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Abstract

In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a
query are given where the goal is to generate a summary from these documents based on the given
query. However, one major challenge for this task is the lack of availability of labeled training
datasets. To overcome this issue, in this paper, we propose a novel weakly supervised learning
approach via utilizing distant supervision. In particular, we use datasets similar to the target
dataset as the training data where we leverage pre-trained sentence similarity models to generate
the weak reference summary of each individual document in a document set from the multi-
document gold reference summaries. Then, we iteratively train our summarization model on
each single-document to alleviate the computational complexity issue that occurs while training
neural summarization models in multiple documents (i.e., long sequences) at once. Experimental
results on the Document Understanding Conferences (DUC) datasets show that our proposed
approach sets a new state-of-the-art result in terms of various evaluation metrics.

1 Introduction

With the rapid growth of textual documents on the internet, accessing information from the web has
become a challenging issue (Yao et al., 2017). Often users want the summary of a topic from various
sources to fulfill their information needs (Feigenblat et al., 2017). The QF-MDS task deals with such
problems where the goal is to summarize a set of documents to answer a given query.

In the QF-MDS task, the summaries generated by the summarizer can be either extractive or abstrac-
tive (Yao et al., 2017; Kulkarni et al., 2020). An extractive summarizer extracts relevant text spans from
the source document(s), whereas an abstractive summarizer generates a summary in natural language that
may contain some words which did not appear in the source document(s) (Rush et al., 2015; Nallapati
et al., 2016; Nema et al., 2017). With the rising popularity of virtual assistants in recent years, there is a
growing interest to integrate abstractive summarization capabilities in these systems for natural response
generation (Nishida et al., 2019).

One major challenge for the QF-MDS task is that the datasets used for such tasks do not contain
any labeled training data (Xu and Lapata, 2020). Therefore, neural summarization models that leverage
supervised training cannot be used in these datasets. Note that for other related tasks (Allan et al.,
2003; Liu et al., 2008; Miao et al., 2012), how to reduce the demands for labeling the data and how
to leverage unlabeled data were also identified as a major challenge. While using datasets similar to
the target dataset as the training data for the QF-MDS task, we find that these datasets only contain
multi-document gold summaries. However, the state-of-the-art transformer-based (Vaswani et al., 2017)
summarization models (Liu and Lapata, 2019; Laskar et al., 2020a) cannot be used in long documents
due to computational complexities (Beltagy et al., 2020; Zaheer et al., 2020). To tackle these issues, we
propose a novel weakly supervised approach by utilizing distant supervision to generate weak reference
summary of each single-document from multi-document gold reference summaries. We train our model
on each document with weak supervision and find that our proposed approach that generates abstractive
summaries is very effective for the QF-MDS task. More concretely, we make the following contributions:
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e First, to address the issue of unlabeled individual documents in a training document set, we utilize
pre-trained sentence similarity models (Liu et al., 2019; Laskar et al., 2020b) to generate the weak
reference summary of each individual document from multi-document gold reference summaries.

e Second, to address the computational issue to train neural models in long documents (Zaheer et
al., 2020; Beltagy et al., 2020), we propose an iterative approach that adopts a pre-trained single-
document generic summarization model to leverage the effectiveness of fine-tuning such models for
query focused abstractive summarization (Laskar et al., 2020a) and extends it for the QF-MDS task.

e Extensive experiments on the DUC! 2005-07 datasets show that our proposed approach sets a
new state-of-the-art result in terms of various ROUGE scores. As a secondary contribution, we
will make our source codes publicly available here: https://github.com/tahmedge/
WSL-DS-COLING-2020.

2 Related Work

Early work on multi-document summarization was mostly focused on generic summarization (Nayeem
et al., 2018), whereas the amount of work for QF-MDS had been very limited (Yao et al., 2017). Due to
the lack of training data for the QF-MDS task, most previous works were based on various unsupervised
approaches that could only generate extractive summaries (Wang et al., 2008; Wan and Xiao, 2009;
Haghighi and Vanderwende, 2009; Wan and Zhang, 2014; Yao et al., 2015; Zhong et al., 2015; Ma et al.,
2016; Feigenblat et al., 2017; Roitman et al., 2020).

To generate the abstractive summaries for the QF-MDS task, (Baumel et al., 2018) proposed a transfer
learning technique to tackle the issue of no training data. They adopted the Pointer Generation Network
(PGN) (See et al., 2017) pre-trained for the generic abstractive summarization task in a large dataset
to predict the query focused summaries in the target dataset via modifying the attention mechanism of
the PGN model. However, their model failed to outperform different extractive approaches in terms of
various ROUGE scores (Feigenblat et al., 2017; Roitman et al., 2020).

Identifying sentences which are relevant to the query is an important step for the QF-MDS task. For
this purpose, various approaches were utilized such as counting word overlaps (Baumel et al., 2018) or
the Cross-Entropy Method (Feigenblat et al., 2017). Though neural models based on supervised training
have significantly outperformed various non-neural models for the answer selection task in recent years
(Laskar et al., 2019; Laskar et al., 2020b), such neural models have not been effectively used for the
QF-MDS task yet due to the absence of labeled data for the relevant sentences in the QF-MDS datasets.

Recently, (Garg et al., 2019) showed that neural models pre-trained in a large Question Answering
(QA) dataset could effectively select answers in other QA datasets. More recently, such pre-trained
answer selection models were used by (Xu and Lapata, 2020) for the QF-MDS task. In their work, they
utilized distant supervision from various QA datasets using the fine-tuned BERT (Devlin et al., 2019)
model to filter out the irrelevant sentences from the documents. However, (Baumel et al., 2018) showed
that filtering sentences as an early step could lead to performance deterioration for the QF-MDS task.
Thus, instead of applying distant supervision to filter out some sentences from the document, we apply
it to generate the weak reference summary of each unlabeled document in our training datasets. Our
proposed weakly supervised learning approach not only allows us to leverage the advantage of fine-
tuning pre-trained generic summarization models (Laskar et al., 2020a), but also allows us to overcome
the limitation of training neural models in long documents (Beltagy et al., 2020; Zaheer et al., 2020).

3 Our Proposed Approach

Suppose, we have a query ) = q1,q2,...,qx containing k£ words and a set of N documents D =
di,ds, ...,dy. For the QF-MDS task, the goal is to generate a summary S = si, So, ...S,, containing
n words from the document set D for the given query Q).

In figure 1, we show the overall architecture of our proposed approach. Since there is no training
data available for the QF-MDS task, we provide supervised training to our target dataset by using other
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Figure 1: An overview of our model that generates (a) weak reference summary using RoBERTa for (b)
iterative fine-tuning using BERTSUM to generate query focused abstractive summaries which are then
ranked by (c) ROBERTa. [CLS] and [SEP] are the special tokens used with inputs (Devlin et al., 2019).

QF-MDS datasets as the training data. However, the available QF-MDS datasets (Feigenblat et al.,
2017) only contain the gold summaries generated by human experts from multiple documents and do not
contain the gold summary of each individual document. Due to the limitations of using neural models in
long documents (Beltagy et al., 2020; Zaheer et al., 2020), we propose an iterative approach to train our
model on each document of a document set. For this purpose, we generate the weak reference summary
of each document from the multi-document gold summaries using distant supervision to train our model
for the QF-MDS task. Finally, we rank the generated query focused summaries via an answer selection
model (Laskar et al., 2020b). In the following, we give a detailed description of our proposed approach.

3.1 Weakly Supervised Learning with Distant Supervision

To generate the weak reference summaries using distant supervision, we utilize the pre-trained ROBERTa
model (Liu et al., 2019) in two steps (see Figure 1a). At first, we generate the weak extractive reference
summary of each individual document using a RoOBERTa sentence similarity model fine-tuned for the
answer selection task. Then, we measure the similarity score between each sentence in the human
written (abstractive) multi-document gold summaries with each sentence in the weak extractive reference
summary using a RoBERTa sentence similarity model fine-tuned for the paraphrase identification task.
Based on the similarity score, we select the most relevant sentences from the gold reference summaries
as the weak abstractive reference summary for each document. Below we describe these steps in detail.

RoBERTa Answer Selection Model: In this step, we first generate the weak extractive reference sum-
mary of each individual document dj, by measuring the relevance between the query (); and each sen-
tence S; in dj. For this purpose, we adopt the RoBERTa sentence similarity model from (Laskar et al.,
2020b) for its impressive performance in the answer sentence selection task and fine-tune it in the QA-
ALL dataset of MS-MARCO (Bajaj et al., 2016). The fine-tuned RoBERTans.Marco model was then
utilized in our training dataset to measure the similarity score between each sentence in the document
and the query. Based on the similarity score, we select the top 3 most relevant sentences as the weak
extractive reference summary since extracting only 3 sentences was found effective in different extractive
summarizers such as the LEAD-3 baseline as well as the BERTSUMEgxt model (Liu and Lapata, 2019).

RoBERTa Paraphrase Identification Model: We provide distant supervision to generate the weak
abstractive reference summary by replacing each sentence of the weak extractive reference summary
(generated in the previous step) with the most similar sentence found in the multi-document gold sum-
maries. For this purpose, we fine-tune the ROBERTa model for the paraphrase identification task in the
MRPC dataset (Liu et al., 2019). Then for each document d;. in a document set DD;, we utilize the fine-
tuned RoBERTayrpc paraphrase identification model to replace each sentence S; in the weak extractive
reference summary of d;, with the most similar sentence S, found in the gold summaries” of D;.

2 Among the sentences in the gold reference summaries that are not already selected for the same document.

5649



(a) F1 Score: DUC 2005 DUC 2006 DUC 2007
Model R-1 R-2 [ R-SU4 | R-1 R-2 | RSU4 | R-1 R-2 | R-SU4
(Feigenblat et al., 2017) * | 37.78 | 7.45 | 13.02 | 4047 | 9.13 1473 | 42.86 | 11.34 | 16.53
(Xu and Lapata, 2020) * - - - 41.6 9.5 15.3 43.3 11.6 16.8
(Roitman et al., 2020) * | 38.08 | 7.54 | 13.17 | 41.23 | 947 1497 | 4324 | 11.78 | 16.83

PQSUMExr * 3752 | 7.84 | 13.29 | 40.68 | 9.29 14.66 | 42.57 | 11.20 | 15.98
PQSUM,3s 3835 | 7.94 | 13.44 | 40.87 | 9.43 14.83 | 42.17 | 10.82 | 15.98
PQSUMysi..ps 40.32 | 9.17 | 14.73 | 43.49 | 10.78 | 16.45 | 44.72 | 12.44 | 17.72
(b) Recall: DUC 2005 DUC 2006 DUC 2007
Model R-1 R-2 | R-SU4 | R-1 R-2 | R-SU4 | R-1 R-2 | R-SU4

(Feigenblat et al., 2017) * | 40.35 | 7.94 | 1391 | 43.01 | 9.69 15.65 | 4545 | 12.02 | 17.54
(Baumel et al., 2018) 39.82 | 698 | 15.73 | 42.89 | 8.73 17.75 | 4392 | 10.13 | 18.54
(Roitman et al., 2020) * | 40.82 | 8.07 | 14.13 | 43.94 | 10.09 | 1596 | 46.02 | 12.53 | 1791

PQSUMExr * 37.55 | 7.84 | 1331 | 4041 | 9.22 1456 | 42.41 | 11.08 | 15.92
PQSUMags 38.36 | 7.92 | 13.43 | 40.59 | 9.39 1473 | 42.05 | 10.79 | 15.91
PQSUMuwsi.-ps 40.36 | 9.17 | 1474 | 43.22 | 10.70 | 1635 | 44.61 | 1240 | 17.66

Table 1: Performance comparisons in terms of (a) F1 and (b) Recall. ‘*’ denotes extractive model.

3.2 Iterative Fine-Tuning for Multi-Document Summarization

For the QF-MDS task, we adopt the transformer-based (Vaswani et al., 2017) BERTSUM model pre-
trained for generic abstractive summarization on the CNN/DailyMail dataset (Liu and Lapata, 2019) to
leverage the advantages of fine-tuning it for the query focused abstractive summarization task (Laskar et
al., 2020a). However, BERTSUM was trained for the single-document summarization task by consider-
ing at most 512 tokens (Liu and Lapata, 2019; Beltagy et al., 2020; Zaheer et al., 2020). To address this
issue for the multi-document scenario, we take an iterative approach (see Figure 1b). At first, we incor-
porate query relevance via concatenating the query with each document, similar to the work of (Laskar et
al., 2020a). Then, we fine-tune BERTSUM using the weak abstractive reference summary to generate the
query focused abstractive summary of each document in a document set. The sentences in the generated
query focused summaries of each document set are then ranked using the fine-tuned RoBERTays.Marco
answer selection model to select the sentences that are most relevant to the query (see Figure 1c¢).

4 Experimental Setup
We now describe the datasets used in this paper, followed by the details of our implementation.

Datasets: We use the DUC 2005, 2006, and 2007 datasets for the QF-MDS task. The number of
document sets were 50, 50, and 45 where the number of documents in each document set were 32, 25,
and 25 in DUC 2005, 2006 and 2007 datasets respectively (Feigenblat et al., 2017). Each document set
is associated with a query and the objective is to generate a summary containing at most 250 words from
the document set based on the given query. Given the absence of the training data, to evaluate our model
in each year’s dataset we use the datasets from the other two years for training. From each year’s training
data, we randomly selected 20% of the document sets for validation while we used the rest for training.

Implementation: For the RoBERTa model, we used its Large version (Liu et al., 2019; Laskar et
al., 2020b) and implemented using HuggingFace’s Transformer (Wolf et al., 2019). For fine-tuning the
summarization model, we used the BERTSUMEgxt.aps> model pre-trained on the CNN/DailyMail dataset
(Liu and Lapata, 2019). While selecting the most relevant sentences as the final query focused summary,
we used the Trigram Blocking to reduce redundancy (Paulus et al., 2018). To fine-tune the BERTSUM
model, we kept most parameters similar to the original work (Liu and Lapata, 2019) and ran 50 steps
with batch size equal to 200. Among these 50 steps, we selected the step for evaluation that performed
the best on the validation set. All of our models were run in multi-GPU settings using 4 NVIDIA V100
GPUs. We report the results based on both Recall and F1 scores in terms of ROUGE-1, ROUGE-2, and
ROUGE-SU4 metrics (Lin, 2004). From now on, we denote ROUGE as R.

Shttps://github.com/nlpyang/PreSumm
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Model Recall F1 Statistically Significant

PQSUMwsL-ps 42.73 42.84
without Distant Supervision 41.77 -225%) | 41.88 (-224%) | No, based on paired t-test (p < .05)
without Trigram Blocking 40.92 (-424%) | 41.01 -427%) | No, based on paired t-test (p < .05)

without Weakly Supervised Learning | 40.01 -637%) | 40.12 -6.35%) | Yes, based on paired t-test (p < .05)

Table 2: Ablation test result based on the average R-1. ‘-’ denotes ‘deterioration from original model’.

5 Results and Discussions

We now analyze the performance of our proposed model by comparing with other models (see Table
1). We also perform ablation test to further investigate its effectiveness (see Table 2). We denote our ap-
proach of using the Pre-trained models (RoBERTa and BERTSUM) for Query focused SUMmary gener-
ation via utilizing Weakly Supervised Learning with Distant Supervision (WSL-DS) as PQSUMwsL.-ps-
For performance comparisons, we use two baselines that do not utilize weak supervision and fine-tuning.
Note that both of these baselines use the BERTSUM (Liu and Lapata, 2019) model pre-trained on the
CNN/DailyMail dataset. One of them is pre-trained for extractive summarization: PQSUMEgxT; while
the other is pre-trained for abstractive summarization: PQSUMAaps. These baselines generate the sum-
maries of all documents in a document set which are then ranked using ROBERTays.marco. Moreover,
we compare our model with four recent works: i) CES-50 (Feigenblat et al., 2017), ii) RSA (Baumel et
al., 2018), iii) QUERYSUM (Xu and Lapata, 2020), and iv) DUAL-CES (Roitman et al., 2020).

Performance Comparisons: From Table 1(a), we find that our PQSUMwsy.ps model sets a new
state-of-the-art in all datasets based on the F1 metric for all ROUGE scores. Specifically, based on R-1,
it improves by 5.88% in DUC 2005 from (Roitman et al., 2020) along with 4.54% and 3.28% from (Xu
and Lapata, 2020) in DUC 2006 and 2007 respectively. From Table 1(b), we find that our model also
sets a new state-of-the-art in terms of R-2 Recall in DUC 2005 and 2006, but fails to outperform the
DUAL-CES (Roitman et al., 2020) in DUC 2007. In comparison to the abstractive RSA model (Baumel
etal., 2018), we find that our model outperforms them in all datasets in terms of both R-1 and R-2 Recall,
but fails to outperform them in R-SU4 scores. Moreover, we find based on paired t-test (p < .05) that
the weakly supervised learning significantly outperforms the baselines in terms of both Recall and F1.

Ablation Test: The result of our ablation test based on the average of R-1 scores across all datasets
is shown in Table 2. We find that the performance is deteriorated if we exclude Distant Supervision
via removing the ROBERTayrpc model, as well as if the Trigram Blocking is not used. Moreover, the
performance is significantly degraded if the summary is generated by only ranking the sentences in the
documents using the fine-tuned ROBERTays.Mmarco Without utilizing Weakly Supervised Learning.

6 Conclusions and Future Work

In this paper, we propose a novel weakly supervised approach for the Query Focused Multi-Document
Abstractive Summarization task to tackle the issue of no available labeled training data for such tasks. We
also propose an iterative approach to address the computational problem that occurs while training neural
models in long documents (Kitaev et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020). Experimental
results on three datasets show that our proposed approach sets a new state-of-the-art result in various
evaluation metrics. In the future, we will apply our models on more tasks, such as information retrieval
applications (Huang and Hu, 2009; Huang et al., 2003; Yin et al., 2013; Huang et al., 2005), sentiment
analysis (Liu et al., 2007; Yu et al., 2012), learning from imbalanced or unlabeled datasets (Liu et al.,
2006; Bari et al., 2019; Bari et al., 2020), and automatic chart question answering (Kim et al., 2020).
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