
Proceedings of the 28th International Conference on Computational Linguistics, pages 5591–5603
Barcelona, Spain (Online), December 8-13, 2020

5591

IntKB: A Verifiable Interactive Framework for Knowledge Base
Completion

Bernhard Kratzwald♦ Guo Kunpeng♠♥ Stefan Feuerriegel♦ Dennis Diefenbach♠♥

♦ Chair of Management Information Systems, ETH Zurich
♠ CNRS, Laboratoire Hubert Curien UMR 5516, University of Lyon

♥ The QA Company SAS, France
{bkratzwald, sfeuerriegel}@ethz.ch

{kunpeng.guo, dennis.diefenbach}@the-qa-company.com

Abstract

Knowledge bases (KBs) are essential for many downstream NLP tasks, yet their prime shortcom-
ing is that they are often incomplete. State-of-the-art frameworks for KB completion often lack
sufficient accuracy to work fully automated without human supervision. As a remedy, we propose
IntKB: a novel interactive framework for KB completion from text based on a question answer-
ing pipeline. Our framework is tailored to the specific needs of a human-in-the-loop paradigm:
(i) We generate facts that are aligned with text snippets and are thus immediately verifiable by
humans. (ii) Our system is designed such that it continuously learns during the KB completion
task and, therefore, significantly improves its performance upon initial zero- and few-shot rela-
tions over time. (iii) We only trigger human interactions when there is enough information for
a correct prediction. Therefore, we train our system with negative examples and a fold-option if
there is no answer. Our framework yields a favorable performance: it achieves a hit@1 ratio of
29.7% for initially unseen relations, upon which it gradually improves to 46.2%.

1 Introduction

Knowledge bases (KBs) present databases that store information about entities and the relations among
them. Prominent examples are, for instance, Wikidata (Vrandečić and Krötzsch, 2014), Freebase (Bol-
lacker et al., 2008), NELL (Carlson et al., 2010), DBpedia (Auer et al., 2007), or Yago (Suchanek et al.,
2008). Owed to their structured information, KBs are widely used in various downstream tasks of NLP
such as, e. g., entity linking (Mendes et al., 2011), query expansion (Dalton et al., 2014), co-reference
resolution (Rahman and Ng, 2011), and question answering (Diefenbach et al., 2019). Yet the perfor-
mance of downstream NLP tasks is often impeded due to the issue that KBs are incomplete. For example,
for newspapers, Wikidata lists the place of publication for only 37% of them, while the owner is stored
for only a staggering 9%. Hence, there is a need to develop scalable strategies for KB completion.

Prior work on KB completion can be divided into two paradigms. On the one hand, KB completion
via link prediction. Here the structural information of an existing, yet incomplete KB is leveraged in
order to predict new facts (Lao et al., 2011; Riedel et al., 2013; Neelakantan et al., 2015). On the other
hand, KB completion can be built upon a text corpus, so that new facts are extracted directly from the
narrative materials (Dong et al., 2014; West et al., 2014). Approaches belonging to the latter paradigm are
scarce, as they usually rely upon some way of aggregation information from multiple, different corpora
(where credible additions to a KB are signaled by cross-corpus appearances). In contrast, we develop a
framework for KB completion over a single corpus, where such verification is obtained in an interactive
manner.

Knowledge base completion is often designed as an automated task where predictions are directly
integrated into an existing but incomplete KB. This can be problematic for various reasons: (i) The
performance of state-of-the-art systems is not of sufficient accuracy, so that it allows for an automatic
integration of new facts (Akrami et al., 2020). Hence, manual verification is still necessary in practice.
(ii) Predictions in KB completion often involve zero- or few-shot settings (e. g., relations for which there

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

5592

is none or only or few examples available during training), this further diminishes their performance
(Wang et al., 2019). (iii) State-of-the-art systems do not generate facts that are verifiable by humans
because their predictions are mainly based on structural similarity within graphs. Thus, it is impossible
for humans to manually detect false-positive predictions. This problem becomes especially critical in
domains as, e.g., medicine, where KBs serve as the basis for high-stake decisions. To this end, KB
completion should allow for simple human verification. Yet, to the best of our knowledge, research on
verifiable KB completion is lacking.

In this paper, we propose IntKB: a novel interactive framework for KB completion based on ques-
tion answering (QA). Unlike previous work, we design our framework to fulfill a human-in-the-loop
paradigm. In IntKB, new candidate facts are presented to human annotators, who can then approve or
reject the candidates before they are integrated into the KB. Based on this setting, we overcome several
challenges that are inherent to prior work: First, candidate predictions need to be human verifiable. It
is not sufficient to show human annotators simply a new KB entry, as it would require a substantial ef-
fort to verify its correctness. Therefore, we align predictions with text snippets that make them directly
verifiable. Second, in order to tackle the low performance in cold-start (e.g., zero-shot) settings, we
design our framework in such a way that it gradually improves over time from past human interactions.
Here human-approved predictions are fed back into our training framework. Third, IntKB is designed
for an interactive use with the aim of requiring only little manual effort. For this, it only triggers human
interactions when there is sufficient evidence (i. e., the system can decide to fold otherwise).

Our framework is realized on the basis of a question answering (QA) pipeline. The prime benefit of
this is that it operates on only a single text corpus (rather than multiple) when generating new facts with
high confidence. In addition, we develop a training framework based on knowledge transfer via fact
alignment and continuous updates. It allows us to make predictions in cold-start settings. It also achieves
a favorable precision when predicting long-tail relations that are rare.

We evaluate our system in an extensive set of experiments. Overall, we annotated around 3000 new
facts from human interactions. We demonstrate that our framework continuously learns from those
interactions: Over time, the hit@1 ratio on initially unseen zero-shot relations increases from 29.7% to
over 46.2% . A live demo is available from https://wikidatacomplete.org, the source code
is available from https://github.com/bernhard2202/intkb.

2 Related Work

Recent research on KB completion can be divided into two main paradigms: (i) KB completion via link
prediction based on the graph structure of an existing yet incomplete KB and (ii) KB completion using
free text from the web or a corpus. Both are detailed in the following.

KB completion via link prediction: Here the idea is that new relations for a KB can be inferred by
reasoning over the existing structure. For example, if a newspaper is published in Paris, then one can
infer with high confidence that it is written in French. Formally, this can be achieved in multiple ways.
One option are path-ranking algorithms, where paths between entities are used to predict new relations
(Lao et al., 2011; Gardner and Mitchell, 2015; Zupanc and Davis, 2018). Another line of works uses
matrix factorization for this purpose (Riedel et al., 2013; He et al., 2015; Lacroix et al., 2018). Even other
works draw upon embeddings tailored to KBs. Here the the learned vector representation of entities and
relations is used to infer new facts (Neelakantan et al., 2015; Bordes et al., 2013; Garcia-Duran and
Niepert, 2017). More recently KB completion has been formulated as a reinforcement learning task (Das
et al., 2017; Xiong et al., 2017) or attempted to be solved by variational inference (Chen et al., 2018).
Another line of research combines textual description of entities and relations in order to create more
accurate embeddings, that are then combined with methods for link prediction (Toutanova et al., 2015;
Zhong et al., 2015; Xie et al., 2016).

Recent research on link prediction has increasingly focused on zero- and one-shot predictions (Xiong
et al., 2018; Chen et al., 2019; Wang et al., 2019), where, for a specific relation type, only one or even
no training samples are available. Such settings are demanded in practice because many relations that
are in common KBs have only few associated triples. This especially holds true for so-called infrequent

https://wikidatacomplete.org
https://github.com/bernhard2202/intkb

5593

long-tail relations, which are harder to predict in a one-shot setting than other prevalent relations (Wang
et al., 2019).

To this end, the performance of state-of-the-art approaches lacks sufficient accuracy to deploy them in
a fully automated setting (Akrami et al., 2020).

KB completion from free text: KB completion can also be achieved by extracting new relations
from external text corpora (i. e., the web or other free text). These works, e.g., NELL (Carlson et al.,
2010) or the knowledge vault (Dong et al., 2014) extract new facts from text sources using rule-based
or traditional machine learning classifiers (Weikum and Theobald, 2010). Other works such as West
et al. (2014) are tailored to web-based settings. To this end, they complete KB facts by aggregating
and then scoring text-snippets that were provided by a search engine. These approaches make confident
predictions by aggregating information from multiple data sources and, therefore, struggle with making
predictions from a single corpus.

KB completion with question answering: Carlson et al. (2010) have previously formulated KB
completion over free text as a QA task. In addition, recent advances in machine learning have lead to
huge progress in machine reading comprehension (Rajpurkar et al., 2016) and QA (Chen et al., 2017).
Owed to this, QA has experienced an increasing popularity as a format in related NLP tasks; see the
overview in (Gardner et al., 2019). One example is the work by Das et al. (2019), who use machine
reading comprehension to build dynamic knowledge bases from procedural text. Closest to our approach
is the seminal work by Levy et al. (2017), who use machine reading comprehension for relation extraction
in zero-shot settings.

Verifiability in KB completion: Few works have studied KB completion over free text with a focus
on explainability or verifiability. An exception are rule-based systems (Weikum and Theobald, 2010),
yet, these systems are mostly dependent on handwritten rules and thus inflexible. There has been some
work on explainable KB completion, but this usually comes at the cost of a accuracy-explainability
tradeoff (Stadelmaier and Padó, 2019). In contrast to that, state-of-the-art systems for KB completion
lack verifiability.

Learning from user feedback: Learning from user feedback is an established technique to continue
increasing the performance of systems after their deployment. Here researchers usually follow a human-
in-the-loop methodology where explicit or implicit user feedback is fed back to the system. Learning
from user feedback has been applied throughout various areas in natural language processing as informa-
tion retrieval (Bendersky et al., 2017), semantic parsing (Yao et al., 2020), machine translation (Saluja et
al., 2012), or question answering (Kratzwald and Feuerriegel, 2019).

3 Preliminaries

Knowledge Base: A knowledge base is given by a tuple 〈V, E〉, where V is a set of entities and
E is a set of relations between them (i. e., so-called “facts”). Relations themselves are triplets
〈h, rj , t〉 ∈ E , where h ∈ V is the head entity, t ∈ V is the tail entity, and rj is the relation
type. Relationships in our setting are specified by one (or multiple) names [ω

(j)
0 , . . .] denoting their

semantic meaning. For instance, the relationship referring to a company owner could be given by
r5 : ["is owned by","belongs to", . . .]. Similarly, all entities a ∈ V are specified by one
(or multiple) names [ψ(a)

0 , . . .]. An example for the New York Times would be ["NYT", "NY Times",
"New York Times", . . .].

Text Corpus: In addition, we are given a text corpus D = [d1, . . . dn], where di refers to the i-th
document. Documents are associated with entities and, to this end, we denote the document associated
with entity a ∈ V by d(a). In our experiments, this corresponds to the Wikipedia page that describes an
entity.

4 IntKB: A Verifiable Framework for Interactive KB Completion

This section describes our general framework (see Fig. 1) for interactive KB completion over free text.
The input to our system is a query consisting of a head-entity and relation-type. We then wish to annotate

5594

top-n
sentences

(P2)
RELATION

EXTRACTION

(P1)
SENTENCE
SELECTION

top-k
text spans

(P3)
RE-RANKING

KNOWLEDGE
BASE

answer ANSWER
TRIGGERING

TEXT
 CORPUS

new factquery

Query:
<e\New-York-Times, r\place-of-publication, ?>

Answer:
<e\New-York-Times, r\place-of-publication, e\NY-City-USA>
Source: The New York Times (...) is an
American newspaper based in New York City
with worldwide influence and readership.

User Verification

Continuous Model Updates

Fold Option

QA Pipeline

ENTITY
LINKING

Figure 1: Overview of our QA pipeline consisting of modules (P1)–(P3) for knowledge base completion.
The answer to a given query should be presented and, in addition, a textual source where the answer was
extracted from. This makes our KB completion verifiable by humans.

the ground-truth tail entity (see Sec. 4.1). For this, we customize a QA pipeline. The QA pipeline com-
prises of three modules for sentence selection, relation extraction, and answer re-ranking (see Sec. 4.2).
Finally, we use a module for answer-triggering that decides on whether to invoke a human interaction or
end the prediction process by folding (see Sec. 4.3). In the case that a human interaction is triggered, we
show the new candidate fact to human annotators and they can either approve or decline it. For approved
predictions, we link the textual mention back to the actual entity (see Sec. 4.4) and add the new fact to
the KB. Finally, we use the feedback from the human annotators to continuously update our framework
(see Sec. 5).

4.1 Task Definition

The input to our KB completion framework is a given by a small incomplete knowledge base 〈V, E〉 and
a text corpusD. Based on them, our objective is to complete the KB by adding new facts to E . Analogous
to prior literature (Wang et al., 2019), we focus on the task of predicting the tail entity t: given a query
consisting of a head entity h and relationship type r, we fill-in the missing tail entity in 〈h, rj , 〉.

4.2 QA Pipeline for KB Completion

(P1) Sentence selection: The module for sentence selection receives a query in the form of 〈h, rj , 〉.
It then returns a ranked list of candidate sentences (i. e., a list of sentences that is likely to contain the
textual answer). As in prior research (Hewlett et al., 2016), we constrain the search space to the document
describing the head entity d(h) and split it into sentences, i. e., d(h) = [s1, s2, . . .]. Next, we create a tf-idf
vector representation for each sentence. Thereby, we treat [s1, . . .] as a closed corpus, that is, we are not
using the full corpus D to calculate idf values.

For the query vectors, we use the semantic names of the relationship type rj = [ω
(j)
0 , . . .] and transform

every ω(j)
i to its corresponding tf-idf vector. We then compute pairwise similarity scores for every sen-

tence and every query vector. Finally, we return the top-n sentences with the highest score [s(1), . . . , s(n)]
(here: n = 20) to module (P2) for relation extraction.

(P2) Relation extraction: The module for relation extraction receives the top-n sentences
[s(1), . . . , s(n)] from the previous module in addition to the initial query 〈h, rj , 〉. Each sentence is
translated into a search query (as detailed later) and then fed into BERT-QA (Devlin et al., 2019) in order
to return a text span as a candidate answer.

Following Levy et al. (2017), we treat relation extraction as a special case of reading comprehension,
that is, we “ask” for the unknown tail entity. Different from earlier work, we do not require manually-
annotated question templates in natural language (e. g., “Where has [X] been published?”). Instead, we
construct multiple, noisy keyword queries from the semantic names of the relationship type ω(j)

i (e. g.,
“Place of publication?”. Therefore, our KB completion operates in a data-scarce setting where only the
information present in our KB is used and no additional human supervision is required.

In more detail, we pair every sentence s(k) with every relationship name ω(j)
i and construct a BERT

query by concatenating the name, a question mark, a separation token, and the sentence itself. Formally,

5595

this is specified by

{ω(j)
i + "?"+ "[SEP]"+ sk},

for all i ∈ {1, . . . |rj |} and k ∈ {1, . . . , n}, where |rj | denotes the number of semantic names of relation.
This results in n × |rj | queries. For each, BERT predicts both the start and the end point of the answer
(as, ae) using a softmax layer over words in the sentence. For every query, we extract the top-scoring
span. Altogether, the module then results in up to n× |rj | candidate answers for our initial query.

(P3) Answer re-ranking: The answer re-ranking module receives all n × |rj | candidate answers for
our initial query and re-ranks them in order to achieve a higher performance.

For re-ranking, we customize the approach in (Kratzwald et al., 2019) to our pipeline. That is we
extract features for each candidate answer from both of the two aforementioned modules. Before re-
ranking, we aggregate all candidate answers which have a matching text span. For instance, if the
answer span “New York Times” is contained five times within our predictions, we then aggregate these
predictions into a single candidate answer. Thereby, we additionally collect aggregated features (sum,
average, mean, count, etc.). Finally, we take the top-10 aggregated candidate answers and predict their
final score by using the answer re-ranking network proposed in (Kratzwald et al., 2019). We then return
the top-scoring candidate answer as our final prediction for 〈h, rj , 〉.

4.3 Answer Triggering

In IntKB, human feedback is requested only sparsely. That is, we integrate a component that can either
fold and, thereby, decide not to pass a query on to a human annotator or trigger a human interaction.
This is necessary for KB completion from free text, where the answer is not guaranteed to exist in the
text corpus. In that case, the query becomes unanswerable and we do not wish to trigger costly user
interactions. Our answer triggering module decides whether to trigger a human interaction or whether to
fold on a query and thus not to pass it on to human annotators.

The above fold mechanism is implemented as follows. We train our framework with synthetic exam-
ples that were made unanswerable (Devlin et al., 2019; Rajpurkar et al., 2018) by removing any mention
of the ground-truth answer from the text corpus. In this case, we set the correct start and end point of the
answer in the relation extraction module to the "[SEP]" token (see Sec. 4.2 for more details). At pre-
diction time, we check if the probability of the "[SEP]" token being the answer exceeds a threshold ε.
If yes, we invoke the fold option and, otherwise, we trigger human interactions asking for feedback on
the proposed fact.

4.4 Entity Linking

In order to perform the full task of KB completion, the text spans returned by the QA pipeline must
be matched back to an entity t ∈ V of the KB. Here we experiment with three different strategies as
follows. (i) Rank-based: The first strategy is to find all entities which have a label corresponding to
the text span. These are then ordered based on the page rank of the KB (Diefenbach and Thalhammer,
2018). Finally, we return the top-ranked entity. (ii) Range-based: This strategy is an adaption of the
previous one. The idea is that KBs generally contain meta-information about the range of the tail-entity
in a relation. For example, the range of the relation “award received” is “award”, which indicates
that the tail-entity should belong to the type “award”. Based on this information, we then exclude all
entities that do not match the type of the range in the list of possible entities of the rank-based strategy.
(iii) ML-based: We use a learning-to-rank model is to re-rank all candidate entities. The re-ranker uses
as features all properties (i. e., instance-of) that are associated to a candidate entity in the KB. The idea is
that the re-ranker learns to up-rank entities associated with particular concepts. Similarly to the second
strategy, for the relation “award received”, the rank model should learn to up-rank entities that are
of type “award”. As a result, concepts can be taken into account more flexibly and one does not rely on
the completeness and exactness of the range properties in the KB.

5596

5 Continuous Learning for KB Completion

This section explains how we learn the components inside our IntKB framework during (1) initialization
as part of a cold-start and (2) continuous improvements from user feedback.

5.1 Cold-Start: Learning KB Completion from Text

In the following, we suggest a three step procedure to initialize our framework: First, we perform fact-
alignment. This aligns facts from an initial KB with sentences from the text corpus using distant super-
vision. Second, we generate negative training samples for facts that are not present in our data (to learn
the fold mechanism). Third, we perform a knowledge transfer in which the negative samples and aligned
facts are fed back into our QA pipeline by training all models.

Fact alignment: First, we align facts (i. e., relations) from the initial KB with sentences from the text
corpus. These sentence-fact tuples can later be used to train the modules during knowledge transfer. For
every fact 〈h, rj , t〉 ∈ E , we retrieve the document d(h) ∈ D describing h and split it into sentences.
Then we filter for those sentences that contain the tail entity t, i. e., contain any of its names ψ(t)

i . In
cases where there are multiple facts with the same relation type and head entity but different tail entities,
we aggregate the facts and keep all sentences that mention at least one tail entity t.1 Furthermore, we
filter for stronger evidence by using the semantic names of the relation. Formally, we first tokenize all
names of the relation and the sentences. Second, we remove stop words from them. Third, we calculate
the number of overlapping tokens θi with each sentence i. We discard all facts that have no sentences
with an overlap. For all others, we select the sentence with the highest score θi. This approach results in
a list of sentence-fact tuples that can be used for fine-tuning by the following knowledge transfer.

Negative training samples: In order to generate negative training samples, we use the following
procedure. For every fact 〈h, rj , t〉 ∈ E , we retrieve the document d(h) ∈ D describing h and remove all
sentences that mention any name ψ(t)

i of the tail entity t. Then we we rank all remaining sentences with
our sentence selection module. Finally, we pair the triplet with the highest ranking sentence and label
the pair as unanswerable.

Knowledge transfer: Now the above training samples are fed into our QA pipeline. The relation
extraction module is fine-tuned by constructing BERT samples analogous to the ones used during pre-
diction. To this end, for every fact-sentence tuple, we randomly select one of the relation names and
concatenate it with a question mark, the separation token, and the sentence itself. We then use the first
occurrence of a name for any of the tail entities, ψ(t)

i , in order to define both the start and end point of
the answer. For negative facts, we set the start and end point of the answer to the "[SEP]" token.

After having fine-tuned the module (P2) for relation extraction, we can use it in combination with
the module for sentence selection (P1) in order to make predictions for known triples in our initial KB.
These predictions facilitate the fine-tuning of our re-ranking module. Formally, we proceed as follows:
for every fact 〈h, rj , t〉 ∈ E in our initial KB, we mask the tail entity and issue a query 〈h, rj , 〉 against
the existing system. This results in a list of candidate answers for every fact. Since we know the ground-
truth tail entity, we can create noisy labels that belong to the answer candidate answers. These labels are
noisy because we only compare if the extracted answer matches any name of the tail entities but do not
yet link that name back into the KB. Finally, the labeled candidate answers are used to fine-tuning the
module (P3) for answer re-ranking.

5.2 Continuous Improvement from User Interactions

Predictions for relationship-types that have not been seen during training (e. g., zero-shot setting) are
known to be hard. The inherent benefit of using an interactive approach is that we can generate training
data on zero-shot relations on-the-fly during annotation: All facts 〈h, rj , t〉 that get approved by users
are immediately added to our knowledge base. Simultaneously, we use new facts in order to generate

1As an example, let us consider the initial KB containing the triples 〈New York Times,award,Pulitzer Prize〉
and 〈New York Times,award, George Polk Award〉. Then we keep all sentences in d(New York Times) that contain
any ψ(Pulitzer Prize)

i or ψ(George Polk Award)
i .

5597

positive and negative training samples as described above for fact alignment. Finally, we add the new
samples to our training set and trigger model updates (i. e., iterative repetitions of the knowledge transfer
step) after a batch of successful annotations.

6 Dataset

Common datasets for KB completion (Mahdisoltani et al., 2014; Toutanova et al., 2015) are designed
for link prediction and lack a text corpus from which the task of KB completion could be performed.
The WikiReadings dataset (Hewlett et al., 2016) comes close to our needs but 99% of the dataset are
covered by only 180 relations. Hence, it largely lacks infrequent long-tail relations that are known to be
notoriously hard to predict. Instead, we construct a dataset that is tailored to our setting by following
best-practice as described below (and in the supplements).

Our dataset is a combination of (i) a incomplete KB in the form of a subset of Wikidata and (ii) a text
corpus, namely the English Wikipedia. Both are detailed below.

KB subsets: Relations in the KB are split into two distinct subsets (for performing different evalua-
tions later): (i) known relations represent an initially known and incomplete KB, while (ii) zero-shot or
cold-start relations are unseen during the initial training. Both subsets are further divided into a training
set and a hold-out set for testing.

The different subsets are used at different states of our training and evaluation procedure as follows:
The known training-set is used during the initial fact alignment and knowledge transfer in order to learn
our system. The known test-set is used to evaluate the performance gains on known relations when using
both fact alignment and knowledge transfer from before. The zero-shot training-set is used for simulating
user interactions. We remind that, even though this set is called “train”, we do not use its ground-truth
labels directly but simulate user interactions that approve correct labels and reject incorrect labels. The
zero-shot test-set is used to evaluate performance on those unseen relations. It allows us to quantify the
performance improvements from continuous learning.

Negative examples: We synthetically generate unanswerable examples in order to make the prediction
task harder and evaluate the answer triggering module. Therefore, we copy queries in our test-sets and
pair them with Wikipedia articles in which all sentences that contain mentions of the correct tail entity
have been removed.

7 Computational Experiments

Overview: Our proposed training framework is evaluated as follows: In Sec. 7.1, we first record the
performance on the known subset of the dataset, i. e., on those relations that were initially present in our
KB. In Sec. 7.2, we evaluate the performance on the zero-shot subset of our dataset. This represents
the initial cold-start performance of our system. Furthermore, in Sec. 7.3, we present our experiment on
continuous improvements from over 9000 simulated user interactions. Finally, in Sec. 7.4, we present
our results including entity back-linking.

Performance metrics: In the following, our KB completion over free text is evaluated using different
performance metrics. We report the hit rate at k, i. e., H@k, when evaluating only on positive examples
(e.g., queries that have an answer in the text corpus and hence disabling the answer triggering module for
this evaluation). For negative examples (e.g., only queries that are not answerable), we report the negative
recall neg-Rec, which is calculated from the fraction of negative samples where the framework triggered
the fold option. Finally, we report the combined accuracy comb-Acc when evaluating on positive and
negative samples at the same time. The combined accuracy is 1 for an example iff it was positive and the
correct answer is predicted or it was negative and the fold option was triggered, and 0 otherwise.

Baselines: Our proposed KB completion is compared against the following two baselines:
(i) BERT-Sentence: This baselines combines the relation extraction module from BERT with our pro-
posed sentence selection. Thereby, it resembles the system from Levy et al. (2017) in the sense that
we replaced the machine comprehension model by BERT and the manual question templates replaced
by our (noisy) keyword queries. (ii) Naı̈ve QA pipeline: This baseline resembles our pipeline for KB
completion including the module for answer re-ranking. However, all modules were simply trained on

5598

the SQuADv2 dataset (Rajpurkar et al., 2018), which includes negative examples. Other baselines lack
comparability as they operate on structural information in the KB and not textual content. This is to the
best of our knowledge the first verifiable KB completion framework.

7.1 Performance on “Known” Subset
Tab. 1 provides the performance for the “known” relations in our KB by the following breakdown: (i) all
known relations is listed in the top row; (ii) frequent are relations with more than 100 training samples
during fact alignment; (iii) few-shot have between 2–10 training samples; and (iv) one-shot has only a
single training sample. Furthermore, we show evaluations for only positive queries, only negative queries
and a combined evaluation (see performance metrics).

Baselines Our training framework

BERT-Sentence Naı̈ve QA pipeline After knowledge transfer

pos neg both pos neg both pos neg both

H@1 H@5 neg-Rec comb-Acc H@1 H@5 neg-Rec comb-Acc H@1 H@5 neg-Rec comb-Acc

All known relations 0.175 0.322 0.225 0.201 0.224 0.343 0.225 0.226 0.602 0.713 0.805 0.602
⊂ frequent relations 0.184 0.337 0.205 0.195 0.232 0.360 0.205 0.219 0.607 0.719 0.885 0.606
⊂ few-shot relations 0.168 0.339 0.505 0.345 0.254 0.346 0.505 0.388 0.337 0.497 0.936 0.567
⊂ one-shot relations 0.065 0.102 0.398 0.245 0.065 0.111 0.398 0.245 0.115 0.154 0.798 0.443

Table 1: Performance (i. e., as measured on the hold-out split) on the “known” subsets of our dataset.
The first row reports the performance for all known relations, followed by subsets thereof as described
in the text.

Evidently, KB completion with knowledge transfer improves over both baselines substantially. For
instance, knowledge transfer increases the hit rate H@1 of the best baseline from 0.224 to 0.602, i. e., a
plus of 0.378. As expected, the performance in the case of one-shot relations is lower than for others. For
frequent relations, we succeed in answering at least every second relation correctly. The results for all
other performance metrics reveal a similar pattern. The performance of our answer-triggering module is
similarly high: For four out of five questions that are unanswerable our module triggers the fold option.
For the evaluation on both positive and negative part our combined accuracy achieves around 60%.

7.2 Performance on “Zero-Shot” Subset
Tab. 2 states the performance for detecting “zero-shot” relations. That is before any user interactions
have occurred and there was no training-data generated from those relations. In detail we show: (i) all
zero-shot relations as listed in the top row; (ii) unseen head is a subset thereof for which the head entity
was not included in the “known” subset; (iii) unseen tail is the counterpart for tail entities; (iv) unseen
head&tail is a combination of both; and (v) infrequent refers to relations from the long-tail, that is, where
there were fewer than five test samples for evaluation. The latter group of infrequent relations is known
to challenging to predict (Xiong et al., 2018) and, to the best of our knowledge, our work is the first that
attempts zero-shot predictions on such relations.

Baselines Our training framework

BERT-Sentence Naı̈ve QA pipeline After knowledge transfer

pos neg both pos neg both pos neg both

H@1 H@5 neg-Rec comb-Acc H@1 H@5 neg-Rec comb-Acc H@1 H@5 neg-Rec comb-Acc

All zero-shot relations 0.164 0.333 0.366 0.267 0.227 0.369 0.366 0.298 0.297 0.449 0.766 0.444
⊂ unseen head 0.164 0.331 0.372 0.270 0.227 0.368 0.372 0.301 0.301 0.450 0.768 0.445
⊂ unseen tail 0.175 0.360 0.366 0.296 0.251 0.395 0.366 0.324 0.332 0.482 0.766 0.535
⊂ unseen head&tail 0.176 0.359 0.372 0.300 0.251 0.395 0.372 0.328 0.335 0.483 0.768 0.768
⊂ infrequent 0.0276 0.064 0.449 0.239 0.055 0.083 0.449 0.252 0.147 0.449 0.862 0.436

Table 2: Performance (i. e., as measured on the hold-out split) on the “zero-shot” subsets of our dataset.
The first row reports the performance for all known relations, followed by subsets thereof as described
in the text.

All baselines are outperformed by KB completion with knowledge transfer. On all zero-shot predic-

5599

tions, the latter achieves of performance where it is correct in approximately one out of three predictions,
and a combined accuarcy of around 44%. In comparison, the best baseline is correct only in a mere
one out of five predictions. We make further observations. First, the performance is largely on par with
subset of unseen head and unseen tail entities. This demonstrates a prime strength of our QA pipeline
in comparison to KB completion via link prediction, since the latter would have been impeded by such
missing entities. Second, the performance on infrequent relations is fairly low and thus in line with our
expectations. This confirms that making such predictions in a zero-shot setting is extremely difficult.
Nonetheless, our approach leads to an improvement on infrequent long-tail distributions.

7.3 Continuous Learning from User Interactions

We now run an interactive experiment simulating more than 9k user interactions. We initialize our
system as in the experiment above using only the training-set of the known part of the KB. Next, we
use the training-set of the zero-shot subset in order to simulate user interactions. For every relationship-
type in that part of the training-set, we make predictions for up to 30 random queries. We then filter
those queries where our system activates the fold option and show only those to the user where a user
interaction is triggered. To limit user interactions, we show a maximum of 10 queries per relation to
simulated human annotators. Since we know the ground-truth answers to queries, we can simulate users
who provide positive feedback on correct answers and negative feedback on incorrect answers. After
receiving feedback on those queries, we invoke our continuous update mechanism to re-train and improve
the framework. After every iteration, we evaluate our framework on the test-split of the zero-shot subset
of our dataset. By that, we measure how performance improves over time on initially unseen relationship
types.

In Fig. 2 (left), we show the improvement of the Hits@1 ratio when evaluating the positive part of
the test set. The Hits@1 ratio of the system improves from 29.7% to 46.2% (a total improvement of
16.5 percentage points). Fig. 2 (center) shows the neg-rec including the answer triggering stage. We see
that there is a trad-off in learning to make right predictions and recognizing unanswerable queries. Fig. 2
(right) shows the comb-acc when mixing positive and negative examples for the evaluation and including
the answer triggering. Overall we see that the system improves about 14 percent.

We are currently running a live demo of our system, available from https://
wikidatacomplete.org/.

0 5 10 15 20
Model update at step t

0.1

0.2

0.3

0.4

0.5

0.6

Hi
ts

@
1

0 5 10 15 20
Model update at step t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ne
g-

Re
c

0 5 10 15 20
Model update at step t

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

co
m

b-
Ac

c

Static System IntKB

Figure 2: Continuous improvement on initially unseen relations from user interactions.

7.4 Performance on Answer Back-Linking

Tab. 3 states the end-to-end performance including answer back-linking. It thus measures the overall
quality of inferring the correct KB entities. In general, we expect that the performance is considerably
lower than for text spans. The reason is that, for Wikidata, more than 60% of the text spans are linked to
more than one KB entity and, in some cases, match over 100 different KB entities.

https://wikidatacomplete.org/
https://wikidatacomplete.org/

5600

For the “known” subset, the correct KB entity is detected with a precision (P@1) of 49.0%. As
expected, this value is lower than the H@1 of 0.602 for text spans. The “zero-shot” subset is more
challenging but our KB completion still achieves a precision (P@1) of 25.3%. Despite the additional
complexity of the task, this value is close to the H@1 of 0.297 for text spans. Finally, the ML-based
strategy is largely superior over the other two but can only be used in a supervised setting. The range-
based strategy is to strict, often ruling out the correct match.

Subset: known relations Subset: zero-shot relations

Back-linking P@1 P@2 P@5 P@1 P@2 P@5

Rank-based 0.440 0.500 0.511 0.253 0.273 0.276
Range-based 0.433 0.4692 0.474 0.227 0.238 0.240
ML-based 0.494 0.512 0.516 – – –

Table 3: Performance (i. e., as measured on the hold-out test set) of either the “known” or “zero-shot”
subset of our dataset across the three different back-linking strategies.

8 Discussion

This paper contributes KB completion using only a single text corpus. For this purpose, we developed a
combination of a neural QA pipeline and a novel training framework with fact alignment and contionus
updates. Based on it, new facts for incomplete KBs can be inferred effectively.

Our training framework provides a natural approach to align facts with sentences from the corpus
and, therefore, makes all prediction verifiable. This is a clear advantage over most of the current KB
completion techniques that lack means for new facts to be verified by humans. In practice, it has two main
implications: (i) Facts can be shown along textual evidence to KB editors and thereby easily approved
or rejected. This thus facilitates a human-in-the-loop framework. (ii) In our work, textual evidence of
the proposed facts provides information on the provenance, i. e., the source of facts can be traced. This
is important in domains (e. g., medicine), where KBs serve as the basis for high-stakes decisions.

Acknowledgements

We thank the anonymous reviewers for their helpful comments. We gratefully acknowledge the support
of NVIDIA Corporation with the donation of the Titan Xp GPUs used for this research.

References
Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai Li. 2020. Realistic re-

evaluation of knowledge graph completion methods: An experimental study. In International conference on
Management of Data (SIGMOD).

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. 2007. Dbpe-
dia: A nucleus for a web of open data. In Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il
Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and
Philippe Cudré-Mauroux, editors, The Semantic Web, pages 722–735, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Michael Bendersky, Xuanhui Wang, Donald Metzler, and Marc Najork. 2017. Learning from user interactions
in personal search via attribute parameterization. In ACM International Conference on Web Search and Data
Mining (WSDM), pages 791–799.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: A collaboratively
created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD, page 1247–1250, New York, NY, USA. Association for
Computing Machinery.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational data. In Advances in neural information processing systems,
pages 2787–2795.

5601

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka, and Tom M Mitchell. 2010.
Toward an architecture for never-ending language learning. In Twenty-Fourth AAAI Conference on Artificial
Intelligence.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051.

Wenhu Chen, Wenhan Xiong, Xifeng Yan, and William Yang Wang. 2018. Variational knowledge graph reason-
ing. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1823–1832, New Orleans,
Louisiana, June. Association for Computational Linguistics.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. 2019. Meta relational learning for
few-shot link prediction in knowledge graphs. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4216–4225, Hong Kong, China, November. Association for Computational Linguis-
tics.

Jeffrey Dalton, Laura Dietz, and James Allan. 2014. Entity query feature expansion using knowledge base links.
In Proceedings of the 37th international ACM SIGIR conference on Research & development in information
retrieval, pages 365–374. ACM.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex
Smola, and Andrew McCallum. 2017. Go for a walk and arrive at the answer: Reasoning over paths in
knowledge bases using reinforcement learning. In ”International Conference on Learning Representations
(ICLR)”.

Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan, Adam Trischler, and Andrew McCallum. 2019. Building
dynamic knowledge graphs from text using machine reading comprehension. In International Conference on
Learning Representations ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), oct.

Dennis Diefenbach and Andreas Thalhammer. 2018. Pagerank and generic entity summarization for rdf knowl-
edge bases. In European Semantic Web Conference, pages 145–160. Springer.

Dennis Diefenbach, Pedro Henrique Migliatti, Omar Qawasmeh, Vincent Lully, Kamal Singh, and Pierre Maret.
2019. Qanswer: A question answering prototype bridging the gap between a considerable part of the lod cloud
and end-users. In The World Wide Web Conference, pages 3507–3510. ACM.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua
Sun, and Wei Zhang. 2014. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 601–610. ACM.

Alberto Garcia-Duran and Mathias Niepert. 2017. Kblrn: End-to-end learning of knowledge base representations
with latent, relational, and numerical features. arXiv preprint arXiv:1709.04676.

Matt Gardner and Tom Mitchell. 2015. Efficient and expressive knowledge base completion using subgraph fea-
ture extraction. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 1488–1498, Lisbon, Portugal, September. Association for Computational Linguistics.

Matt Gardner, Jonathan Berant, Hannaneh Hajishirzi, Alon Talmor, and Sewon Min. 2019. Question answering is
a format; when is it useful? arXiv preprint arXiv:1909.11291.

Wenqiang He, Yansong Feng, Lei Zou, and Dongyan Zhao. 2015. Knowledge base completion using matrix
factorization. In Asia-Pacific Web Conference, pages 256–267. Springer.

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia Polosukhin, Andrew Fandrianto, Jay Han, Matthew Kelcey,
and David Berthelot. 2016. WikiReading: A novel large-scale language understanding task over Wikipedia.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1535–1545, Berlin, Germany, August. Association for Computational Linguistics.

Bernhard Kratzwald and Stefan Feuerriegel. 2019. Learning from on-line user feedback in neural question an-
swering on the web. In The World Wide Web Conference, WWW ’19, pages 906–916, New York, NY, USA.
ACM.

5602

Bernhard Kratzwald, Anna Eigenmann, and Stefan Feuerriegel. 2019. Rankqa: Neural question answering with
answer re-ranking. In Annual Meeting of the Association for Computational Linguistics (ACL).

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical tensor decomposition for knowl-
edge base completion. arXiv preprint arXiv:1806.07297.

Ni Lao, Tom Mitchell, and William W Cohen. 2011. Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 529–539. Association for Computational Linguistics.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. Zero-shot relation extraction via reading
comprehension. arXiv preprint arXiv:1706.04115.

Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. 2014. Yago3: A knowledge base from
multilingual wikipedias. In CIDR.

Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and Christian Bizer. 2011. Dbpedia spotlight: shedding light
on the web of documents. In Proceedings of the 7th international conference on semantic systems, pages 1–8.
ACM.

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. 2015. Compositional vector space models for
knowledge base completion. arXiv preprint arXiv:1504.06662.

Altaf Rahman and Vincent Ng. 2011. Coreference resolution with world knowledge. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1,
pages 814–824. Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don’t know: Unanswerable questions for
SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 784–789, Melbourne, Australia, July. Association for Computational Linguistics.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. 2013. Relation extraction with matrix
factorization and universal schemas. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 74–84, Atlanta, Georgia,
June. Association for Computational Linguistics.

Avneesh Saluja, Ian Lane, and Ying Zhang. 2012. Machine translation with binary feedback: a large-margin
approach. In Proceedings of the Tenth Biennial Conference of the Association for Machine Translation in the
Americas.

Josua Stadelmaier and Sebastian Padó. 2019. Modeling paths for explainable knowledge base completion. In
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
pages 147–157, Florence, Italy, August. Association for Computational Linguistics.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2008. Yago: A large ontology from wikipedia and
wordnet. Journal of Web Semantics, 6(3):203–217.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Gamon. 2015.
Representing text for joint embedding of text and knowledge bases. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1499–1509, Lisbon, Portugal, September. Associa-
tion for Computational Linguistics.

Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative knowledgebase. Communications
of the ACM, 57(10):78–85.

Zihao Wang, Kwun Ping Lai, Piji Li, Lidong Bing, and Wai Lam. 2019. Tackling long-tailed relations and
uncommon entities in knowledge graph completion. arXiv preprint arXiv:1909.11359.

Gerhard Weikum and Martin Theobald. 2010. From information to knowledge: Harvesting entities and relation-
ships from web sources. In Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’10, pages 65–76, New York, NY, USA. ACM.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang Lin. 2014. Knowl-
edge base completion via search-based question answering. In Proceedings of the 23rd international conference
on World wide web, pages 515–526. ACM.

5603

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. 2016. Representation learning of knowledge
graphs with entity descriptions. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, pages 2659–2665. AAAI Press.

Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A reinforcement learning method for
knowledge graph reasoning. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 564–573, Copenhagen, Denmark, September. Association for Computational Linguistics.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. 2018. One-shot relational learning
for knowledge graphs. arXiv preprint arXiv:1808.09040.

Ziyu Yao, Yiqi Tang, Wen-tau Yih, Huan Sun, and Yu Su. 2020. An imitation game for learning semantic parsers
from user interaction. arXiv preprint arXiv:2005.00689.

Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. 2015. Aligning knowledge and text
embeddings by entity descriptions. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 267–272, Lisbon, Portugal, September. Association for Computational Linguistics.

Kaja Zupanc and Jesse Davis. 2018. Estimating rule quality for knowledge base completion with the relationship
between coverage assumption. In Proceedings of the 2018 World Wide Web Conference, pages 1073–1081.
International World Wide Web Conferences Steering Committee.

Appendix

A Details on Dataset Preprocessing

In the following we detail how we select our Dataset.
KB preprocessing: We first sample Wikidata triplets that satisfy all of the following three properties:

(i) the head entity corresponds to a Wikipedia article (i. e., this is needed to link KB and text corpus);
(ii) the tail entity has a matching Wikidata entity (i. e., it is neither a numerical value nor an external
identifier); and (iii) the tail entity is mentioned in the Wikipedia article that belongs to the head entity.

The above set of triplets is further processed: First, we discard all relation types that contain fewer than
10 facts. This is needed to ensure meaningful evaluations. Second, we merge facts that have the same
head entity and relation type but different tail entities in order to allow for a correct evaluation. Third,
out of the remainder, we sample 300 relations, i. e., 250 serve as known relations and 50 as zero-shot
relations. Here sampling considers the relative frequencies of tail entities in the original KB.

Train/test splits: We split facts into a training and test set in a 90:10 ratio, but sample at most 1000
for the training split and 500 for the test split. Relations that contain fewer than 20 facts are split in a
50/50 ratio in order to avoid too few test samples. This is different from WikiReadings, where 99% of
the dataset coverage is achieved by 180 properties. Our dataset gives more weight to infrequent long-tail
relations. The key statistics of our dataset are summarised in Tab. 4.

Naming: The names ω(j) for the relations are determined based on the English aliases that are stored
in the Wikidata. In detail, we use the five longest aliases present. For the entity names ψ(a), we use all
Wikidata aliases stored with the entity.

Subset: known Subset: zero-shot

#relations 250 50
#facts (train) 114,797 19,857
#facts (test) 43,272 7,971
#unique head entities 128,863 16,984
#unique tail entities 199,300 19,857

Table 4: Summary statistics of our dataset for Wikidata-based KB completion over free text from
Wikipedia.

	Introduction
	Related Work
	Preliminaries
	IntKB: A Verifiable Framework for Interactive KB Completion
	Task Definition
	QA Pipeline for KB Completion
	Answer Triggering
	Entity Linking

	Continuous Learning for KB Completion
	Cold-Start: Learning KB Completion from Text
	Continuous Improvement from User Interactions

	Dataset
	Computational Experiments
	Performance on Known Subset
	Performance on Zero-Shot Subset
	Continuous Learning from User Interactions
	Performance on Answer Back-Linking

	Discussion
	Details on Dataset Preprocessing

