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Abstract

Knowledge bases are increasingly exploited as gold standard data sources which benefit vari-
ous knowledge-driven NLP tasks. In this paper, we explore a new research direction to perform
knowledge base (KB) representation learning grounded with the recent theoretical framework of
knowledge distillation over neural networks. Given a set of KBs, our proposed approach KD-
MKB, learns KB embeddings by mutually and jointly distilling knowledge within a dynamic
teacher-student setting. Experimental results on two standard datasets show that knowledge dis-
tillation between KBs through entity and relation inference is actually observed. We also show
that cooperative learning significantly outperforms the two proposed baselines, namely tradi-
tional and sequential distillation.

1 Introduction

Knowledge Bases (KB), organizing structured information about entities (nodes), and relations (edges)
as graphs, are increasingly exploited as gold standard data sources for a broad range of human-AI tasks
including language modeling (Logan et al., 2019), question answering (Shen et al., 2019) and semantic
search (Bast et al., 2016). Although typical KBs may include a huge amount of observed knowledge
through millions of entities and their relations, they are by nature incomplete since they can only capture
a fraction of world knowledge. This limitation has given rise to extensive research work that focuses on
the issue of predicting new knowledge from the observed one (Socher et al., 2013; Nickel et al., 2016).
This issue has been successfully tackled by neural approaches for representation learning of KBs (Wang
et al., 2017; Sun et al., 2019; Bordes et al., 2013; Yang et al., 2014). These models aim at representing
KB entities and relations in low-dimensional embedding spaces, and supporting relational inferences
using simple vector algebra. Recent years have witnessed increasing interest toward embedding models
leveraged to connect multiple KBs (Liu et al., 2016; Chen et al., 2017; Trivedi et al., 2018; Zhu et al.,
2017; Zhang et al., 2019).

The key objective of multi-graph representation learning is to empower the entity and relation models
with different graph contexts that potentially bridge different semantic contexts. To achieve this goal,
embeddings are learned upon the combined triples across graphs. Although the above multi-graph rep-
resentation learning methods have achieved promising results, they are still challenged by two main
limitations. First, they are particularly suited to graph-alignment and machine translation as downstream
tasks which necessarily leads to tackle computational challenges in large-scale KBs. Second, these meth-
ods assume that each KB has access to all the entities and relations that are stored in the other KBs, while
it may not be feasible neither relevant to the KBs to share unaligned information such as in personal KBs
(Balog and Kenter, 2019).

Following a different objective, we argue that apart from any downstream task, modeling the re-
lational patterns across KBs might mainly focus on explicitly modeling connectivity patterns within
each KB using its own observed triples and, infer additional patterns from its peer by only us-
ing partially aligned observed triples. As a motivating example let us consider two KBs (KB1
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and KB2) that contain facts regarding cities, capitals, and countries as illustrated in Figure 1, but
where none of them include the fact that Rome is a city of Italy. By learning an embedded space,
KB1 model may be able to correctly generalize the relation CityIn and infer that Rome is a city
of Italy by grouping other similar entity embeddings to Rome such as the embedding of Pisa.

Figure 1: Motivating example.

Although this knowledge was not inferred by KB1, KB2 can
teach this information to KB1 by distillation. Then, KB1

model will be able to understand the relation CapitalOf by di-
rectly observing examples within its own semantic context and
the relation CityIn by distilled knowledge from KB2 semantic
context.

Accordingly, unlike existing work in multi-graph embedding
which relies on a unified view over multiple graphs, our work
rather relies on multiple within-KB views that are bridged with
aligned information. While each KB may be learning embed-
dings on its own semantic context based on associated hard
triples, it can additionally exchange inferred knowledge from
soft aligned triples provided by other KBs, in turn improving
the embeddings of each other based on different semantic con-
texts. Our key idea is to model a knowledge distillation process
(Hinton et al., 2015) across KBs to empower their generaliza-
tion ability. Despite the number of works that show the rationale behind the entity and relation inference
between KBs (Sun et al., 2018; Zhu et al., 2017), none has shown the feasibility of the knowledge dis-
tillation framework to model knowledge inference between KBs. Since the KBs play symmetric roles in
knowledge transfer, one critical issue is how to train each KB model using entity/relation labels based on
soft predictive distributions provided by the teacher, as well as its own predictive distribution. To tackle
this issue, we argue for a mutual learning paradigm (Zhang et al., 2018), where each KB acts dynami-
cally as either a teacher or a student. Unlike traditional static one-way knowledge transfer from a teacher
model to a student model, we argue towards a two-way cooperative knowledge transfer between a KB
and its peers. Concretely our set up is the following: the representation learning model of each KB is
equipped with two losses which are jointly optimized: 1) a classic KB supervised margin based ranking
loss whose objective is to make the scores of positive triples lower than those of negative ones; and 2)
a mimicry cooperative distillation loss that makes the posterior class predictions of aligned entities and
aligned relations close to the entity and relation class probabilities of its peer respectively. Through joint
optimization, the knowledge is also naturally transferred from the seed aligned information to unaligned
information.
In summary, the main contributions of the paper are the following: 1) a first attempt to ground multi-
graph representation learning by a knowledge distillation theoretical framework; 2) a novel KB repre-
sentation learning model called KD-MKB, based on a cooperative knowledge distillation strategy; 3)
experiments on two standard datasets, WN18RR and FB15K-237, that empirically validate the rationale
of knowledge distillation across KBs and show the effectiveness of the cooperative knowledge distillation
as proposed in KD-MKB.

The remainder of this paper is structured as follows. Section 2 presents the related works. In Section
3, we first introduce the used preliminary notions and then detail the KD-MKB model. In Section 4, we
present and discuss the experimental results. Section 5 concludes the paper.

2 Related Work

2.1 Representation learning across multiple KBs
Learning KB embeddings has drawn a huge attention in recent years. The embedding models are mainly
categorized into: 1) translational models such as TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), and TransR (Lin et al., 2015) or complex based models such as ComplEx (Trouillon et al., 2016)
and RotatE (Sun et al., 2019), which learn vector embeddings of both entities and relations by interpreting
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a relation as a translation operation from a head entity to a tail; 2) deep neural models based for instance
on graph convolutional networks (Schlichtkrull et al., 2018). More recently, representation learning
across multiple graphs has gained an increasing attention. The general objective is to encode different
graphs into a unified embedding space, such that the alignment likelihood between entities can be directly
measured via their embeddings. Trivedi et al. (Trivedi et al., 2018) propose the LinkNBed multi-graph
representation learning model based on a deep neural architecture. LinkNBed jointly learns relational
data embeddings across multiple graphs in a shared space and entity linkage between these graphs using
a multi-tasking approach. Sun et al. (Sun et al., 2018) propose a bootstrapping approach for entity
alignment across multiple graphs. The key idea is to iteratively label likely alignments as training data
and use them to further improve entity embeddings and alignment. Other work extends embedding
models to multilingual learning across graphs. A seminal work is MTransE (Chen et al., 2017) which
connects monolingual models by jointly aligning cross-lingual counterparts. On the other hand, in (Chen
et al., 2018), the authors propose a co-training process combining multiple multilingual graph embedding
models to learn on two views namely the structure and literal descriptions of entities. None of these
methods jointly learn multiple KB embeddings while preserving the structure of each KB, which is the
main goal of our work.

2.2 Knowledge Distillation

Knowledge distillation has been initially designed to distill the function approximated by a powerful en-
semble of models playing the role of teacher, to a simpler single model playing the role of student (Bucila
et al., 2006). This idea has given recently rise to an increasing attention for distilling the generalization
ability from a large and easy-to train network model to a small but harder to train network (Adriana et
al., 2015). The general framework relies on training a teacher first and then uses a teacher outputs in the
form of posterior class probabilities to train the student model such as it mimics the teacher by providing
similar outputs. Knowledge distillation has been widely used in NLP tasks to distill large models into
small models (Mou et al., 2016) or ensembles of models into single models (Liu Yijia, 2018; Liu Xi-
aodong, 2019; Kevin Clark, 2019). Mou et al. (Mou et al., 2016) addressed the problem of distilling
word embeddings in NLP applications. They proposed a supervised encoding approach to distill task-
specific knowledge from cumbersome word embeddings. The approach has been shown to be effective
in sentiment analysis and relation classification. Clark et. al (Kevin Clark, 2019) rather distill knowledge
from single-task teacher models to multi-task student models. Their work extends born-again networks
(Tommaso Furlanello, 2018) to the multi-task setting. The authors mainly rely on the teacher annealing
technique, which consists in mixing the teacher prediction with the ground truth label during training.
This strategy allows the student surpassing the teacher. The method has shown good performance in var-
ious NLP tasks including textual entailment, question-answering and paraphrase. In all of these works,
distillation is applied on a pair of models that statically play either the role of teacher or student. In
contrast, we adopt a mutual learning approach proposed in computer vision (Zhang et al., 2018) where
a set of models dynamically play the role of teacher-student. However, unlike the learning framework
proposed in (Zhang et al., 2018), we rather propose a cooperative learning over different learning tasks
with associated respective ground truths and where knowledge distillation enables communication be-
tween models via shared data characteristics. Beyond, to the best of our knowledge, it is the first work
that models and empirically validates the concept of knowledge distillation across KBs.

3 Cooperative Knowledge Distillation Across Multiple KBs

In this section, we describe KD-MKB, a KB representation learning model. We first introduce a couple
of terminological definitions so we can formally define our model.
Knowledge base. A knowledge base KB represents a graph (E ,R) which includes a set of entities
E = {e1, e2, . . . eNe}, a set of relations R = {r1, r2, . . . rNr}, and a set of real relation facts as positive
triples (ex, rw, ey) denoted T+ among all the possible ones in E × R × E . The set of negative triples is
denoted T−.
Aligned entities and relations. Let KB = {KB1,KB2, . . .KBn} represent a collection of KBs. For
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Figure 2: KD-MKB model architecture. The zoom in over theMj model is illustrated with a relation distillation example.

a pair (KBi,KBj) ∈ KB2, KBi (resp. KBj) comprises a set of E i (resp. Ej) entities, a set of Ri

(resp. Rj) relations. Ie(i, j) = {(eix, e
j
y) ∈ E i×Ej} is the set of aligned entities meaning that eix and ejy

represent the same real world entity. Note that the set of entities from KBi, denoted Iie(i, j), is equal to
its counterpart Ije (i, j), and |Ie(i, j)| = |Iie(i, j)|. Similarly, Ir(i, j) = {(riv, r

j
w) ∈ Ri × Rj} denotes

the set of aligned relations such that riv and rjw represent equivalent relations, and |Ir(i, j)| = |Iir(i, j)|.

3.1 Knowledge distillation from a KB to its peer

We conjecture that knowledge transfer between KBs can be drawn by relation and entity distillation. Our
underlying intuitions are the following:
Relation distillation. Let us consider (ei1, e

j
x), (ei2, e

j
y) ∈ Ie(i, j) two pairs of aligned entities between

KBi and KBj . Assuming the existence of aligned relations between KBi and KBj , our intuition
is that such entity pairs lead to the same probability of relation inference because the aligned entities
refer to the same real world objects (Sun et al., 2018; Zhu et al., 2017). Accordingly, we argue for the
relevance of mutually distilling likely aligned relations from one KB to its peers. Formally, plausibility
scores of triples (ei1, r

i, ei2) can be estimated with high confidence based on plausibility scores of triplets
(ejx, rj , e

j
y) and vice versa.

Entity distillation. Let us consider (riv, r
j
w) ∈ Ir(i, j) and (ei1, e

j
x) ∈ Ie(i, j) a pair of aligned entities and

relations between KBi and KBj . Similarly to the intuition underlying relation distillation, we believe
that such relation pairs lead to the same probability of entity inference because the aligned relations bring
equivalent semantics that link between entities (Sun et al., 2018; Zhu et al., 2017). Thus, we argue for the
relevance of mutually distilling likely aligned entities from one KB to its peer. Analogously to relation
distillation principle, plausibility scores of triples (ei1, r

i
v, e

i
2) can be estimated with high confidence

based on plausibility scores of triples (ejx, r
j
w, e

j
y) and vice versa.

3.2 Formulation of the KD-MKB model

In this paper, we study the representation learning of entities and relations across multiple KBs, while
preserving the essential information included in each KB. Formally, given a collection of KBs KB =
{KB1,KB2, . . .KBn}, a knowledge embedding modelMi is learned to preserve entities and relations
of each KBi, i = 1 . . . n in a separated embedding space.

3.2.1 Design principles and objectives

Our main design principle is to, on one hand, learn embeddings directly from knowledge included in
each KB, and on the other hand, improving the learning using knowledge distilled from its peers w.r.t to
aligned entities and aligned relations. Based on this principle, the learning framework jointly achieves
two complementary objectives.

Objective O1. Preserve the relational structure of each KB. For each participating KBi, a dedicated
knowledge embedding model Mi takes triples (eix, r

i, eiy) either positive in T+
i or negative triples in

T−i and learns corresponding embedding vectors (eix, r
i, eiy) by maximizing a triple plausibility scoring

function fi : E i ×Ri × E i in a ki dimensional space. TransE (Bordes et al., 2013), TransH (Wang et al.,
2014) and RotatE (Sun et al., 2019) are examples of state-of-the-art scoring functions.
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Objective O2. Improve the generalization ability of the representation learning model of each KB
by leveraging its peers. Based on a cooperative learning setting, each knowledge embedding model
Mi is further improved using knowledge distilled from each of the other embedding modelsMj , j =
1 . . . n, j 6= i. Each KB model Mi acts dynamically as either a teacher or a student by respectively
distilling or leveraging distilled relations and distilled entities from its peers.
Thus, we formulate the KD-MKB model with a set of n networks which act dynamically as either teacher
or student networks and mutually learn each of them specific modelsMi, i = 1 . . . n. Figure 2 provides
an overview of the KD-MKB architecture with a setting of 2 (n = 2) teacher-students.
Each KB model Mi uses a teacher-student setting which learns from the ground-truth labels using a
score function that measures the plausibility of the embeddings and the soft-labels provided by the n− 1
teacher networks as prediction outputs using the probability of relation inference and entity inference
based on the principle of knowledge distillation. The probability mass associated with each prediction
output provided by the other teacher KBs KBj , j = 1 . . . n, j 6= i allows the modelMi to learn richer
contextual information about the relation and entity embeddings similarity, leading to an increased ability
of generalization. Thus, the modelMi is equipped with two losses which are jointly optimized: a classic
KB supervised loss Li

s on ground-truth labels and a mimicry cooperative knowledge distillation loss
Li
KD on soft-labels.

L(θi) = (1− α)Li
s + αLi

KD (1)

where α is a hyperparameter.
Accordingly, each KB model learns both to correctly predict the correct label based on ground-truth
training triples (loss Li

s) as well as to match the posterior probability estimate of relations and entities
provided by its peers (loss Li

KD), following the intuitions outlined above (see Section 3.1). Such mutual
learning helps each KB to learn additional context from its peers.

3.2.2 Supervised classification loss
Following objective O1 (see Section 3.1), we adopt a standard KB embedding model, namely TransE
(Bordes et al., 2013). It is worth mentioning that other KB embedding models can also be used (eg.,
TransH (Wang et al., 2014) or RotatE (Sun et al., 2019)). Given a relation fact (eix, r

i
w, e

i
y) in KBi, we

use the following score function to estimate the plausibility of the embeddings:

fi(e
i
x, r

i
w, e

i
y) = − ‖ eix + riw − eiy ‖ (2)

where ‖ · ‖ denotes either L1 or L2 vector norm. Accordingly, we define, the probability of (eix, r
i
w, e

i
y)

being a true triple as follows:

P(y(eix,riw,eiy)
= 1 | θi) = sigmoid(fi(e

i
x, r

i
w, e

i
x)) (3)

where y(eix,riw,eiy)
is a random variable with value 1 if triple (eix, r

i
w, e

i
y) is true (ie. relation fact), and 0

otherwise, sigmoid(fi(eix, r
i
w, e

i
x)) = 1

1+exp(−fi(eix,riw,eix))
, the logistic sigmoid applied to each triple

score. The embedding model parameters θi, are defined by minimizing the logistic loss function:

Li
s =

∑
(e1,r,e2)∈T+

i ∪T
−
i

log(1 + exp(−y(e1,r,e2)fi(e1, r, e2)) (4)

3.2.3 Cooperative knowledge distillation loss
Following objective O2 (see Section 3.1), the knowledge distillation is cooperatively conducted on the
set of n KBs. At each learning step, each KB modelMi takes turns in the student-teacher process. As
a teacher, the model distills its knowledge background through class prediction estimates Li

s which are
used as soft labels by the other student KBs to compute their mimicry loss functionLj

KD, j = 1 . . . n, j 6=
i. Mutually, as a student,Mi model uses in its own mimicry loss Li

KD soft labels distilled from the other
KB teachers through Lj

s, j = 1 . . . n, j 6= i. From the perspective of KBi, the distillation loss function
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Li
KD is formalized as the sum of two losses related to relation distillation Lij

KDr
and entity distillation

Lij
KDe

from teacher network j to student network i as follows:

Li
KD =

1

n− 1

n∑
j=1,j 6=i

Lij
KDr

+ Lij
KDe

(5)

Following the relation (resp. entity) distillation principles, the distillation functionLij
KDr

(resp. Lij
KDe

)
quantifies the match of each student network relation (resp. entity) prediction outputs using soft labels
provided by the teacher networks with respect to the plausibility of the embeddings estimate given by
the corresponding supervised classification functions fj on ground truth labels. Relation and entity
confidence scores used by the student and the teachers for prediction are obtained by converting the
triple plausibility scores fi and fj on triples involving seed aligned relations and seed aligned entities as
detailed in the following.
Relation distillation. A relation distillation favors the student modelMi to mimic the teacher modelMj

on the relation prediction outputs over the set of aligned relations r ∈ Ir(i, j) such as triples (ej1, r, e
j
2)

and (ei1, r, e
i
2) have close plausibility scores. Thus, Lij

KDr
is computed as follows:

Lij
KDr

=
∑

(ejx,r,e
j
y)∈T+

j :(eix,e
j
x),(eiy ,e

j
y)∈Ie(i,j)

D(P(r
(ejx,·,ejy) | θ

j),P(r(eix,·,eiy) | θ
i)) (6)

where D is the distillation function which can be defined in several ways (Sau and Balasubrama-
nian, 2016) such as the L2 loss (Ba and Caruana, 2014) or Kullback-Leiber divergence (Hinton et
al., 2015), r(ex,·,ey) is a categorical variable with |Ir(i, j)| values corresponding to aligned relation la-
bels, P(r

(ejx,·,ejy) | θ
j) is a categorical distribution generated from the true triples (ejx, r, e

j
y) ∈ T+

j and

P(r(eix,·,eiy) | θ
i), a categorical distribution generated from the triplets involving soft relation labels pro-

vides by modelMj . The relation confidence score of relation rv is obtained by converting plausibility
scores using the softmax function over the aligned relations r ∈ Ir(i, j) as below:

Pv(r(ex,rv ,ey) | θ
k) = softmax(fk(e

k
x, rv, e

k
x)) (7)

where k = i, j and, softmax(fk(ekx, rv, e
k
x)) = exp(fk(e

k
x,rv,e

k
x))∑

rw∈Ir(i,j) exp(fk(e
k
x,rw,ekx))

, the softmax function
applied to each triple score.
Entity distillation. An entity distillation favors the student modelMi to mimic the teacher modelMj

on the link prediction outputs over the set of aligned entities e ∈ Ie(i, j) such as triples (ejx, r
j
w, e

j
y) and

(ei1, r
i
v, e

i
2) have close plausibility scores. Thus, Lij

KDe
is computed as follows:

Lij
KDe

=
∑

(ejx,r,e
j
y)∈T+

j :(eix,e
j
x)∈Ie(i,j),(riv ,r

j
v)∈Ir(i,j)

D(P(e
(ejx,r

j
v ,·) | θ

j),P(e(eix,riv ,·) | θ
i)) (8)

r(ex,r,·) is a categorical variable with |Ie(i, j)| values corresponding to aligned entity labels,
P(r(ex,r,·) | θj) is a categorical distribution generated from the true triples (ejx, r, e

j
y) ∈ T+

j and
P(r

(ejx,r,·) | θ
i), a categorical distribution generated from the triplets involving soft relation labels pro-

vides by modelsMj . The entity confidence score of the entity ey is obtained by converting plausibility
scores using the softmax function over the aligned entities e ∈ Ie(i, j) as below:

Py(r(ex,r,ey) | θ
k) = softmax(fk(ex, r, ey)) (9)

where softmax(fk(ex, r, ey)) =
exp(fk(ex,r,ey))∑

ez∈Ie(i,j) exp(fk(ex,r,ez))
, the softmax function applied to each triple

score.
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Algorithm 1: KD-MKB training model
Input:

KD-MKB parameter α, KB embedding model with own parameters
Set of knowledge bases KB = {KB1,KB2, . . . ,KBn}
Set of aligned entities and relations Ie(i, j), Ir(i, j) ∀i, j ∈ {1, .., n} with i 6= j

Initialize:
Set of modelsM = {M1,M2, . . . ,Mn}

while convergence or maximum number of iterations not achieved do
forMi ∈M do

index top-k←create index withMi

batchi ← sample triplets from T+
i and T−i

Li← (1− α)× Li w.r.t batchi following eq. (4)

forMi ∈M do
forMj ∈M do

if i 6= j then
batchj

e ←query index top-k using batchi ∩ Ie(i, j) to get P(g(eix,eiy)
|θi)

batchj
r ←query index top-k using batchi ∩ Ir(i, j) to get P(g(eix,riv)

|θi)

Lj
KD ← distill teacherMi to studentMj with eq. (5) w.r.t. batchj

r and batchj
e

Lj ← Lj + α× Lj
KD

forMi ∈M do
Jointly updateMi w.r.t. Li

Output: Parameters θi for each modelMi

3.3 The training procedure

A key characteristic of our proposed cooperative knowledge distillation is that all the losses
L(θi), i=1 . . . n of the n knowledge embedding models, are jointly and cooperatively optimized. At
each iteration, each loss L(θi) uses both the true labels and the soft labels provided by network models
Mj , j=1 . . . n, j 6= i to update parameters θi. The training model is summarized in Algorithm 1. The
learning strategy is setup in each mini-batch based model update. At each iteration, all the losses L(θi)
are jointly learned using one mini-batch for training Li

s and (n − 1) mini-batches comprising pairs of
alignments for training Lij

KDe
and Lij

KDr
. Since the sizes of entity and relation sets used in the softmax

normalization calculation of P(.) over E i or Ri may be very large, we apply a sampling technique to
estimate the probability distribution as done in previous work (Liu Yijia, 2018). It consists in selecting
the top k candidate entities (resp. relations) w.r.t. equation 2 to the given example to be distilled plus k
random entities (resp. relations). The teacher is in charge of the choice of the top-k candidates. Thus,
we only use 2 × k entities (resp. relations) for the softmax normalization instead of |E i| or |Ie(i, j)|
(resp. |Ri| or |Ir(i, j)|) total values which drastically reduce the number of required computations for
each distillation mini-batch.

4 Experiments
Two main objectives have guided our experiments: 1) show the validity of knowledge distillation to
formally support knowledge transfer between KBs; 2) evaluate the effectiveness of the KD-MKB model.

4.1 Settings

Datasets and splits. We perform our experiments on two standard real-world WN18RR and FB15K-237
KBs1. We simulate the multiple KBs setting by randomly splitting each of the WN18RR and FB15K-237
KB train triples into 2 and 3 partitions (n = 2, 3 in the KD-MKB setting, see Section 3.2). Our moti-
vation behind this evaluation setting is sustained by two reasons: 1) our goal with KD-MKB is to learn
empowered KB embeddings instead of multi-graph embeddings; 2) evaluate the intrinsic effect of the
KD-MKB model without any bias induced by uncontrolled effect of knowledge alignment quality. More

1Both KBs are available at https://www.microsoft.com/en-us/download/details.aspx?id=52312 (Last checked 26/10/2020)
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Dataset # Entities # Relations # Train # Val # Test

WN18RR 40,923 11 86,834 3,033 3,134
FB15K-237 14,255 237 272,115 17,535 20,466

Table 1: Statistics of WN18RR and FB15K-237 datasets.

precisely, two FB15K-237 partitions usually share 95% of the entities but drops to 64% for WN18RR.
The setting n = 1 allows reporting the traditional KB model on the entire set of triples. Table 1 pro-
vides statistics for both datasets used in our experiments. Within each setting, we obtain n teacherMi

and student Mj models, so reported results are averages. We compare the performance of our model
using state-of-the art neural representation models, namely TransE (Bordes et al., 2013). We focus on
the standard entity link prediction task for knowledge base population. This task evaluates the model
performances for a given tail query (ei,rj ,e?) where the response is a ranked list of entities that better
fit e? (similarly, head queries can be evaluated). We use the standard HITS@k (k = 1, 3, 10) and Mean
Reciprocal Rank (MRR) metrics. We report the means of multiple runs over test partitions.
Knowledge distillation strategies. We analyze the effectiveness of knowledge distillation strategies by
comparing the results reported on the following scenarios: 1) Independent is the traditional one-way
distillation setup (Hinton et al., 2015) where only half (n = 2) or third (n = 3) of the knowledge is
transferred from the teacher to the respective student. The teacher model is pre-trained and provides
posterior entity and relation predictions to the student model. Note that within this setting, each KB
model plays statically either the role of teacher or student during the learning process; 2) Xdistills∼X is
a sequential setup in which first each model is trained over one of the set defined in the partition until
convergence. Then he plays the role of a teacher and distills it’s knowledge to other models that play
the role of students, then, it plays the role of student. Thus the KB teacher and the KB student models
parameters are updated one after the other in a sequential fashion2; 3) KD-MKB model in which each
model dynamically and simultaneously acts as teacher and as student during the whole training process.
Thus, the predictions and parameters of the KB models are jointly updated.
Implementation details. We implemented all baselines and our model using PyTorch3. The loss function
is minimized using the Adam stochastic method with a learning rate of 10−5. The maximum number of
iterations is set to 8×104. Parameters of the TransE model were fixed by selecting the best configuration
in the validation partition of each dataset and by following recommendations from (Sun et al., 2019).
Thus, embedding size is fixed to 1000 (resp. 500), batch size to 512 (resp. 256), negative sampling size
to 128 (resp. 512), the αal adversarial loss to 1 (resp. 0.5), and the margin hyperparameter γ to 9 (resp.
6) for FB15K-237 (resp. WN18RR). Top-k entities are found using faiss (Johnson et al., 2017) with k set
to 10. Hyperparameter α in Equation 1, is set to 0.98 following a loss analysis between Li

s and Li
KD

4.
4.2 Results and discussion
4.2.1 Does knowledge distillation between KBs work?
To the best of our knowledge, this is the first attempt in the literature to empirically assess about knowl-
edge inference between KB embeddings using the theoretical framework of knowledge distillation (Hin-
ton et al., 2015). Table 2 shows link prediction performances for the two used data sets when performing
traditional independent distillation from a teacherMi to a studentMj . We can see from Table 2 that
overall the performance levels of the student model follow those of the teacher model for all the metrics
and that the performance trends remain the same for increasing numbers of KBs. This result empirically
validates our idea about the modeling of knowledge inference between KBs through the formalization of
simultaneous distillation of entities (Lij

KDe
) and relations (Lij

KDr
).

4.2.2 KD-MKB model analysis
Distillation model. To highlight the benefit behind cooperatively distilling knowledge across KBs, we
report in Table 3 link prediction results using the three knowledge distillation strategies Independent,

2Other baselines can be proposed. However, using a sequential distillation guarantees that the baseline sees the triplets of
one partition. The main drawback is that some of the knowledge learned as a teacher may be loss when behaving as a student.

3Our implementation is publicly available at https://github.com/raphaelsty/mkb
4Exploration of more elaborated loss combinations such as the one reported in (Zoph et al., 2020) is left for future work.



5587

WN18RR FB15K-237
Teacher Student Teacher Student

n H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

1 1.43 39.61 52.63 0.22 1.37 39.53 52.40 0.22 22.53 36.27 52.15 0.32 22.46 36.33 52.24 0.32
2 0.65 19.90 28.36 0.11 0.62 19.75 28.35 0.11 19.28 31.56 46.23 0.28 19.18 31.35 45.99 0.28
3 0.58 12.12 18.61 0.07 0.59 11.84 18.10 0.07 17.19 28.35 42.59 0.26 17.09 28.18 42.11 0.25

Table 2: Performance results for WN18RR and FB15K-237 datasets on the link prediction tasks using the traditional in-
dependent distillation model. H@k stands for HITS@k. n indicates the number of KB partitions used to learn the Teacher
representation. For n > 1, reported values correspond to average performances of the multiple models over test sets.

Xdistills∼X and KD-MKB by using the same splits than those presented in Table 2. We report best
and worst results of Mi and Mj models for each dataset partition. The main observation that can
be drawn from Table 3 is that the KD-MKB model outperforms the Independent model (e.g., between
24.8% and 455.7% improvement based on HITS@1, between 17.9% and 85.7% improvement based
on MRR) over all the partitions and datasets and w.r.t. to all the metrics. Additionally, we can also
see that the Xdistills∼X model outperforms the Independent model. For example, when n = 2, the
HITS@3 performance reaches a level around 27.93 (resp. 32.60) using Xdistills∼X for the WN18RR
(resp. FB15K-237) dataset vs. a lower value around 19.95 (resp. 31.92) using the Independent model.
This can be easily explained as the Independent model is only trained over the soft-labels in just one
partition while the Xdistills∼X model uses first hard labels from its own partition (when it plays the role
of a teacher) and then uses soft labels from the other partitions (when it plays the role of a student).
We can also interestingly observe that the KD-MKB model outperforms the Xdistills∼X model though
by a lower percent change (e.g., between 1.0% and 11.0% improvement for HITS@10 using WN18RR
dataset, between 10.6% and 18.6% improvement for HITS@10 using FB15K-237 dataset). It is worth
mentioning that the KD-MKB model uses the same number of soft- and hard-labels than the Xdistills∼X
model but our proposed cooperative strategy takes more advantage of both kind of labels. This result
highlights a clear benefit of both dynamically switching between the teacher and student roles for each
of theMi models empowered by the mimicry cooperative learning and joint update of their parameters.

Distillation strategy n HITS@1 HITS@3 HITS@10 MRR
Best Worst %Chg. Best Worst %Chg Best Worst %Chg Best Worst %Chg

Independent 2 0.70 0.60 +455.7% 19.95 19.86 +68.6% 28.38 28.35 +48.6% 0.11 0.11 +72.7%
3 0.74 0.28 +173.0% 12.53 11.59 +68.4% 19.78 17.32 +70.5% 0.07 0.07 +85.7%

Xdistills∼X 2 1.21 1.03 +221.5% 27.93 27.69 +20.4% 41.75 41.48 +1.0% 0.16 0.15 +18.8%
3 1.57 1.26 +28.7% 16.51 16.19 +27.8% 30.47 30.42 +11.0% 0.10 0.10 +30.0%

KD-MKB 2 3.89 3.74 - 33.64 33.55 - 42.18 42.02 - 0.19 0.19 -
3 2.02 1.75 - 21.10 19.57 - 33.72 32.72 - 0.13 0.12 -

(a) WN18RR dataset

Distillation strategy n HITS@1 HITS@3 HITS@10 MRR
Best Worst %Chg. Best Worst %Chg Best Worst %Chg Best Worst %Chg

Independent
2 19.38 19.18 +24.8% 31.92 31.21 +18.3% 46.45 46.02 +14.7% 0.28 0.28 +17.9%
3 17.32 17.03 +41.1% 28.55 28.22 +32.7% 42.88 42.43 +23.7% 0.25 0.25 +36.0%

Xdistills∼X
2 20.43 20.39 +18.4% 32.60 32.04 +15.8% 48.15 47.85 +10.6% 0.29 0.29 +13.8%
3 18.85 18.70 +29.7% 29.61 29.50 +27.9% 44.73 44.46 +18.6% 0.27 0.27 +25.9%

KD-MKB
2 24.18 24.12 - 37.75 37.66 - 53.26 53.22 - 0.33 0.33 -
3 24.44 24.36 - 37.88 37.82 - 53.06 52.95 - 0.34 0.33 -

(b) FB15K-237 dataset

Table 3: Performance results for WN18RR and FB15K-237 datasets on the link prediction task using variants of the distilla-
tion models. Reported values are the best and worst performances obtained within each n dataset split configuration. %Chg.
denotes the effectiveness improvement of the KD-MKB model w.r.t concurrent distillation model strategies under consideration
based on the best performing model.

Distillation with larger alignments. We further analyze the effect of the size of entity alignments on
KD-MKB performance. To be coherent with the results presented in the previous experiments, we
keep the same partitions. Figure 3 plots the performance variations w.r.t. to all the metrics using the
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Figure 3: HITS@1, HITS@3, HITS@10 and MRR link prediction results for KD-MKB using WN18RR when different sizes
of the alignment set (Ie(i, j)) are used. Our best performances are highlighted by a circle and values were included.

Figure 4: HITS@1, HITS@3, HITS@10 and MRR link prediction results for KD-MKB using FB15K-237 when different
sizes of the alignment set (Ie(i, j)) are used. Our best performances are highlighted by a circle and values were included.

WN18RR dataset. It is worth mentioning, that unlike the FB15K-237 which exhibits an overlap of 95%,
the WN18RR actually allows to simulate an increasing overlap of entities by adding extra information
to Ie(i, j) until reaching the 100% overlap. The additional mapping information between entities does
not increase the number of triplets to train but it allows a larger number of entities to be distilled from
teachers. Figure 3 indicates that in average, 20% of extra aligned entities leads to an absolute gain of
5.2 points in HITS@10 and 0.06 points in MRR. As expected, higher numbers of soft-labels improves
the mutual knowledge inference from a KB to its peers. Results for FB15K-237 datasets are presented
in Figure 4. In this case the increasing is beneficial being more stable when n = 3 because of the larger
increase of the overlapped entities.
Multi-KB learning vs. single-KB learning. We depict in Figures 3 and 4 the performances of KD-MKB
as well as for TransE using both datasets. Both models were trained using full train data, hard labels
only for the latter, and hard-labels and soft-labels for the former. Results are constant for TransE as its
performances do not depend on the number of aligned entities. When the number of aligned entities is
100% (highlighted by a circle), we can verify from these figures the improvements of using KD-MKB on
multiple KBs instead of the classical TransE embedding model on an individual KB. For FB15K-237,
both partitions configuration (e.g. KD-MKB with n = 2 and n = 3) outperform the TransE performances
for all studied metrics. However, for WN18RR, KD-MKB slightly outperforms TransE when n = 2 in
terms of HITS@3 and MRR, but fails to improve in terms of HITS@10.

5 Conclusion and Future Work

This paper presents a new framework for learning entity and relation embeddings over multiple KBs. Our
framework exploits a new way to transfer learning from one KB model to its peers. First, we formalize
entity and relation inference between KBs as a distillation loss over posterior probability distributions on
aligned knowledge. Grounded on this finding, we propose and formalize a cooperative distillation frame-
work where a set of KB models are jointly learned by using each of them hard labels from their own con-
text and also soft labels provided by peers. We empirically demonstrate the rationale behind knowledge
distillation between KBs and show the effectiveness of our cooperative learning framework on the link
prediction task compared to the existing distillation strategies. Further experiments are planned for fu-
ture work using more complex and realistic configurations for multiple KBs learning to assess about the
generalizability of our findings. We also plan to extend our approach to consider weak alignments while
distilling knowledge over pairs of KBs. This would empower the cooperative learning with higher gen-
eralization ability particularly for heterogeneous KBs. We believe that this work could be used without
major change in the core methodology to support a wide range of knowledge-driven applications.
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