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Abstract

Recognition of the mental state of a human character in text is a major challenge in natural
language processing. In this study, we investigate the efficacy of the narrative context in recog-
nizing the emotional states of human characters in text and discuss an approach to make use of
a priori knowledge regarding the employed emotion category system. Specifically, we experi-
mentally show that the accuracy of emotion classification is substantially increased by encoding
the preceding context of the target sentence using a BERT-based text encoder. We also com-
pare ways to incorporate a priori knowledge of emotion categories by altering the loss function
used in training, in which our proposal of multi-task learning that jointly learns to classify posi-
tive/negative polarity of emotions is included. The experimental results suggest that, when using
Plutchik’s Wheel of Emotions, it is better to jointly classify the basic emotion categories with
positive/negative polarity rather than directly exploiting its characteristic structure in which eight
basic categories are arranged in a wheel.

1 Introduction

Understanding of narrative text requires the ability to read between the lines and determine changes
in the characters’ emotional states concerning the ongoing situation described in the text. Given this
motivation, Rashkin et al. (2018) proposed a framework for annotating fully-specified chains of mental
states with respect to characters’ motivations and emotional reactions. They publicized the resulting
annotated corpus, called the Story Commonsense dataset.

(Rashkin et al., 2018) further demonstrated that the mental state of a character in a narrative can be
more accurately classified by using the preceding context of a target sentence. Although the results
indicate the efficacy of the narrative context, the method might have certain limitations. The approach
proposed by (Rashkin et al., 2018) focuses on the character-specific context that selectively concatenates
the sub-set of sentences in which the target character appears. Although this account might be effective
in excluding apparently irrelevant sentences, it may fail to extract implicit yet useful information from
other parts of the context. Thus, we adopt a simple yet presumably effective method that encodes the
entire preceding context along with the target sentence using BERT (Devlin et al., 2019).

The task of emotion classification is generally formulated as a multi-label classification task (Zhou
et al., 2016; He and Xia, 2018; Yu et al., 2018; Alswaidan and Menai, 2020) due to the innate com-
plexity of human emotions: a sentence can express multiple emotions that an annotator may be unable
to disassociate. Among the issues linked to multi-label classification, a crucial one is the handling of
mutual dependencies among emotion categories. He and Xia (2018) proposed incorporating a term into
the loss function so that it captures the interactions between a pair of Plutchik’s basic emotion cate-
gories (Plutchik, 1980). However, the reported evaluation results concentrated on a comparison with
existing methods and did not disclose any outcomes that demonstrate the efficacy of the proposed loss
function. We propose a multi-task learning method that jointly learns to classify Plutchik’s eight basic
emotion categories and the positive/negative polarity of emotions.
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Figure 1: (a) Story Commonsense dataset, (b) emotion classification model, and (c) Plutchik’s Wheel of
Emotions.

Our overall experimental results show that both the narrative context and a priori knowledge regarding
the emotion category system are effective for increasing classification accuracy. However, the latter is
not very significant, suggesting that further exploration into the nature of human emotions that might be
latent in written text is necessary.

2 Problem Formulation

In the present work, we use the Story Commonsense dataset (Rashkin et al., 2018) and compare several
methods to identify the possibly multiple emotions of a human character that are explicitly or implicitly
expressed by target sentences in narrative text. Note that each classification method is applied sentence-
by-sentence.

2.1 Story Commonsense Dataset and the Emotion Categories

The Story Commonsense dataset! includes around 150,000 annotations of the mental states of characters
for approximately 15,000 narrative stories presented in the ROCStories corpus (Mostafazadeh et al.,
2016). Although the annotated mental states are of motivation and emotional reaction types, we only
consider the latter in the present work. Multiple emotional categories based on Plutchik’s basic emotion
categories (Plutchik, 1980) may be assigned to each of the sentence—character pairs, as exemplified in
Fig. 1 (a). Notice that Plutchik’s emotional category system presents eight basic emotion categories
that are arranged in a wheel as illustrated in Fig. 1 (c), where each bipolar category indicates a pair of
opposite emotions and the categories exhibiting some proximity are adjacent. Among the eight basic
categories, joy and trust are considered positive, whereas fear, sadness, disgust, and anger are assumed
negative in the present work. There has been a debate among psychologists that surprise-like categories
are not emotional categories (Ortony et al., 1987). We thus excluded surprise and anticipate in the
positive/negative polarity classification.

2.2 Multi-label Emotion Classification Methods

An emotion classification method is specified by the types of information that are used as the input and
the architecture of the classification model. The inputs to the classification method are threefold: a target
sentence, a human character associated with the target sentence, and the narrative context. The first two
items are explicitly specified in the dataset, and we could devise a way to use them in a model. We
needed to consider a technique to incorporate narrative context. One solution proposed in (Rashkin et
al., 2018) was to extract sentences in which the target character appears. We instead simply concatenate
the preceding sentences regardless of the appearing characters. We formulate a data packet that fed into
BERT as follows, where the [CLS] vector is then employed as the input representation and fed into the
classifier layer.

[CLS]CHARACTER#SENTENCE#CONTEXT [SEP]
'"https://uwnlp.github.io/storycommonsense/
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In the present work, the classification models are first divided into single-task models and a multi-task
model. The single-task models are characterized by the loss function used during training. The general
form of the loss functions can be formulated as follows (He and Xia, 2018). Here, C' and p,. respectively
indicate the number of categories and the class probability of category ¢, which is calculated using the
sigmoid function. Our baseline model (mnimonic:BL) is defined by the formula with A\; = Ay = 0.

C
Lemo = — Z(yclogpc + (1 = ye)log(l —pe)) + M1 ZwS,t(ps - pt)Q + )‘2H9H2 (1)

c=1 s,t

Notably, the weight w,; measures the degree of proximity between categories s and t. We compare
two methods to define the weights. One, (He), is the method presented in (He and Xia, 2018), which
uses pre-defined constants by observing the angle between a pair of categories (0.5 for 7, 0 for 7, —0.5
for ?[T“, and —1 for 7). The other, (Cooc), calculates the co-occurrence probability between a pair of
categories that are pre-computed using the training portion of the dataset. These methods respectively
exploit theoretical (He) and data-driven (Cooc) knowledge of the categories.

The total loss function L,,,,;¢; for a multi-task model (Multi) is defined as follows, where the loss
term for the binary positive/negative classification L, is added. The A parameters balance the impact
of two classification tasks. Note that we set loss for the surprise and anticipation categories to 0 during
training as we deemed they were neither positive nor negative.

L = ASLemO + )\4Lpol (2)

Lpot = {y*logp™ + (1 — y")log(1 — p™)} + {y " logp™ + (1 —y~)log(1 —p~)} 3)
3 Experiments

3.1 Experimental Settings

To investigate the efficacy of the narrative context and knowledge about emotion categories in textual
emotion classification, we conducted emotion classification experiments using the Story Commonsense
dataset. We used the dev and test portions of the dataset for training and testing, respectively, as the
dataset does not provide any annotations for the training portion. The dataset contains 13,004 and 11,859
sentence—character pairs for training and testing, respectively. The size of the preceding context was
limited to 80 words. We used BERT-Large as the text encoder, whose hidden layer’s dimensionality is
768. We fine-tuned the parameters during training by using the Adam optimizer. Classification accuracy
is summarized with the micro-averaged precision/recall/F1-score, which is compatible with the results
reported in (Rashkin et al., 2018).

Model Precision Recall F1

BiLSTM* 20.3 304 2423
CNN* 21.2 234 222
REN* 26.2 333 293
NPN* 22.0 37.3 27.7
BL (w/o char.) 59.2 56.9 58.1
BL (w char.) 58.4 58.8 58.6

Table 1: Comparison with the existing models reported in (Rashkin et al., 2018).

3.2 Major Results

Table 1 shows a comparison of our baseline (BL) performance with that of the existing complicated
models presented in (Rashkin et al., 2018). The results show that the BL method outperformed the
reported methods. The relatively large margins may be attributed to the simple yet adequate incorporation
of narrative context supported by the powerful mechanism of the BERT-based text encoder. It can be
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noted that the performance gains achieved by incorporation of character specification are less prominent
compared to that reported in (Rashkin et al., 2018). This outcome may again imply that the BERT-based
encoder can be used to capture implicit clues of character identities.

# ‘ Model ‘ Character Context ‘ Precision Recall F1
1| BL v 58.4 58.8 58.6
2 | He v 58.4 58.1 582
3 | Cooc v 58.9 58.1 58.5
4 | Multi v 59.4 579  58.7
5| BL v v 61.2 61.5 613
6 | Multi v v 62.6 60.3 614

Table 2: Comparison among the classification methods.
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Figure 2: Averaged sentence vectors projected into a three-dimensional space by PCA.

Table 2 compares the classification methods, where the most significant outcome is the incorporation
of narrative context, which is highly beneficial (lines #5 and #6). These two lines also show that the
proposed multi-task method provided high accuracy but low recall, resulting in a slight increase in the
Fl-score. The same applies to the comparison of the results in #4 with those in #1 through #3. These
results suggest that multi-tasking with positive/negative polarity classification would be beneficial but
has scope for improvement. However, the results presented in #2 (a theoretical approach) and #3 (a
data-driven approach) imply that Plutchik’s Wheel of Emotions cannot be directly exploited in emotion
classification. We should consider the internal cognitive mechanisms associated with human emotion.

3.3 Discussion: Reconsidering Plutchik’s Wheel of Emotions

Figure 2 presents a heatmap of the averaged sentence vectors projected into a three-dimensional space
by applying principle component analysis (PCA). To create an average vector for each emotion category,
we extracted singleton sentences that are uniquely labeled with one category and used the [CLS] vectors
obtained by the BL method. The following trends can be observed in the figure: (1) The first component
discriminates positive emotions (joy, trust, anticipation) from negative emotions (fear, surprise, sadness,
disgust, anger). In particular, joy can be clearly distinguished from any other category; (2) The second
and third components jointly show that surprise-like categories, anticipation and surprise, are discrim-
inated; and (3) The third component suggests the negative categories can be further grouped into two
subsets: {sadness, disgust, anger} and {surprise, fear}. In summary, these results support the use of
Plutchik’s Wheel of Emotions to sufficiently capture the nature of human emotions.

4 Related Work

The Story Commonsense dataset provides the annotations for characters’ mental states, which include
emotions as well as human needs. Thus, this dataset provides an opportunity to investigate into a method
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to infer a character’s underlying motivation to perform an action and the resulting emotional statuses. As
these mental states are often implicit in text, the Story Commonsense dataset has facilitated research into
the effective exploitation of commonsense knowledge (Paul and Frank, 2019).

The prediction of a character’s emotional state is usually formulated as a classification prob-
lem (Gaonkar et al., 2020), but Bosselut and Choi (2019) framed it as a zero-shot commonsense
question-answering problem, where the use of dynamically generated commonsense knowledge graphs
was specifically focused. We thus highlight the former work in the following, which shares the research
motivations with the present work.

Similar to the present work, Gaonkar et al. (2020) exploit information or knowledge obtained from the
emotion category in the process of emotion classification, but in different ways. They firstly introduced
emotion label embeddings which are made from emotion label name to incorporate relevant semantic
information. They further devised a clever way to incorporate semantics from the “emotion-label sen-
tences” by using a pre-trained BERT model. These devices improved both precision and recall. Besides,
they modeled the transition of emotion by observing label correlations, which significantly contributed
to improving the recall. As a result of these efforts, they successfully achieved state-of-the-art emotion
classification performances on the Story Commonsense dataset. However, unlike the present work, they
did not present any experimental discussions that try to explore the emotion classification system, in
particular the wheel structure of Plutchik’s basic emotion categories.

S Concluding Remarks

The contributions of the present work are threefold. (1) Emotion classification accuracy can be consid-
erably increased by using a BERT-based text encoder that properly incorporates narrative context; (2)
Joint classification with positive/negative polarity would be promising for achieving higher classification
accuracy; (3) It is partly demonstrated that the use of Plutchik’s Wheel of Emotions sufficiently captures
the nature of human emotions.

However, the experimental results suggest that a priori knowledge regarding the emotion category
system has not been fully captured and incorporated into the classification model, showing that further
investigations are necessary. There could be two ways to accomplish this. One way is to incorporate
the ontologically organized knowledge about the cognitive structure of emotions with respect to events,
agents, and objects (Ortony et al., 1990). Such ontological knowledge could be injected into a classifica-
tion model, but it should be represented as a computable structure such as a knowledge graph. Another,
presumably more direct, way is to exploit a set of inferential knowledge of everyday commonsense that
could directly connect an event with the participants’ emotional states. In this regard, we will seek an
effective way to incorporate commonsense knowledge resources such as ATOMIC (Sap et al., 2019).
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