neighborhood information in a monolingual KG and fail to take full use of seed
alignments to alleviate the semantic gap between different KGs. In this study, we attempt to jointly learn
the entity embeddings and propagate cross-KG information in different KGs.

We have encoded cross-KG information in the entity embeddings by applying the cross-KG aggrega-
tion layer, we can further propagate the cross-KG information using GNNs rather than only mono-lingual
KG information. Specifically, we use an attention-based cross-KG propagation layer, which is inspired
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by graph attention network (GAT) (Velickovic et al., 2017), to aggregate neighborhood features. Our
attention-based cross-KG propagation layer aims to select the most important common neighbors shared
by different KGs to enhance the entity embeddings. Thus, the semantic gap can be alleviated by focusing
on the common neighbors with cross-KG information and reducing noising neighbors.

Given the output entity embeddings of cross-KG aggregation layer, e.g., Hl
1 and Hl

2 for two KGs G1

andG2, we use a graph attention mechanism to update the entity embeddings by gathering neighborhood
information:

El+1
1 = crossAtt(Hl

1, G1)

El+1
2 = crossAtt(Hl

2, G2)
(5)

where crossAtt is the attention-based cross-KG propagation function. For each entity e1 ∈ G1, the
output feature of crossAtt function is generated by gathering the cross-KG neighborhood embeddings
using a weighted sum function:

el+1
1 = crossAtt(crossAggr(El

1,E
l
2, Actx), e1)

= crossAtt(Hl
1, e1)

= Relu(hl
e1 +

∑
ek∈Ne1

α1kh
l
ek
)

(6)

where Relu (Glorot et al., 2011) is the activation function,Ne1 is a set of neighbors of entity e1, and α1k

is the normalized attention weight for the neighborhood entity ek, which is computed as:

α1k =
exp(s(hl

e1 ,h
l
ek
))∑

e′k∈Ne1
exp(s(hl

e1 ,h
l
e′k
))

(7)

where s is the scoring function which is denoted as:

s(hl
e1 ,h

l
ek
) = LeakyRelu(vT [hl

e1 ||h
l
ek
]) (8)

where v is the attention vector, LeakyRelu (Maas et al., 2013) is the activation function which is widely
used in graph attention mechanism. The crossAtt function for the entities in KG G2 is computed in a
similar form.

Formally, the update rule of the cross-KG aggregation and cross-KG propagation layers in a CGAT
layer can be denoted as:

El+1
1 = crossAtt(crossAggr(El

1,E
l
2, Actx), G1)

El+1
2 = crossAtt(crossAggr(El

2,E
l
1, Actx), G2)

(9)

By stacking L cross-KG aggregation and attention-based cross-KG propagation layers, we can obtain
new entity embeddings Ē1 = EL

1 and Ē2 = EL
2 , which contain both cross-KG and multi-hop neighbor-

hood information.

2.4 Optimization and Prediction
The goal of entity alignment is to ensure that the learned embeddings of equivalent entities in different
KGs are close to each other. Instead of just use the seed alignments to compute the loss function in con-
ventional GNN-based methods, our model can take full use the seed alignments as contextual alignments
during training and prediction.

During training, we use the objective seed alignments Aobj and margin-based ranking loss function to
optimize the model, which is denoted as:

L(φ;Aobj) =
∑

(e1,e2)∈Aobj

[D(ē1, ē2) + λ−D(ē1, ē
−
2 )]+

+
∑

(e1,e2)∈Aobj

[D(ē1, ē2) + λ−D(ē−1 , ē2)]+
(10)
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Algorithm 1 CAECGAT Model
Input: Given KGs G1 and G2, as well as the initial entity embeddings E1, E2 and pre-aligned seed alignments A.
Output: The final entity embeddings Ē1, Ē2 and parameters φ.
1: Let E0

1 = E1 and E0
2 = E2.

2: repeat
3: Select a batch seed alignments as objective seed alignments Aobj and the rest are used as context seed alignments Actx.
4: for l = 1 to L do
5: El+1

1 = crossAtt(crossAggr(El
1,E

l
2, Actx), G1);

6: El+1
2 = crossAtt(crossAggr(El

2,E
l
1, Actx), G2);

7: end for
8: Set Ē1 = EL

1 and Ē2 = EL
2

9: Compute loss function L(φ;Aobj).
10: Optimize parameters φ in CAECGAT model.
11: until reach the maximum number of training epochs
12: Set Actx = A.
13: Use the learned CAECGAT model to predict the final entity embeddings Ē1 and Ē2.

where [x]+ = max{0, x}, φ denotes the parameters in the model , (e1, e−2 ) and (e−1 , e2) are the negative
entity alignment pairs obtained by randomly replacing the positive entity e1 or e2, ē1 ∈ Ē1 and ē2 ∈ Ē2

are the vectors of e1 and e2, D(ē1, ē2) = ||ē1 − ē2||1 denotes the L1 distance function, λ > 0 is the
margin hyper-parameter.

To better understand the proposed model, we describe the details of CAECGAT model in Algorithm 1.
Note that the contextual seed alignments Actx and objective seed alignments Aobj are not fixed during
training. Actually, these two seed alignments sets will be dynamically changed to ensure all the seed
alignments can be used to optimize the loss function. Specifically, all the seed alignments in A are split
into several batch seed alignments. For each optimization step, we select one batch seed alignments as
objective alignments Aobj , and all the rest seed alignments are used as contextual seed alignments Actx.
We will repeat this operation until reach the maximum of training epochs, which is described from line
2 to line 11 in Algorithm 1.

During prediction, given a test entity e1 (or e2) in from KG G1 (or G2), we rank all entities in another
KG G2 (or G1) according to the L1 distance computed by using the entity vectors Ē1 and Ē2 learned
by CAECGAT model. Note that, during prediction, we can use all the pre-aligned seed alignments
in A as contextual seed alignments, namely Actx = A, which is described from line 12 to line 13 in
Algorithm 1. Therefore, our proposed CAECGAT model provides a new way to take full advantage of
the seed alignments in both training and prediction procedures.

3 Experiments

In this section, we conduct extensive experiments to evaluate our proposed method CAECGAT on cross-
lingual entity alignment task. The detailed experiments on benchmark datasets and the results are de-
scribed in the following subsections.

3.1 Datasets

To evaluate the ability of the proposed CAECGAT model, we conduct experiments on three widely used
cross-lingual datasets from DBP15K (Sun et al., 2017). These datasets are extracted from multilin-
gual DBpedia (Lehmann et al., 2015), including four KGs with different languages (English, Chinese,
Japanese and French). Three cross-lingual datasets are built upon these KGs, including DBP15KZH−EN

(Chinese-English), DBP15KJA−EN (Japanese-English) and DBP15KFR−EN (French-English). Each
dataset contains 15,000 inter-lingual links connecting equivalent entity pairs in KGs with different lan-
guages. The statistics of the datasets are summarized in Table 2.

3.2 Implementation Details

In our experiments, as done in (Xu et al., 2019; Wu et al., 2019c), the entity embeddings are initialized
by using the sum of word vectors of the entities’ surface form. We choose the above initialization due to
its good performance shown in various previous work (Xu et al., 2019; Wu et al., 2019c).
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Table 2: Statistics of the datasets.
Dataset Entities Relations Rel.Triples

DBP15KZH−EN
Chinese 66,469 2,830 153,929
English 98,125 2,317 237,674

DBP15KJA−EN
Japanese 65,744 2,043 164,373
English 95,680 2,096 233,319

DBP15KFR−EN
French 66,858 1,379 192,191
English 105,889 2,209 278,590

We use the same data split as in various previous work (Sun et al., 2017; Yang et al., 2019), namely
30% for training and 70% for testing. We further sample 10% of the training data as the development
set for parameter selection, and use the remaining 90% for training. We apply Adam (Kingma and
Ba, 2015) to optimize the parameters in the model, and we train the model up to 5, 000 epochs. The
hyper-parameters are selected by using grid search according to the Hits@1 on development set. We
select the number of negative entity pairs from {10, 20, 30, 50}, the margin parameter λ in Equation 10
from {1, 3, 5}, the number of CGAT layers from {1, 2, 3}, the dropout rate from {0.1, 0.2, 0.3}, and the
batch size from 500, 1000, 1500, 2000, 3000, the learning rate from {0.002, 0.001, 0005}. Finally, we
randomly sample 30 negative alignment entity pairs for each positive pair, and the margin parameter in
Equation 10 is set to λ = 3. We stack two CGAT layers to propagate multi-hop cross-KG information.
The learning rate is set to 0.002. The dropout rate is set to 0.2. The batch size is set to 2, 000. We
evaluate the performance of the model using the standard metrics Hits@1 (H@1), Hits@10 (H@10) and
MRR (Mean Reciprocal Rank). All experiments reported in this study are conducted on NVIDIA GTX
1080Ti GPUs and the codes are implemented using TensorFlow.

3.3 Comparison Models
To investigate the power of the proposed CAECGAT, we compare the proposed method with various
baselines. These baseline methods can be roughly classified into two groups: embedding-based models
and GNN-based models.

• Embedding-based Models. The embedding-based models compared in our study include the
following baselines: JE (Hao et al., 2016), JAPE (Sun et al., 2017), BootEA (Sun et al., 2018),
MTransE (Chen et al., 2017), IPTransE (Zhu et al., 2017).

• GNN-based Models.We follow the line of GNN-based methods and compare our proposed CAEC-
GAT with the following baselines: GCN-Align (Wang et al., 2018), KECG (Li et al., 2019),
MuGNN (Cao et al., 2019), AliNet (Sun et al., 2019), HGCN-JE (Wu et al., 2019c), HMAN (Yang
et al., 2019), MRAEA (Mao et al., 2020), NAEA (Zhu et al., 2019), RDGCN (Wu et al., 2019b) and
GM-EHD-JEA (Xu et al., 2020).

We also note that some research studies, such as KDCoE (Chen et al., 2018), NTAM (Li et al., 2018),
SEA (Pei et al., 2019) and OTEA (S. et al., 2019), and attribute enhanced methods (Trisedya et al., 2019),
focus on the entity alignment on other datasets instead of DBP15K. We will leave these comparison in
the future work due to the limited space.

3.4 Main Results
Table 3 presents the cross-lingual entity alignment performance of our proposed model, as well as the
comparisons with various baselines. As shown in Table 3, our model CAECGAT achieves the best per-
formance on DBP15KJA−EN and DBP15KFR−EN across all the metrics, and achieves the best result of
H@10, the second best result of H@1 and MRR on DBP15KZH−EN . These results demonstrate the ef-
fectiveness of our proposed CAECGAT model. Compared to the most similar GNN-based models, such
as GCN-Align (Wang et al., 2018), the proposed CAECGAT model is able to take the seed alignments
as contextual information and propagate the cross-KG information in different KGs, making our CAEC-
GAT model achieves the remarkable performance gains. For example, CAECGAT obtains a 34.30%
improvements over GCN-Align by H@1 on DBP15KZH−EN . These results shows that the contextual
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Table 3: Experimental results on entity alignment. The results of the baselines are directly taken from
the original papers. The best results are in bold, and the second best results are in underline.

Methods DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
JE (Hao et al., 2016) 21.27 42.77 - 18.92 39.97 - 15.38 38.84 -

MTransE (Chen et al., 2017) 30.83 61.41 0.364 27.86 57.45 0.349 24.41 55.55 0.335
JAPE (Sun et al., 2017) 41.18 74.46 0.490 36.25 68.5 0.476 32.39 66.68 0.430

IPTransE (Zhu et al., 2017) 40.60 73.50 0.516 36.70 69.30 0.474 33.30 68.50 0.451
BootEA (Sun et al., 2018) 62.94 84.75 0.703 62.23 85.39 0.701 65.30 87.44 0.731

GCN-Align (Wang et al., 2018) 41.25 74.38 0.549 39.91 74.46 0.546 37.29 74.49 0.532
GM (Xu et al., 2019) 67.93 78.48 - 73.97 87.15 - 89.38 95.24 -

KECG (Li et al., 2019) 47.77 83.5 0.598 48.97 84.4 0.61 48.64 85.06 0.61
MuGNN (Cao et al., 2019) 49.40 84.40 0.611 50.10 85.70 0.621 49.50 87.00 0.621
AliNet (Sun et al., 2019) 53.90 82.60 0.628 54.90 83.10 0.654 55.20 85.20 0.657

RDGCN (Wu et al., 2019b) 70.75 84.55 - 76.74 89.54 - 88.64 95.72 -
HGCN-JE (Wu et al., 2019c) 72.03 85.7 - 76.62 89.73 - 89.16 96.11 -
HMAN (Yang et al., 2019) 56.20 85.10 - 56.70 86.90 - 54.00 87.10 -
NAEA (Zhu et al., 2019) 65.01 86.73 0.720 64.14 87.27 0.718 67.32 89.43 0.752

MRAEA (Mao et al., 2020) 75.70 92.98 0.827 75.78 93.38 0.826 78.04 94.81 0.849
GM-EHD-JEA (Xu et al., 2020) 73.58 - - 79.15 - - 92.43 - -

CAECGAT (ours) 75.55 93.38 0.818 83.58 95.59 0.881 94.68 99.18 0.965

Table 4: Ablation Study.
Methods DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
BASELINE 56.09 71.55 0.614 67.1 78.25 0.712 85.48 91.92 0.878

GAT 63.86 91.92 0.709 72.35 94.64 0.815 86.24 98.70 0.895
CrossGCN 65.45 92.85 0.757 72.07 94.9 0.809 93.79 98.98 0.958

CAECGATL=1 72.25 92.03 0.796 81.9 93.68 0.862 93.55 98.5 0.954
CAECGATL=2 75.55 93.38 0.818 83.58 95.59 0.881 94.68 99.18 0.965
CAECGATL=3 74.95 93.38 0.818 82.46 96.21 0.877 93.78 98.77 0.956

seed alignments are important for entity alignment task and our model is effective to bridge the language
gap between different KGs by taking these contextual seed alignments into account.

3.5 Ablation Study
In order to better understand how each component affects the performance of the proposed CAECGAT
model, we conduct an ablation study shown in Table 4. There are three variants of our proposed CAEC-
GAT model, “BASELINE” is a simple model which identifies the equivalent counterparts from different
KGs with the embeddings learned using the sum of word vectors within the surface names of entities.
“GAT” represents the conventional graph attention network, which is reduced the cross-KG aggrega-
tion layer from the proposed CAECGAT model. “CrossGCN” is the model obtained by replacing the
attention-based propagation layer with multiple GCN layers. The subscripts L = 1, 2, 3 denote models
with different numbers of CGAT layers.
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Figure 3: The MRR results on DBP15K using different proportions of seed alignments.

From Table 4, we can observe that the BASELINE model obtains good results by considering surface
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names, which has been proved in previous works (Xu et al., 2019; Xu et al., 2020). By adding GNN
layers, the performances obtain further improvements (e.g., GAT vs. BASELINE). And our proposed
CAECGATL=2 obtains large performance gains over the GAT model for all datasets, which indicates
the cross-KG aggregation plays a very important role in our model. Compared with CrossGCN, our
CAECGATL=2 also performs much better. This is because the attention mechanism in cross-KG propa-
gation layer is able to select the neighbors with important cross-KG information and mitigate the seman-
tic gap between different KGs by propagating cross-KG information. These experimental results clearly
demonstrate that all the components in the CAECGAT model can contribute a lot to the performance.

Compared the CAECGAT models with different layers, we can see that the CAECGATL=2 with
two CGAT layers and CAECGATL=3 with three CGAT layers achieve better performance than
CAECGATL=1. This is because CAECGATL=1 with one CGAT layer can only capture neigbhorhood
information from one-hop neighbors, while CAECGATL=2 and CAECGATL=3 are able to propagate
multi-hop neigbhors by stacking multiple CGAT layers. However, the performance of CAECGATL=3

can not be further improved compared with CAECGATL=2 and stacking more layers will increase the
parameters in the model. Therefore, we set the number of CGAT layers to 2.

3.6 Performance vs. Different size of seed alignments
To investigate how the proportions of pre-aligned seed alignments affects the performance of our CAEC-
GAT model, we further conduct experiments to evaluate the performance when the proportions of training
sets vary from 10% to 50% with a step of 10%, and all the rest entity alignments are used for testing
(e.g., from 10% for training and 90% for testing to 50% for training and 50% for testing). As depicted in
Figure 3, we compare our proposed CAECGAT with the strong baseline GAT model which removes the
cross-KG aggregation layer in our CAECGAT model. We can see that the performances for all datasets
gradually improve when the proportions of training sets increase. Compared the proposed CAECGAT
with the baseline GAT model, we can see that our CAECGAT consistently outperforms GAT model by
large performance gains in all proportions, which reconfirms that our CAECGAT model is powerful to
capture cross-KG features and reduces the semantic gap between different KGs.

4 Conclusions and Future Work

In this paper, we propose a novel CAECGAT model for cross-lingual KG entity alignment task, which
take full use of seed alignments to alleviate the semantic gap between different KGs. We first use a cross-
KG aggregation layer to transfer entity information across different KGs, which enables the embeddings
of different KGs to share cross-KG information. Then, an attention-based cross-KG propagation layer
is applied to gather neighbors with important cross-KG information. By staking multiple CGAT layers,
the cross-KG information can be propagated in the two KGs. Experimental results on several benchmark
datasets demonstrate the effectiveness of the proposed CAECGAT model.

In the future, we will consider more entity information, such as entity properties and descriptions.
Besides, we may investigate the proposed model to other datasets (e.g., DBP100K (Sun et al., 2017) and
WK31 (Chen et al., 2017)).
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