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Abstract

Entities are the major proportion and build up the topic of text summaries. Although existing
text summarization models can produce promising results of automatic metrics, for example,
ROUGE, it is difficult to guarantee that an entity is contained in generated summaries. In this
paper, we propose a controllable abstractive sentence summarization model which generates
summaries with guiding entities. Instead of generating summaries from left to right, we start with
a selected entity, generate the left part first, then the right part of a complete summary. Compared
to previous entity-based text summarization models, our method can ensure that entities appear
in final output summaries rather than generating the complete sentence with implicit entity and
article representations. Our model can also generate more novel entities with them incorporated
into outputs directly. To evaluate the informativeness of the proposed model, we develop a
fine-grained informativeness metrics in the relevance, extraness and omission perspectives. We
conduct experiments in two widely-used sentence summarization datasets and experimental results
show that our model outperforms the state-of-the-art methods in both automatic evaluation scores
and informativeness metrics.

1 Introduction

Automatic Text Summarization is a task of shortening and creating a concise version of a text that
represents the most important or relevant information within the original text. The task can be divided
into two subtasks: extractive and abstractive summarization. Recently, the research trend (Nallapati et
al., 2016; Tan et al., 2017; Bansal and Passonneau, 2018; Kry$ciniski et al., 2018) has shifted towards
abstractive summarization since it can produce more natural and coherent texts than extractive methods.

Sequence-to-sequence models with attention mechanism (Chopra et al., 2016; Nallapati et al., 2016)
have attracted growing attention due to their state-of-the-art performance on abstractive summarization.
However, most previous seq2seq models have two obvious limitations:

The first limitation is that existing methods are difficult to identify salient entities and related events
in the original articles (Cao et al., 2018). As a result, they are frequently found to be unfaithful to the
input and lack of topic coherence. According to our observations, entities are important for summary
generation in three points: (1) Summaries are mainly composed by entities extracted from the original
texts. 77.1% and 71.5% of the noun phrases on the Gigaword and DUC-2004 datasets contain at least
one entity, respectively. (2) Entities can reveal the main topics in an article (Newman et al., 2006),
which can be utilized to generate the summaries of highly topic coherence. For example, the PER entity
“KOBE-BRYANT” and the ORG entity “NBA” are mostly associated with topic “games” and “players”.
(3) Entities (e.g. person names, locations and organizations) can provide some basic answers to the Five
Ws questions (Who, What, When, Where, Why) in information gathering or problem solving. Although a
summary is a syntax compression version of texts, it should not miss the key details which provide a better
understanding for the original document. For example, a human-annotated summary in NYT dataset
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is “Prime Min Bertie Ahern of Ireland calls for general election on May 24.” In this sentence, “Prime
Min Bertie Ahern” and “Ireland” are the named entities which reveal the important person and location
information in this event. Previous seq2seq models tend to generate sequence with high-frequency words
like “A man calls for general election” which is less informative and cannot help people to understand this
event. Considering above issues, it is necessary to incorporate entities in summaries.

Generating Summary with Entities:

Jae Seo headed to Los Angeles Dodgers from Mets E“tity Selector
PR
Los Angeles Dodgers
Jae Seo headed to Los Angeles Dodgers from Mets Jae Seo
Input Text Entity Extraction

The Los Angeles Dodgers acquired South Los Angeles Dodgers
Korean right-hander Jae Seo from the South Korean

New York Mets on Wednesday in a four- Jae Seo

player swap. New York

Figure 1: An overview of our model which generates summaries with guiding entities. Instead of
generating summaries from left to right, our approach can control the process of generation and incorporate
selected entities into summaries precisely.

The second limitation is that existing methods are limited in control of the generation process and cannot
guarantee to generate summaries with important named entities. Previous entity-based summarization
models (Amplayo et al., 2018; Sharma et al., 2019) extract entities and concatenate attentive entity
representations with original articles to generate summaries. However, their methods generate the
summaries from left to right and the decoder is initialized with implicit entity and article representations.
Such implicit representations cannot guarantee entities to appear in final outputs. Including a novel entity
in the summary is even harder since the entity has not been seen in training data. As a result, it is necessary
to develop a controllable framework which incorporates entity information and generates summaries with
selected entities.

To address above limitations, we propose a controllable neural model which generates summaries with
guiding entities. As shown in Figure 1, we first extract entities in the original texts using a pretrained
named entity recognition model (Devlin et al., 2019). Considering that only a few of these entities should
appear in final summaries, an entity selector will identify the most important entities and send the entity
representations to the summary generation phase. Previous works (Amplayo et al., 2018; Sharma et al.,
2019) generates summaries from left to right, the entity information is encoded implicitly and may not
appear in generated summaries. We handle this problem by combining two LSTMs to generate the left
part and the right part of the sequence around the entity. Each LSTM encodes information of the other
part of the sequence and then generates a summary based on the encoded article and entity representations.
This allows the two LSTM decoders to connect with the selected entities fluently. As a result, we can
guarantee that important entities appear in output summaries. Since the novel entities are incorporated into
the generated sentences directly, our model can also generate more novel entities without going through
the encoding-decoding process.

In summary, we make the following major contributions in this paper:

e We propose a controllable neural network for abstractive summarization with guiding entities. Our
model can generate summaries of improved content accuracy and topic coherence by combining
entity information with sentence representations. Compared to previous implicit entity-based models,
our model can guarantee entities to appear in output summaries and generate more novel entities
with them incorporated directly.

e To evaluate the informativeness of the proposed method, we develop a fine-grained informativeness
metric which assesses the output quality in semantic vector level. The metric can evaluate not only the
relevance between model outputs and manual references, but also the extra and omissive information
in generated summaries. Compared to existing lexicon-based metrics, it is more human-like and
helps to analyze results comprehensively.
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Figure 2: Our controllable neural model with guiding entities. The original article texts are encoded with
a BiLSTM layer. We utilize a pretrained BERT named entity recognition tool to extract entities from input
texts. The decoder consists of two LSTMs: LSTM-L and LSTM-R. Our model starts generating the left
and right part of a summary with selected entities and can guarantee that entities appear in final output
summaries.
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e We conduct our experiments on Gigaword and DUC-2004 datasets and our model outperforms
state-of-the-art methods in both ROUGE scores and informativeness metrics.

2 Related Work

Neural Abstractive Summarization. Recent years have witnessed the success in abstractive summariza-
tion using encoder-decoder framework with sequence-to-sequence models (Rush et al., 2015; Nallapati
et al., 2016; See et al., 2017; Celikyilmaz et al., 2018). The encoder which is leveraged for syntactic
compression can be implemented using recurrent neural networks (Chopra et al., 2016; Tan et al., 2017,
Chen and Bansal, 2018), convolutional networks (Allamanis et al., 2016; Liu et al., 2018) and transformer-
based methods (Devlin et al., 2019; Song et al., 2020b). To handle the problem that many OOV words are
generated by vanilla sequence-to-sequence decoder, copy mechanism is proposed to copy a word from the
source text or select an unseen word from the vocabulary (See et al., 2017; Zhou et al., 2018; Wang et al.,
2019). However, their methods ignore the important named entities which are major proportion and build
up the topic of text summaries. As a result, their methods may miss such important information in output
summaries.

Entity-based Text Summarization. Entities have been studied on the summarization tasks in the
preprocessing steps to anonymize text data (Nallapati et al., 2016) or to mitigate OOV problems (Tan et
al., 2017). (Amplayo et al., 2018) find it beneficial to use linked entities in decoder phase to improve the
summarization performance. Their method fails in capturing the entities that do not exist in the knowledge
bases. (Sharma et al., 2019) propose a two-step method which combines the salient content selector
and entity-based decoder to improve the coherence for abstractive summarization. However, the above
methods are based on the sequence-to-sequence framework which generates summaries from left to right
and cannot guarantee that the entities appear in final output summaries. To the best of our knowledge, we
are the first to use two separate LSTMs to generate summaries from guiding entities.

3 Abstractive Summarization with Guiding Entities

In this paper, we propose a neural abstractive summarization model which leverages named entity
information in original articles to generate informative summaries. The architecture is illustrated in
Figure 2. Given an input article, our model is able to incorporate the selected entities into generated
summaries. Unlike previous works generating summaries from left to right and decoding with implicit
entity representations, our model combines two LSTMs to generate the partial summaries on two sides of
the guiding entities.
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The overall architecture is built on the widely-used encoder-decoder framework. In encoding phase,
we extract original article representations with a Bi-LSTM layer. The named entities are identified by a
pretrained BERT-NER (Devlin et al., 2019) model. We select the top K important entities and transform
them into word embeddings. In decoding phase, We use LSTM-L to denote the LSTM layer generating
the left part of the summary and LSTM-R to generate the right part. The two LSTM layers are training
simultaneously with a multitask loss, which can share the same article features and entity information.
We will describe each part of our model in detail.

3.1 Input Article Encoder

For article encoder, we employ the basic bidirectional LSTM to extract sequence features following the
same settings of (Sharma et al., 2019). Each token in the sentence is represented with the word embedding,
denoting as x;. The BiLSTM layer consists of a forward and backward LSTM, which outputs sequences

of forward and backward hidden states: (ﬁl,hg, s _>n) and (ﬁ ,ﬁ 2, ... , iy), respectively:
hZ LSTM(xi, h ) (1)
h = fSTM (i, by )
- ﬁu z (3)
f = [h,; hy] 4)

We concatenate the forward and backward hidden states of each token as h;. The final states of the
forward and backward (h,, and h{) LSTM are also concatenated and to form the initial states f of the two
decoders.

3.2 Entity Encoder

Entities in the original texts provide informative insights for understanding text semantic and generate
more concrete summaries. As the main components of noun phrases in summaries, entities can reflect the
topics and also, they can be learned as a continuous vector representation. For example, we can find the
“Los Angeles Dodgers” in Figure 1 as an American baseball team, such entity can be transformed into the
same semantic as baseball team with a feature extractor trained on a large corpus.

For each input article, we first extract the entities with a pretrained BERT model (Devlin et al., 2019).
Previous entity-based summarization works identify entities with a co-reference resolution system (Sharma
et al., 2019) or an entity linking system (Amplayo et al., 2018), which rely on the performance of the
off-the-shelf systems. Following the success of pretrained models, we choose BERT as an entity extractor,
which denotes a better accuracy in identifying named entities.

For training phase, we extract entities in ground-truth summaries. According to our observations, not
all the entities from original articles appear in summaries. As a result, for testing phase we simply choose
the top K entities with respect to their word frequency in the current article. These entities are embeded
to d-dimensional vectors E = {ej,eq, ..., ey, } where e; € R4, We use another Bi-LSTM to encode the
entity embeddings and concatenate the forward and backward hidden state vectors as the final entity
representations.

3.3 LSTM-L

For a given article A and the extracted entity y; which is located in the position k of current summary, we
first use the LSTM-L to generate the left-side partial summaries. At each time step ¢, LSTM-L predict the
former word conditioned on the article representations f;, the input word x;, and the hidden state hy, .

Pt | Yes1s oY) = LSTM — L(fy, x¢, hiy1) )

Following the work of (Sharma et al., 2019), we adopt a sequence-to-sequence network with attention
mechanism here (Bahdanau et al., 2015). The article features of attention weights in each time step are
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Figure 3: The enhanced abstract generator of our LSTM-L module. To make model generate different
entities, we encode all possible entities to initialize the LSTM-L generator. This can also guide the
LSTM-R to generate different entities.

denoted as f;. Here we apply the soft attention mechanism which denotes as AT'T to capture the relevance
of encoder vectors and input words.

a; = ATT (2, hyy 1) (6)
fi=foa (7

Particularly, we observe that a summary may contain more than one entities. However, our approach
only can ensure that one entity appears in the final summary. Still, we can arrange entities in different
orders. For instance, in Figure 3, we can generate summaries starting with “Los Angeles Dodgers”
or “Jae Seo” in our LSTM-L generator. we assume the entity sequence S = {ei, ..., e, } contains
information from different entities, where m indicates the number of entities in the selected entity set. To
further incorporate entity information from all selected entities, the LSTM-L now predicts the summaries
according to the article representations f;, the selected entities S and the starting entity yy.

p(?/t ‘ Yt+1,5 -+ Yk S) = LSTM - L(ftaXta ht+1) (8)

Similar to generate summaries from left to right, we assign that when the predicted word is the start
label <START>, the left side summary is completed. For training phase, we use teacher forcing algorithm
(Williams and Zipser, 1995) to minimize the cross-entropy loss:

k—1

LOSSL = - Z logp(y;fk | Yt+1s -y ?/k) (9)
t=0

The loss is calculated for the left part, where £ is the position of selected entity F.

34 LSTM-R

After getting the predicted sequence from LSTM-L, we can utilize another LSTM to predict the rest part
of a complete summary. Actually, We don’t need to generate the right-part the same as the left part since
it can be processed as a normal decoder. The decoding process can be described as follows:

p(Ye | Yo, s yt—1) = LSTM — R(f;, x¢, he—1) (10)

However, since we already have the output sequence from the left part, it is not necessary to calculate
the loss for the left part. Compared to a normal decoder loss function which calculates the loss from time
step 0 to T (T denotes the max sequence length), LSTM-R only needs to consider the time step in and
after k 4+ 1. k denotes the position of the selected starting entity.

T

Lossp = — Y logp(y; | Yo, - yu-1) (11)
t=k+1
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In the inference phase, we apply both greedy sampling and beam search methods. Still, we find the
beam search methods gain better results than the simple greedy sampling algorithm.

3.5 Novel Entity prediction and Joint learning

In previous entity-based methods, an entity which is unseen in training set will not appear in generated
summaries in testing phase. However, our model can predict novel entities since they are extracted in
advance. For entity representations in the prediction step, we randomly assign the entity features from
another seen entity that is in the same entity type.

For the final loss of our model, we use the multitask loss which combines the losses of both LSTM-L
and LSTM-R:

Loss = aZLossL +(1—a) ZLossR, (12)

where « is a hyper-parameter which is assigned to control the degree of importance for each task. The
two LSTMs share the same entity features and article representations.

4 Experimental Settings

4.1 Datasets and Preprocessing

To evaluate the effectiveness of our proposed method, we conducted experiments on two widely-used
sentence summarization datasets: the English Gigaword corpus (Graff et al., 2003) and the DUC-2004
dataset (Over et al., 2007).

’ Dataset ‘ Gigaword DUC-2004 ‘
num(document) 4M 500
avg(article) 314 35.6
avg(summary) 8.2 10.4
avg-entity(article) 34 29
avg-entity(summary) 2.1 1.9

Table 1: Dataset Statistics.

Gigaword dataset leverages the first sentences of articles as inputs and the headlines as output summaries.
We replicate the pre-processing steps following (Rush et al., 2015). The pre-processed dataset contains
3.8M training sentence-summary pairs and the testing number is 1951 with empty titles removed. Similar
to Gigaword, the task 1 of DUC 2004 is a sentence summarization task. The dataset contains 500
documents with on average 35.6 tokens and summaries with 10.4 tokens, where each document is paired
with four manual reference summaries. Due to its size, our model is trained on the Gigaword dataset and
only tested on DUC-2004. We also show the statistics of named entities in Table 1. The average number
of entities is 3.4 in articles of Gigaword and 2.9 in DUC-2004. The entities are extracted by a BERT NER
model which is pretrained on CoNLL2003 dataset (Sang and De Meulder, 2003).

4.2 Training Details

For both datasets, we further reduce the input, output and entity vocabularies to 30k and replace the
less-frequent word to “UNK”. We set the max article length to 50 and the left and right generation step
to 15. The maximum length of the entity sequence is manually set to 3. For the input sequence without
extracted entities, we use an explicit [MID] token to replace the guiding entities. For LSTMs, we set the
hidden side to 256. We use dropout on all non-linear connections with a dropout rate of 0.2. Training is
done via the Adam optimizer with 51 = 0.9 and 52 = 0.99. We use beam search of size 5 to generate
summaries. Our model is implemented by Tensorflow framework!.

'Code is available at https: //github.com/thecharm/Abs—LRModel
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4.3 Baselines

For both Gigaword and DUC-2004 datasets, we compare our model with several state-of-the-art methods:
ABS+ (Rush et al., 2015) is a improved version of ABS which utilizes an attentive CNN encoder and
NNLM decoder. Luong-NMT (Luong et al., 2015) is a two-layer LSTM encoder-decoder. SEASS (Zhou
et al., 2017) use BiGRU encoders and GRU decoders with selective encoding. Pointer-Generator (See
et al., 2017) is a combination of pointer network and seq2seq model. We adopt the re-implementation
version of (Wang et al., 2019). Seq2seq-Sel-MTL-ERAM (Li et al., 2018) incorporates entailment
knowledge into abstractive summarization. Seq2Seq+E2T (Amplayo et al., 2018) is a neural abstractive
summarization model incorporating entity commonsense representations. Concept-Pointer (Wang et al.,
2019) generates abstractive summaries with high level semantic concepts. GenParse-Full (Song et al.,
2020a) jointly generates summaries and their syntactic dependency trees. ControlCopying (Song et al.,
2020b) is a transformer-based framework to generate summaries with control over copying.

4.4 Evaluation Metrics

We evaluate our system using automatic metrics, human evaluation and a novel fine-grained informative-
ness metric. We discuss results of these evaluation metrics in section 5.

Automatic Metrics. We first evaluate our system using ROUGE-1 (unigram recall), ROUGE-2 (bigram
recall) and ROUGE-L (longest commom sequence)’. Since the English Gigaword testing set® contains
references of different lengths while the DUC-2004 testing set * fixes the summary length to 75 bytes, we
use different ROUGE evaluation options following (Wang et al., 2019).

Human Evaluation. We conduct human evaluation to demonstrate that our model can generate more
informative and readable summaries. We randomly choose 30 samples from the Gigaword test set and ask
3 evaluators to rate summaries generated by Seq2Seq+Att Model (our implementation), Pointer-Generator
(See et al., 2017), ControlCopying (Song et al., 2020b) and our method along with human-annotators. We
run the Pointer-Generator model and Seq2Seq+Att models on the Gigaword test set and the results from
ControlCopying model are provided by (Song et al., 2020b).

Informativeness Metric. We develop an informativeness metric inspired by the work of (Jiang et al.,
2019) in image captioning tasks and we name it as BERT-REO. BERT-REO assesses the quality of
generated summaries from three perspectives: Relevance, Extraness and Omission.

Given a candidate summary C' and a ground-truth reference G, we extract the context features ¢ and g
using a pretrained BERT model, respectively. In particular, when a output summary contains multiple
sentences, we average the sentence representations as the final features.

The relevance R of candidate summaries and ground-truth references can be computed by the similarity
on the euclidean metric:

dP,q) = /(p1 — a1) + . + (P — dn)? (13)
R =d(c,g) (14)

We calculate the extraness of C' by performing an orthogonal projection of c to g. The vertical vector
c represent the irrelevant information.

c .

cL=c— B¢ (15)
g

E =d(c,c) (16)

2We use the pyrouge tool (pypi.python.org/pypi/pyrouge/0.1.3).
3The ROUGE evaluation option is, -m -n 2 -s
*The ROUGE evaluation option is, -n 2 -m -b 75 -s
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Gigaword DUC-2004

Models RG-1 RG-2 RG-L | RG-l RG22 RG-L

ABS+ (Rush et al., 2015) 2076 11.88 2696 | 28.18 8.46 23.81
Luong-NMT' (Luong et al., 2015) 33.10 1445 3071 | 2855 879  24.43
SEASS! (Zhou et al., 2017) 36.15 17.54 3363 | 2921 956 2551
Pointer-Generator (See et al., 2017) 3598 1599 3333 | 28.28 10.04 25.69

Seq2seq-Sel-MTL-ERAM T(Lietal., 2018) | 3533 17.27 33.19 | 29.33 1024 25.24
Seq2Seq+E2TT (Amplayo etal., 2018) | 36.15 17.54 33.63

Concept-Pointer! (Wang et al., 2019) 37.01 17.10 34.87 | 30.39 10.78 27.53
GenParse-Full' (Song et al., 2020a) 36.61 18.85 34.33 - - -
ControlCopying' * (Song et al., 2020b) 39.08 2047 36.68 - - -
Our model 40.03 1793 36.74 | 34.69 1439 31.07

Table 2: ROUGE F1 scores on the Gigaword and ROUGE recall values on DUC-2004 test set. The results with { are taken from
the corresponding papers. * indicates that the method leverages external pretrained corpus. The improvements of our model are
statistically significant using a two-tailed t-test with p<<0.01.

The measurement of omission is similar to the extraness, while we perform an orthogonal projection of
gtoc.

-C
gL:g—’gc‘Qc 17

O =d(g, ) (18)

where g | indicates the missing information of the candidate summary. The informativeness metric scores
for each compared method are averaged along with all predicted summaries.

5 Results and Discussion
In this section, we evaluate the proposed model from both quantitative and qualitative perspectives.

5.1 Automatic Summary Evaluation

Results on Gigaword. As shown in Table 2, we reported best performance against all the strong state-of-
the-art models in all metrics except for RG-2 on Gigaword. Amongst the compared methods, our model
achieves the new state-of-the-art performance in RG-1 (40.03) and RG-L (36.74) scores which indicates
that the incorporation of entity information contributes to a better summarization. Especially, our model
outperforms the entity-based model Seq2Seq+E2T (Amplayo et al., 2018) significantly in all metrics,
which demonstrates the effectiveness of our model to guarantee the named entities to appear in output
summaries. Our model gains a RG-2 score of 17.93 which is higher than the Concept-Pointer but lower
than the ControlCopying model which leverages the pretrained language models and external corpus. We
suggest future work to explore the BERT-version of our LSTM-L and LSTM-R framework.

Results on DUC-2004. We also compare our model with several state-of-the-art methods on DUC-2004
dataset. Our model achieves better performance in all ROUGE scores and outperforms the Concept-Pointer
model (Wang et al., 2019) with about 4 points. Since the DUC-2004 dataset is only used for testing,
there are a large proportion of novel entities. We think the ROUGE improvements are mostly due to the
leveraging of extracted guiding entities.

5.2 Human Evaluation

We perform human evaluation to analyze the informativeness, grammaticality and coherence of our
model and the compared methods in Table 3. Table 3 shows that our model ranks significantly higher on
informativeness, which indicates that incorporating named entities in summaries can improve the quality
of output texts. Meanwhile, with the guidance of entity information, our model can generate summaries
with better coherence compared to the methods without using named entities.

5.3 Informativeness Evaluation

We further evaluate our model from relevance, extraness and omission perspectives. To the best of our
knowledge, we are the first to evaluate text summaries in fine-grained semantic vector level. Different from
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System Inf. Gram. Coh. System Rel. Ext.  Omi.
HUMAN 4.58 4.42 4.53 Seq2Seq+Att 11.35 1529 15.21
Seq2Seq+Att 3.21 3.08 3.14 Pointer-Generator | 10.67 16.15 15.73
Pointer-Generator | 3.63 3.98 3.85 GenParse-Full 7.51 16.24 17.13
GenParse-Full 4.03 4.22 3.83 ControlCopying 729 1594 17.19
ControlCopying | 4.10 4.11 4.00 Our model 7.30 18.85 17.51
Our model 4.32 3.93 4.01
Table 4: The Relevance (Rel.), Extraness (Ext.) and Omis-
Table 3: Human Evaluation on informativeness (Inf.), sion (Omi.) scores between the output sequences of eval-
grammaticality (Gram.) and coherence (Coh.). The results uated methods and human annotated summaries on the
are statistically significant with p-value < 0.0005. Our Gigaword dataset. For the relevance metric, the lower
model generates summaries with most informativeness. value indicates better performance.
100.0 Our model 100.0 Our model Article: Sonia Sotomayor was sworn in Saturday as the
= ZZ'::;;T:T‘W 873 = ZZ‘I"‘::SG:":‘T“" 's first Hispanic justicg and only third female member in the
ControlCopying ControlCopying top U.S. court 's 220-year history.

s Manual Reference: Sotomayor sworn in to top U.S. court.
55.4 5

Pointer-Generator: Sotomayor sworn in as justice.

165 GenParser-Full: Sotomayor sworn in as justice.
5.7
0.0 00 Our model: Sotomayor becomes first Hispanic woman in U.S.
(a) Total Entity Proportion (%) (b) Novel Entity Proportion (%)
Figure 4: The total entity (a) and novel entity (b) propor- Figure 5: Output summaries of our model and the com-
tion of our model outputs compared to different baselines pared methods. They are manually re-cased for readability.
on Gigaword dataset. Our model can generate summaries Texts in color are the extracted named entities.

with significantly more entities than other methods.

previous lexicon-based metrics such as ROUGE, BLEU et al., semantic vector of generated sequences can
reveal the implicit informativeness without taking the grammaticality into consideration.

The results of our model compared to other baselines are shown in Table 4. Our model reports
competitive relevance against ControlCopying model with less extra and omissive information. This
indicates that entity information may bring the topic coherence and make the generated summaries more
faithful to original articles. We also reveal that the previous improvements against traditional seq2seq
with attention model are significant in informativeness.

5.4 Novel Entity Prediction

In Figure 4, we show a comparison of our model against Seq2Seq+Att, Pointer-Generator (See et al.,
2017) and ControlCopying (Song et al., 2020b) methods based on the proportion of predicted entities to
the entities in human-annotated summaries. Compared to other methods which encode entity information
and decodes from left to right, our model can generate summaries with significant more entities with the
LSTM-L and LSTM-R decoders. Still, our model can output more than one entities with all the selected
entities encoded.

According to our statistics, 71.5% percentages of unique entities in Gigaword test set are novel entities.
Compared to existing methods, our model has the ability to generate more novel entities which are
extracted in advance. We report a higher novel entity proportion against previous summarization models
with copy mechanism, which reaffirms our observations on automatic summary metrics that the involved
named entities improve the ROUGE scores as well as the summary quality.

5.5 Case Study

Figure 5 shows a case study comparing our model with Pointer-generator (See et al., 2017) and GenParse-
Full model (Song et al., 2020a). In the four output summaries, our model captures the most important
entities “Sotomayor” and “U.S.” in the human annotated reference. However, the compared methods miss
the entity “U.S.”. Moreover, our model provides a more informative summary than the simple reference
with both syntactic compression and more entities contained.
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6 Conclusion

In this paper, we propose an abstractive summarization model which is more informative than previous
works with the guiding entities. Our model can ensure that the important entities appear in final output
texts with LSTM-L and LSTM-R decoders. Experimental results demonstrate that our model can
generate entities with better fluency and coherence. We also develop a fine-grained informativeness
metric to evaluate our model compared to previous state-of-the-art methods. Our model achieves better
informativeness results than other methods in a comprehensive and diverse manner.
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