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Abstract

Coreference resolution is the task of identifying all mentions in a text that refer to the same
real-world entity. Collecting sufficient labelled data from expert annotators to train a high-
performance coreference resolution system is time-consuming and expensive. Crowdsourcing
makes it possible to obtain the required amounts of data rapidly and cost-effectively. However,
crowd-sourced labels can be noisy. To ensure high-quality data, it is crucial to infer the correct
labels by aggregating the noisy labels. In this paper, we split the aggregation into two subtasks,
i.e, mention classification and coreference chain inference. Firstly, we predict the general class
of each mention using an autoencoder, which incorporates contextual information about each
mention, while at the same time taking into account the mention’s annotation complexity and
annotators’ reliability at different levels. Secondly, to determine the coreference chain of each
mention, we use weighted voting which takes into account the learned reliability in the first sub-
task. Experimental results demonstrate the effectiveness of our method in predicting the correct
labels. We also illustrate our model’s interpretability through a comprehensive analysis of exper-
imental results.

1 Introduction

Coreference resolution is the task of identifying all mentions in a text that refer to the same real-world
entity. However, it is time-consuming and expensive to collect the large amounts of data from expert
annotators that are required to train high-performance coreference resolution systems. A rapid and cost-
effective alternative is to obtain labels through crowdsourcing (Snow et al., 2008). However, crowd-
sourced labels are often noisy. In the example in Figure 1, the mention it actually refers to The Super
Lamb Banana. However, different crowd annotators produced conflicting labels for this mention. We
can also observe that the coreference annotation is more complex than classification and sequence labels.
Annotators have to determine an appropriate referent mention for some mentions. Because the perfor-
mance of supervised learning models is highly dependent on the quality of training data, the aggregation
of these noisy labels, (i.e., the process of determining the label that is most likely to be correct) is im-
portant to obtain a high-quality training corpus. Although label aggregation is a well-studied topic, most
existing studies of natural language labelling tasks have only focused on aggregating classification or
sequence labels. To the best of our knowledge, there is only one previous study (Paun et al., 2018) that
has investigated how to aggregate crowd-sourced coreference labels.

In this paper, we propose a 2-step framework in which the aggregation task is broken down into two
subtasks, i.e., mention classification and coreference chain inference.

In the mention classification subtask, our model predicts the general category of a mention as shown
in Table 1. Our model is based on the autoencoder proposed in (Yin et al., 2017), but with significant
extensions. Our encoder is a classifier which takes as its input the crowd labels for each mention, together
with the mention’s context information. Then it predicts the most plausible general class label for the
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Figure 1: An example (adapted from the Phrase
Detectives Corpus (Chamberlain et al., 2016)) of
crowd-sourced coreference annotation.

General Label Type Description
Discourse New (DN) The mention is a new entity in the text
Discourse Old (DO) The mention refers to an entity which has

already been introduced
Non-Referring (NR) The mention refers to no actual entity

(e.g., it in expletive constructions)
Property (PR) The mention refers to a property of an

entity (e.g., the most durable light is a
property of the bulb)

Table 1: Four general label types in a corefer-
ence resolution labelling task (Chamberlain et al.,
2016).

mention, by taking into account the annotation complexity of the mention and annotators’ reliability. The
first challenge in proposing the encoder is how to incorporate mention context information. We explore
the use of contextual embeddings for this purpose. The second challenge is how to effectively model
annotators’ behaviour in terms of their quality of annotation. Modelling annotator reliability is helpful
in detecting unreliable annotators and in facilitating appropriate task allocation (Donmez and Carbonell,
2008; Donmez and Carbonell, 2010; Li et al., 2017). Modelling only per-category reliability may not be
sufficient to characterise annotators’ behaviour patterns for a given annotation task. The original encoder
from (Yin et al., 2017) already estimates the per-category reliability. We additionally model overall and
per-instance reliability. In addition, we also model the instance complexity.

In the second subtask, i.e. coreference chain inference, based on the predicted general classes in the
first subtask, we predict each mention’s target (i.e., its referent entity which is usually another mention
in the text). If a mention is classified as Discourse Old (i.e., it refers to an entity mentioned previously
in the text) or as the Property of another mention, its coreference chain is inferred using weighted voting
in which the annotators’ labels are weighted by their reliability.

Our contributions are as follows: a) We propose a simple but efficient two-step framework for aggre-
gating crowd-sourced coreference labels. b) We investigate how information about context, annotator
reliability and instance complexity can be incorporated into our encoder network to infer correct labels.
c) Experimental results demonstrate that incorporating mention context, annotator reliability and instance
complexity can increase the accuracy of correct label prediction. Moreover, we conduct a comprehensive
analysis that shows the learned complexity and reliability are explainable.

2 Related Work

There have been many released coreference corpora in which the annotations were collected from a small
number of in-house annotators such as experts (Sundheim, 1995; Hirschman and Chinchor, 1998; Bagga
and Baldwin, 1999; Doddington et al., 2004; Pradhan et al., 2012; Singh et al., 2012; Guillou et al., 2014;
Garcia and Gamallo, 2014; Chaimongkol et al., 2014; Ghaddar and Langlais, 2016; Cohen et al., 2017;
Fonseca et al., 2017; Webster et al., 2018; Bamman et al., 2020; Tsvetkova, 2020). These annotators
were assumed to be reliable. Guha et al. (2015) and Chamberlain et al. (2016) attempted to collect
coreference annotations from non-expert crowd annotators. Even though crowd aggregation has been
studied for many years, most existing studies have focused on aggregating classification labels (Dawid
and Skene, 1979; Snow et al., 2008; Raykar et al., 2010; Hovy et al., 2013; Li et al., 2014; Felt et al.,
2015; Zheng et al., 2017; Yin et al., 2017; Rodrigues and Pereira, 2018; Guan et al., 2018; Li et al.,
2019; Zhang et al., 2019) or sequence labels (Hovy et al., 2014; Rodrigues et al., 2014; Huang et al.,
2015; Nguyen et al., 2017; Nye et al., 2018; Yang et al., 2018; Lin et al., 2019). Note that Raykar et
al. (2010) and Felt et al. (2015) also included contextual information. Raykar et al. (2010) incorporated
a classifier into their Bayesian model. The classifier took an instance’s representation as its input and
then predicted an answer. The unsupervised Latent Dirichlet Allocation topic model (Blei et al., 2003)
which can capture topics of words and documents was extended by Felt et al. (2015) to be able to handle
crowdsourced noisy labels. However, these models can not be applied to the coreference annotation in
a straightforward manner, because coreference labels are more complex and they are very different from
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Figure 2: Overview of the proposed method.

classification and sequence labels.
To overcome the lack of a suitable aggregation method for coreference annotations, Paun et al. (2018)

proposed the Mention-Pair Annotation model, which to the best of our knowledge, is the only study that
attempts to address this challenge. They defined a graphical model and introduced a true label indicator
for each <General Class, referent mention> pair, indicating whether or not the pair is correct. However,
this model does not include contextual information, which may support the prediction of the correct
labels, because the meaning of mentions usually depends on the context in which they occur.

3 Model

We break down the aggregation of crowd-sourced coreference labels into two steps: mention classifica-
tion and coreference chain inference, as illustrated in Figure 2. Below, we describe our method in more
detail. All the biases in linear layer parameters are omitted for simplification. Table 2 contains the main
notations of our model.

Notation Description
N Number of instances (i.e., mentions that have crowd-

sourced labels) in a dataset
T Number of annotators
K Number of general classes
Cn Crowd general labels of n-th mention (a T ×K matrix)
cn Flattened Cn

C̃n Reconstructed Cn by a decoder network
xn Contextual embedding of n-th mention
dn Annotation complexity of n-th mention
rct Per-category reliability of t-th annotator (aK×K matrix)
rot Overall reliability of t-th annotator (a scalar)
rnt Per-instance reliability of t-th annotator on n-th mention

(a scalar)
wto, wt

r Learnable parameters for computing the t-th annotator’s
overall and per-instance reliability respectively

wf Learnable parameters for computing instance complexity
We, Wd Learnable parameters of the encoder and decoder network

respectively

Table 2: Main notation for our proposed models.

Figure 3: Per-category reliability in the
method. Each annotator’s label is en-
coded as a vector which is described in
Section 3.1.1.

3.1 Mention Classification
In this step, the encoder network, which is a feed-forward neural network classifier, receives as input a
mention’s contextual embedding and crowd-sourced labels weighted by the annotators’ reliability. The
output of this encoder is the mention’s predicted general class (i.e., DN, DO, NR, or PR).

To prepare the input, we first obtain each mention’s contextual representation from a pre-trained em-
bedding model, and then concatenate the mention’s crowd labels with its contextual representation. This
concatenated vector is used as input to the complexity layer, which computes the instance complexity.
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The output of the complexity layer is used to weight the encoder output, which indicates how much at-
tention our model should pay to learn this instance. The goal is for our model to automatically pay more
attention to learning difficult instances than easy ones. Next, we use the mention’s contextual embedding
to compute annotator reliability, in order to weight the crowd-sourced labels in the concatenated vector.
Finally, the weighted concatenated vector is considered as the final input of our encoder.

Since the ground truth is unavailable in real-world situations, the expert labels in the dataset cannot
be used for training the encoder. We introduce a decoder network, which is another neural network that
reconstructs the encoder input. By using the reconstructed input, we maximise the log-likelihood of all
the observed crowd-sourced labels in the dataset to train the entire autoencoder.

3.1.1 Crowd Labels and Mention Contextual Embedding
Crowd Labels: For the n-th mention, we formulate its crowd-sourced general labels as a T ×K matrix
Cn. Cn

tk is set to 1 if the t-th annotator’s label is the k-th general label, otherwise to 0.
Mention Contextual Embedding: Since a mention could consist of more than one token , the average

of each token’s pre-trained contextual embedding is taken as the representation of the mention, which is
represented by the symbol xn.

3.1.2 Instance Complexity
The complexity of annotating a certain instance is an important factor affecting the quality of annota-
tions produced by crowd workers. If a given mention is more challenging to annotate than others, the
annotators are likely to need more effort and time to assign a label for this mention. This is in contrast to
assigning labels for easier instances. We aim for our model to perform similarly to annotators who pay
more attention to more challenging instances than easier ones.

More specifically, we assume that the complexity of annotating the n-th instance, dn, can be estimated
from an instance xn and its corresponding crowd labels cn. Therefore, dn is computed as:

dn = softplus([xn; cn] ·wf ). (1)

We concatenate the flattened Cn represented by cn with xn. Then, we use the softplus activation function
to compute the annotation complexity of the n-th instance. wf is the parameter vector which will be
learned during training.

3.1.3 Annotator Reliability
Apart from modelling the per-category reliability of annotators, we introduce an additional layer to esti-
mate the overall and instance-level reliability.
t-th Annotator’s Per-Category Reliability rct: We consider the encoder network parameters corre-

sponding to the crowd label as the per-category reliability, as illustrated in Figure 3. For each annotator,
these parameters can be reshaped into a K ×K confusion matrix. The parameter located in the i-th row
and the j-th column indicates the extent to which an annotator prefers to assign the j-th category if the
true answer is the i-th category. If the matrix is nearer to a diagonal matrix with positive values, it means
that this annotator can reliably annotate all categories. The parameters will be learned during training.
t-th Annotator’s Overall Reliability rot: For the overall score, we assign a scalar wto, which will be

learned during training, following a sigmoid function to the t-th annotator as:

rot = (1 + e−wto)−1. (2)

t-th Annotator’s Per-Instance Reliability rnt : For the per-instance reliability, we use xn and a sig-
moid function to compute the t-th annotator’s reliability on the n-th instance:

rnt = (1 + e−(xn·wt
r))−1. (3)

wt
r is the parameter vector which will be learned during training.

3.1.4 Encoder Network
The encoder maps its input to a probability distribution p(yn|xn,Cn) over the set of general classes,
where y ∈ {DN,DO,NR,PR}. We prepare the encoder input for the n-th mention in the follow-
ing way. Firstly, the crowd label matrix Cn and mention contextual representation xn are obtained as
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described in Section 3.1.1. Secondly, we weigh each annotator’s label by multiplying each row of Cn

(whose values correspond to a given annotator’s labels) by the reliability score of the annotator. The
weighted matrix is denoted by the symbol Cn′.

Specifically, since the encoder already includes the per-category reliability, which will weight crowd-
sourced labels (described in Section 3.1.3), we let Cn′ be Cn when using only this reliability:

Cn′ = Cn. (4)

When per-category reliability is additionally supplemented by overall reliability (computed by Equa-
tion (2)), we compute Cn′ as:

Cn′ = [ro1, ro2, ..., roT ]
T �Cn. (5)

� is the element-wise multiplication and T is the number of annotators, while T means transpose of a
matrix.

When supplementing the per-category reliability with the per-instance reliability, we firstly estimate
each annotator’s reliability score on each instance rnt using Equation (3), and then compute Cn′ as:

Cn′ = [rn1 , r
n
2 , ..., r

n
T ]

T �Cn. (6)

Finally, we flatten Cn′ to a vector cn′ and implement the encoder as:

p(yn|xn,Cn) = softmax(dn � ([ cn′;xn] ×We)), (7)

where the complexity dn is computed using Equation (1) and We is the learnable encoder parameter.

3.1.5 Decoder Network

The decoder is another network which reconstructs the input crowd annotations1 Cn. We firstly sample
a label y from the predicted general class distribution p(yn|xn,Cn) provided by the encoder. y is a
one-hot encoding. We then compute the reconstructed crowd labels C̃n as:

ṽn = dn � (y ×Wd). (8)

C̃n′ =



softmax(ṽn(1)
1,K )

...
softmax(ṽn(t)

1,K )
...

softmax(ṽn(T )
1,K )


,

ṽ
n(t)
1,K = ṽn

(t−1)×K+1,tK .

(9)

C̃n = r� C̃n′. (10)

Wd is the learnable decoder parameter, ṽn is the decoder output before application of the activation
function (see Equation (8)) and ṽ

n(t)
1,K are the K elements from index (t−1)×K+1 to tK, which corre-

spond to the t-th annotator’s reconstructed crowd label for the n-th mention. We apply the annotator-wise
softmax function to ṽn as illustrated in Equation (9). Finally, using Equation (10), the annotator reliabil-
ity r is used to weight C̃n′ in the same manner as was described above using Equations (4)-(6).

3.1.6 Learning and Predicting

Pre-Training: We firstly pre-train the encoder by using the majority voting labels as targets. This solves
a potential problem of using the encoder, i.e., that the meaning of elements in the encoder output vector
is exchangeable. Pre-training the encoder can instead make the output vector aware of which element
should represent what category.

Training: To train the autoencoder, we maximise the lower bound of log-likelihood of the observed

1The reason why we only reconstruct crowd labels instead of also reconstructing mention context is explained in Section 6.3.
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data x and C:

log p(x,C) =

N∑
n

∑
y∈classes

p(y|xn,Cn) log
p(y)p(x̃n, C̃n|y)
p(y|xn,Cn)

+DKL(p(y|xn,Cn)||ptrue(y|xn,Cn))

≥
N∑
n

∑
y∈classes

p(y|xn,Cn) log
p(y)p(x̃n, C̃n|y)
p(y|xn,Cn)

=

N∑
n

Ep(y|xn,Cn) log p(x̃
n, C̃n|y)− λ1DKL(p(y|xn,Cn)||p(y)),

(11)

where ptrue(y|xn,Cn) is the true distribution (which is unknown) and DKL is a Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951), which measures the difference between probability distribu-
tions. The prior probability p(y) in the KL term is estimated from the labels predicted using majority
voting. During learning, the KL divergence between the encoder prediction p(y|xn,Cn) and the prior
p(y) ensures that our model retains an awareness of the category position information which is learned
in the pre-training step. We also introduce a strength hyper-parameter λ1 on the KL term to weight the
impact of p(y) on learning the encoder. Note that in this equation, the decoder p(x̃n, C̃n|y) reconstructs
both the mention representation xn and the crowd labels Cn. However, since we found that this model
not only runs more slowly, but also obtains lower performance than the model which only reconstructs
crowd labels, we decided not to reconstruct the mention contextual embedding.2 Therefore, the recon-
struction probability p(x̃n, C̃n|y) is computed as:

log p(x̃n, C̃n|y) ∝ log p(C̃n|y) =
T∑
t

K∑
k

Cn
tk log C̃

n
tk. (12)

Regularisation: To prevent overfitting, we apply L1 and L2 regularisation to parameters as:

λ2(||wr||1 + ||We||1 + ||Wd||1) + λ3(||wf ||2) (13)

λ2 and λ3 are also strength hyper-parameters.
Prediction: To infer the correct general class, we take each mention’s general class as the most prob-

able label according to the distribution p(y|xn,Cn) predicted by the encoder.

3.2 Coreference Chain Inference
In this step, mentions classified as either DN or NR by the encoder are not processed further, as they do
not refer to any other mentions in text. For each of the other mentions, we filter out the crowd-sourced
DN and NR labels, and apply weighted voting to the remaining crowd labels to infer its referent mention.
In other words, for a mention which is classified as DO or PR, we only aggregate those crowd-sourced
referent mentions that appear in the set of mentions classified as DO(·) or PR(·)3 labels. Each annotator’s
label is weighted by the product of the annotator’s category and the overall/per-instance reliability.

4 Experiments

Dataset: We evaluate our method on the real-world dataset from (Chamberlain et al., 2016), which
includes both crowd labels produced by 280 crowd workers and expert labels for 5,654 mentions (3,277
DNs, 2,192 DOs, 136 PRs and 49 NRs).

Mention Contextual Embedding: We compare the use of two pre-trained embeddings from
ELMo4 (Peters et al., 2018) and BERT (bert-base-uncased)5 (Devlin et al., 2019). When using BERT,
we represent each token by using the BERT model outputs from the last four hidden layers, which is the
same setting as used in (Peters et al., 2018).

Learning: We use the Adam (Kingma and Ba, 2015) optimiser (α = 0.001, β1 = 0.9, β2 = 0.999).
λ1, λ2 and λ3 are set to 0.0001, 0.005 and 0.5, respectively. We pre-train the encoder for 100 epochs.

2The details are discussed in Section 6.3.
3For example, DO(mention1) or PR(mention1) indicates that this annotator labels the current mention as referring to another

mention mention1.
4Original(5.5B): https://allennlp.org/elmo
5We used the tool developed by (Wolf et al., 2019) to extract BERT embeddings.



5766

With Singletons MUC B-cubed CEAFe CoNLL
P R F P R F P R F Score

Majority Voting 95.18 69.44 80.30 95.53 78.79 86.36 79.04 95.12 86.34 84.33
Mention-Pair Annotation Model (Paun et al., 2018) 92.87 86.07 89.34 94.79 88.56 91.57 90.53 94.27 92.36 91.09
Ours - Without Context, Per-Category Reliability 92.11 94.20 93.14 93.31 93.10 93.20 96.86 95.42 96.13 94.16
Ours - ELMo, Per-Category Reliability 91.87 95.88 93.83 93.95 93.60 93.77 97.65 95.51 96.57 94.72
Ours - BERT, Per-Category Reliability 92.42 95.80 94.08 93.96 93.02 93.49 97.74 96.19 96.96 94.84
Ours - ELMo, Per-Category + Overall Reliability 92.51 95.59 94.02 94.28 93.72 94.00 97.78 95.85 96.81 94.94
Ours - BERT, Per-Category + Overall Reliability 93.42 96.26 94.82 95.03 93.78 94.40 97.93 96.83 97.38 95.53
Ours - ELMo, Per-Category + Per-Instance Reliability 92.33 95.99 94.12 94.08 94.02 94.05 97.65 95.73 96.68 94.95
Ours - BERT, Per-Category + Per-Instance Reliability 93.21 96.34 94.75 95.07 93.79 94.43 97.98 97.11 97.54 95.57

Without Singletons MUC B-cubed CEAFe CoNLL
P R F P R F P R F Score

Majority Voting 95.18 69.44 80.30 93.36 46.05 61.68 64.23 55.17 59.35 67.11
Mention-Pair Annotation Model (Paun et al., 2018) 92.87 86.07 89.34 88.46 72.83 79.89 79.65 76.32 77.95 82.39
Ours - Without Context, Per-Category Reliability 92.11 94.20 93.14 85.13 83.98 84.55 79.61 80.80 80.20 85.96
Ours - ELMo, Per-Category Reliability 91.87 95.88 93.83 85.68 85.50 85.59 80.03 81.46 80.74 86.72
Ours - BERT, Per-Category Reliability 92.42 95.80 94.08 85.92 84.27 85.09 81.28 81.81 81.54 86.90
Ours - ELMo, Per-Category + Overall Reliability 92.51 95.77 94.11 86.33 86.10 86.21 81.66 81.46 81.56 87.30
Ours - BERT, Per-Category + Overall Reliability 93.42 96.26 94.82 88.25 86.27 87.25 83.18 83.62 83.40 88.49
Ours - ELMo, Per-Category + Per-Instance Reliability 92.33 95.99 94.12 86.13 86.65 86.39 80.92 81.96 81.44 87.32
Ours - BERT, Per-Category + Per-Instance Reliability 93.21 96.34 94.75 88.19 87.14 87.66 83.38 84.42 83.90 88.77

Table 3: Precision (P), Recall (R) and F scores (F) of our predicted labels.
Complexity Instances with Lowest Complexities

6.98e-23 The Metric Marvels is a series of seven animated educational shorts featuring songs about meters, liters, Celsius, and grams, designed to teach American children how to use
the metric system.

1.93e-22 An encounter with German tourists in New Zealand led to the formation of a group called ”Extreme Ironing International”, and the German Extreme Ironing Section or GEIS.
2.01e-22 Taro Tsujimoto is an imaginary ice hockey player that was legally drafted by the National Hockey League’s Buffalo Sabres in the 11th round of the 1974 NHL Entry Draft.

Complexity Instances with Highest Complexities
0.7123 ... and so she ran from the path into the wood to look for flowers ...
0.7150 Next they came to some fine meadows.
0.7188 ’Pull off my boots,’ and then he threw them in her face, and made her pick them up again, and clean and brighten them.

Table 4: Instances with lowest and highest complexities as estimated by our model. Mentions are high-
lighted in bold.

We then run the entire autoencoder training by optimising the objective function in Equation (11) until
either 300 iterations are reached, or the objective function stops improving.

Evaluation: The baselines are: majority voting and the state-of-the-art method, Mention-Pair An-
notation model (Paun et al., 2018). Four metrics are used for evaluation, MUC (Vilain et al., 1995),
B-cubed (Bagga and Baldwin, 1998), CEAFe (Luo, 2005), and CoNLL Score (Pradhan et al., 2011).

5 Results

From Table 3, we observe that our method achieved better performance than baselines.6 We also re-
port the performance using different settings. Without Context and ELMo/BERT denote the models
that do not use context, or which use context, respectively. In terms of reliability, each annotator’s Per-
Category Reliability is modelled in our model by default. Per-Category + Overall / Per-Instance Reli-
ability indicates that the model supplements per-category reliability with modelling of annotator overall
or per-instance reliability. As shown in Table 3, the model (ELMo/BERT, Per-Category Reliability)
outperforms (Without Context, Per-Category Reliability), which suggests that the incorporation of con-
text helps to improve the performance. We note that the performance also benefits from additionally
capturing annotators’ overall or per-instance reliability.

6 Analysis and Discussion

6.1 Instance Complexity

To analyse complexities, we rank instances according to their complexities estimated by Equation (1).
Table 4 lists the instances with the lowest and highest complexities. It can be observed that: 1) it is very
easy to annotate instances which have low complexities. The meaning of these mentions in text is clear
and explicit; 2) It seems that the instances with the highest complexities are short mentions, particularly
those containing possessive pronouns or determiners. They are more difficult because the annotator is
likely to have to look back to previous sentences to determine whether they are referring to an entity
(or a property of an entity) that has previously been introduced. 3) Our model places more emphasis on
learning more difficult instances than easier ones.

6Mentions that appear only once are singletons. The MUC scores with and without singletons are the same because it is not
sensitive to singletons (Kübler and Zhekova, 2011).
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Figure 4: Levels of complexity dis-
tributions of instances in the cor-
pus (Top) and correlation between
complexity and annotation agreement
(Bottom).

Figure 5: Correlation between annotator’s true accuracy with
the weight value located in the i-th row and i-th column in
annotator’s per-category reliability matrix. Each point repre-
sents one annotator.

We also investigate the complexity distributions of the corpus and the correlation between each in-
stance’s complexity and annotation agreement in Figure 4. From the distribution (top of Figure 4) we
can see that the model can distinguish between those instances that are useful for training and those that
are not useful. To ascertain whether annotators achieve higher levels of agreement on less challenging
instances, we use entropy to measure whether the annotators can make the same annotation decision for
a certain instance. A low entropy value indicates a high agreement, and vice versa.

Agreement(ai) = −
K∑
k

Pi(k) logPi(k), Pi(k) =

∑T
t I(ait = k)

|ai|
(14)

where ai denotes the annotations for the i-th instance and ait is the t-th annotator’s label. Pi(k) is
the probability that the i-th instance is annotated as the k-th class. |ai| indicates how many annotators
annotated this instance. The indication function I(·) = 1 when ait = k, otherwise I(·) = 0.

Figure 4 (lower part) shows no correlation between complexity and agreements, indicating that it is
not accurate to measure complexity by relying solely on annotators’ levels of agreements.

6.2 Annotator Reliability

6.2.1 Per-Category Reliability
As described in Section 3.1.3, we consider an annotator’s per-category reliability as a K ×K confusion
matrix (K is the number of classes). The value located in the i-th row and the j-th column indicates the
extent to which an annotator prefers to assign the j-th category if the true answer is the i-th category. To
explore whether the value located in the i-th row and the i-th column can reflect each annotator’s reliabil-
ity for the i-th category, we visualise annotators’ true accuracy of the i-th category and the weight value
in Figure 5.7 We observe that the correlation coefficient of each line is positive, i.e., higher per-category
reliability is correlated with higher accuracy. We also present the per-category reliability matrices of six
randomly selected annotators in Figure 6. The values in the diagonals of Annotator 0 and 9 are relatively
large, indicating that they are both skilled at labelling all the categories. Meanwhile the matrix of Anno-
tator 11 shows that this annotator is good at every category except NR. The matrices of Annotator 41, 57
and 85 suggest they are less reliable than the other annotators.

6.2.2 Per-Instance Reliability
To explore the per-instance reliability, we reduce each instance’s embedding representation to a 2-
dimensional space for visualisation by using t-SNE (Maaten and Hinton, 2008) as shown in Figure 7.
Each point is a single instance and is coloured according to each annotator’s estimated reliability on this

7We omit the annotators with zero weights for brevity as their labels are recognised as redundant annotations.
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Figure 6: Reliability matrix learned by our
model. Darker colours denote higher weights.

Figure 7: T-SNE visualisation of instances
which are annotated by different annotators.

Figure 8: Correlation between annotator’s
overall reliability with accuracy and number
of annotated labels. Each point represents an
individual annotator.

Figure 9: Number of PR and NR predictions
after each training iteration.

particular instance. Darker colours mean higher reliability values. Regions where instances have low
values enclosed using dotted lines. Note that each figure has a different number of data points, because
the number of annotated instances varies among different annotators. We observe that each annotator
has noticeably different reliabilities across different instances. In particular, the diagrams show that the
annotations of Annotators 8 and 11 can complement each other.

6.2.3 Overall Reliability
To analyse the overall reliability, we investigate the correlation between a) overall reliability and anno-
tator’s accuracy (left side of Figure 8) and b) overall reliability and the number of instances annotated
(right side of Figure 8). Figure 8 shows positive correlations in both cases. This implies that when an
annotator’s overall reliability is high, then the true overall accuracy and the number of labels provided are
large. Our model considers an annotator as generally as more reliable and experienced if this annotator
has a higher accuracy and has annotated a great number of instances.

6.3 Model

In addition, we conduct ablation analysis on our models, as shown in Table 5.
Without Pre-Training: For this experiment, we omit the pre-training step described in Section 3.1.6

and directly train the whole autoencoder. The significant performance drop shown in Table 5 indicates
that training the entire autoencoder from scratch produces rather poor results.

Reconstruct Both Crowd Labels and Mention Embedding: We also investigate the performance
when the decoder reconstructs both crowd and mention embedding. This reconstruction results in a slight
drop in performance. We also found that the training takes much longer. Therefore, we recommend that
the decoder should only reconstruct crowd labels.

2-Layer Autoencoder: We increase the number of encoder/decoder layers from one to two, which
results in a dramatic performance decrease. It suggests that it is not necessary to use deep models.

Wider Context (Window Size=3): We investigate whether the performance can benefit from com-
bining integration of wider contextual information. We concatenate the mention’s contextual embedding
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With Singletons MUC B-cubed CEAFe CoNLL
P R F P R F P R F Score

Ours - BERT, Per-Category + Per-Instance Reliability 93.21 96.34 94.75 95.07 93.79 94.43 97.98 97.11 97.54 95.57
Ours - Without Pre-Training 93.42 3.28 6.33 99.58 65.26 78.85 60.94 93.11 73.67 52.95
Ours - Reconstruct Both Crowd Labels and Mention Embedding 91.74 95.38 93.53 93.92 93.87 93.90 97.38 95.25 96.30 94.58
Ours - 2-Layer Autoencoder 91.06 81.32 85.92 94.57 84.71 89.37 88.60 94.41 91.41 88.90
Ours - Wider Context (Window Size=3) 91.95 95.56 93.72 93.28 93.69 93.48 97.46 95.33 96.38 94.53

Without Singletons MUC B-cubed CEAFe CoNLL
P R F P R F P R F Score

Ours - BERT, Per-Category + Per-Instance Reliability 93.21 96.34 94.75 88.19 87.14 87.66 86.88 91.92 89.33 90.58
Ours - Without Pre-Training 93.42 3.28 6.33 94.23 1.81 3.55 40.27 3.74 6.84 5.57
Ours - Reconstruct Both Crowd Labels and Mention Embedding 91.74 95.38 93.53 84.54 86.46 86.00 83.52 88.54 85.96 88.49
Ours - 2-Layer Autoencoder 91.06 81.32 85.92 85.42 62.64 72.27 73.84 68.30 70.97 76.39
Ours - Wider Context (Window Size=3) 91.95 95.56 93.72 84.33 86.11 85.21 83.90 88.24 86.02 88.31

Table 5: Ablation analysis of our method in predicting correct labels.

with the averaged BERT embeddings of the three tokens before and after the current mention. However
we find that this does not further improve the performance of the model.

In order to better understand the behaviour of our model, the prediction errors are analysed. In the
first step, the general class of a mention can be mistakenly classified. For example, the model wrongly
predicted some DO mentions as DN mentions (DO→DN). In the second step, the incorrect coreference
chain of a mention can be determined. We found that 79.25% (DO→DN 44.61%, PR→DN 16.18%,
DN→DO 12.91%, Others 5.5%) and 20.75% of total errors were made in the first and second step
respectively. After checking the mentions with wrong predictions, we summarise the possible reasons
as follows: 1) The lack of contextual information from earlier sentences. For example, the bottle in
the sentence ”[...] and break the bottle, and [...]” was incorrectly predicted as a DN mention. This
bottle had actually been introduced in an earlier sentence. 2) The difficulty of distinguishing between
mentions which have closed meaning but belong to different types. Here are two examples: a wicked
creature which should be considered as a property of a wolf instead of a new mention; The cakes in ”[...]
was again taking cakes to [...]” was predicted as a DO mention referring to another cake. However, it is
actually a DN mention because the previously mentioned cake had been consumed and the cakes are new
ones. 3) The challenge of identifying if the mention it, is referring to a thing previously mentioned or is
in an expletive construction (e.g., the it in ”How dark it was inside the wolf.”). Incorporating information
from a mention’s neighbouring sentences may improve the model. Since there are not many PR and NR
mentions in the training data, to investigate how well our model learned them, we checked their numbers
of predictions after each iteration as shown in Figure 9. We can observe that the numbers are very close
to 0 at first iterations and eventually become stable somewhere between 25 to 40. We also found that
approximately 20% of PR predictions were wrong and 75% were not identified. Therefore, it is worth
investigating an appropriate training method to deal with the imbalance in training data.

7 Conclusion and Future Work

We proposed a two-step framework for aggregating crowd-sourced coreference labels. In the mention
classification subtask, the encoder classifies each mention as belonging to one of the four general cate-
gories, i.e., DN, DO, NR or PR. This encoder incorporates mention context, instance complexity and the
annotator reliability at different levels (i.e., overall, per-category and per-instance). In the coreference
chain inference subtask, we use the learned reliability to infer the coreference chains. Experimental re-
sults demonstrate the effectiveness of our model. Furthermore, our comprehensive analysis shows that
the learned complexity and reliability are explainable, thus helping to explain how our model infers the
correct label for each instance. Lastly, an error analysis was carried out to understand the incorrect pre-
dictions. As future work, we will explore the challenges of solving other complex annotation tasks and
how our model can be used and adapted for them.
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