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Abstract

Utterance classification is a key component in many conversational systems. However,
classifying real-world user utterances is challenging, as people may express their ideas
and thoughts in manifold ways, and the amount of training data for some categories
may be fairly limited, resulting in imbalanced data distributions. To alleviate these is-
sues, we conduct a comprehensive survey regarding data augmentation approaches for
text classification, including simple random resampling, word-level transformations,
and neural text generation to cope with imbalanced data. Our experiments focus on
multi-class datasets with a large number of data samples, which has not been system-
atically studied in previous work. The results show that the effectiveness of different
data augmentation schemes depends on the nature of the dataset under consideration.

1 Introduction

In modern conversational systems, classifying incoming user utterances is among the most
crucial processes. This is particularly evident for automated customer service systems: if the
underlying demand can successfully be classified based on the user’s description, a known
solution can directly be provided to them. A weak classifier may miscategorize a request,
resulting in customer dissatisfaction. A considerable cause for low-performing classification
is a lack of sufficient training data for certain categories, which manifests as the problem
of imbalanced data distributions. Classifying utterances is particularly challenging, as people
may choose various different forms of expressing their ideas and thoughts. Thus, very dif-
ferent utterances may reflect the same underlying intent. Recent findings on query variation
in search systems suggest substantial potential for considering language diversity in NLP ap-
plications (Koopman et al., 2017; Scells et al., 2018; Sultan et al., 2020). Motivated by these
observations, we study how to improve utterance classification results by drawing on utter-
ance variation. Unfortunately, soliciting clean human-generated data can be expensive and
difficult to scale. In this study, we instead consider automated utterance generation schemes
to augment the original dataset during the training process, in order to: (1) mitigate the data
imbalance, and (2) improve the classification effectiveness. Since automatically generated data
is cheap and easy to obtain, we can use it as a way of augmenting existing data, which may
improve our classification model’s effectiveness and robustness.

In this study, we conduct a thorough investigation of current data augmentation approaches
to mitigate the imbalanced data problem, including simple resampling, word-level transfor-
mations, and neural text generation. Subsequently, an optimal balanced spot is sought to
achieve a better classification result.

Contributions: The main contributions of this paper are twofold. First, we conduct a compre-
hensive survey regarding state-of-the-art data augmentation approaches for multi-class text
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classification. Second, our extensive empirical analysis compares the effectiveness of such
data augmentation approaches, showing the value of adopting variational autoencoding tech-
niques along with hybrid combinations of oversampling and undersampling.

2 Data Augmentation Strategies

Empirically, it is well-known that the scarcity of data can hamper the effectiveness of machine
learning models, particularly data-hungry deep neural networks. Hence, data augmentation
techniques have become ubiquitous in certain fields to alleviate this issue. A substantial num-
ber of studies have focused on applying data augmentation to facilitate classification tasks
in computer vision. In the vision domain, very simple data augmentation tricks are able to
engender significant performance gains. Some operations, such as rotation, translation, and
flipping have come to be routinely invoked for both handwritten document recognition (Le-
Cun et al., 1998) as well as regular image classification tasks (Simonyan and Zisserman, 2014).
In addition to these macroscopic operations, Krizhevsky et al. (2012) further leverage RGB
channel intensity alterations to reduce overfitting caused by data insufficiency. For speech
recognition tasks, data augmentation is as well commonly invoked to train more robust mod-
els, and is mainly applied at the audio signal level (Cui et al., 2015; Ko et al., 2015).

Unlike images and speech, text cannot naturally be regarded as a continuous signal that
can be perturbed arbitrarily, given its discrete units of semantic meaning. To faithfully retain
these features, paraphrases are an intuitive and in some sense ideal way to expand a dataset by
incorporating alternative expressions for the existing sentences. However, human rephrasing
is too expensive and unrealistic, whereas machine paraphrasing currently has its limitations,
e.g., it only works on specific tasks (Wang and Yang, 2015; Hou et al., 2018) and a specific
paraphrase corpus may be required (Fader et al., 2013; Qiu et al., 2020).

To cope with the generalization issue of data augmentation, a number of universal ap-
proaches have been proposed, and we thoroughly evaluate several such universal data aug-
mentation approaches, which can be classified into three types: simple re-sampling, word-
level transformations, and neural text generation. In the following, we explicitly introduce
each method, and for VAE-based neural generation modeling, we additionally introduce some
new adaptions to facilitate the task of learning a classification.

21 Simple Resampling

Simple resampling is the most effortless and convenient method to deal with the data imbal-
ance issue and has been invoked in numerous studies. For instance, Japkowicz and Stephen
(2002) investigated the performance of oversampling and undersampling strategies applied to
a binary classification task.

We thus consider two different simple resampling operations: (1) We refer to the resampling
procedure as Undersampling when data samples for each of the majority classes are randomly
dropped, thus undersampling such classes, such that the amount of data in all classes becomes
the same as the smallest one. (2) Oversampling instead refers to the opposite scenario, i.e.,
minority classes are oversampled to increase their size.

2.2 Word-level Transformations

Word-level transformations can be leveraged to produce new sentences while preserving the
semantic features of the original texts to a certain extent. The most intuitive way is synonym
replacement (SR) (Kobayashi, 2018), which entails replacing a random word in a data sample
with one of its synonyms to construct a new sentence. This can be a promising way of obtain-
ing likely paraphrases of the original sentences, especially for classification tasks (Kobayashi,
2018). Easy Data Augmentation (EDA) is another universal data augmentation technique for
NLP (Wei and Zou, 2019), in which one of a set of possible operations, including synonym re-
placement, random insertion, random swapping, and random deletion, are randomly chosen
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and applied to a given sentence. Although the authors show a promising performance gain
of EDA over SR, EDA’s effectiveness has only been demonstrated on small datasets.

2.3 Neural Text Generation

Text generation is a widely explored yet still very challenging task in NLP. The application of
neural networks to text generation has achieved great success in a sizeable number of works
(Bowman et al., 2015; Shen et al., 2017; Radford et al., 2019; Shen et al., 2020).

This raises the question of whether neural text generation can also serve as a data augmen-
tation technique. The first neural language model was proposed by Bengio et al. (2003), and
the superiority of applying neural network models to text generation tasks has been validated
in subsequent work, such as recurrent neural network language models (RNNLM) (Mikolov
et al., 2010) and long short-term memory (Hochreiter and Schmidhuber, 1997). Compared
with conventional language models, generative adversarial nets (GANs) (Goodfellow et al.,
2014) and variational autoencoding (VAE) (Kingma and Welling, 2013) along with its variants,
are capable of producing more diverse results (Su et al., 2020). Currently, GAN-based models
have excelled primarily in image generation (Radford et al., 2015; Denton et al., 2015) rather
than in language tasks. Although a number of attempts regarding text generation have been
made (Yu et al., 2017; Su et al., 2018), the training process is known to be extremely unstable
and the model requires very careful tuning to find a sweet pot between diversity and quality.

In this work, we propose to exploit standard Seq2Seq neural generation as well as VAE-
based models that inject additional variation with stochastical latent variables for data aug-
mentation. Specifically, we consider the following models.

Seq2Seq text generation: OpenNMT (Klein et al., 2017) is a neural machine translation
system that can also be used to generate text (Hou et al., 2018). MASS (Song et al., 2019)
is another Seq2Seq neural generative model, including pre-training procedure for a language
model within a masked encoder-decoder framework and further fine-tuning process for other
downstream tasks, such as text summarization and conversational response generation. Since
Seq2Seq models require both source and target texts, this option is usually applied for con-
versational text inputs and may not be suitable for arbitrary ordinary text classification tasks.

VAE models: In contrast to vanilla language modelling, VAE assumes a two-step text gen-
eration process: (1) A latent code z is first sampled from a prior distribution p(z), (2) The
corresponding text is then generated based on the conditional distribution pg(x | z). By in-
troducing the additional latent code trained to be distributed in a stochastic prior space, the
generated text is able to demonstrate superior diversity compared with a vanilla language
model, where the only stochasticity comes from the output softmax layer. The increased di-
versity is often considered desirable in data augmentation. As the conditional distribution
po(x | z) is often parametrized with deep neural networks, the exact likelihood cannot be
derived analytically. VAE circumvents this problem by resorting to a lower bound of the real
log-likelihood, known as the evidence lower bound (ELBO):

p@(x/ Z)
q9(z|x) 1)
> gy (zlx) 10g Po(x[2) — KL(g4(2[x) || p(2)),

L(0,¢) =10ogE, ) pe(x|z) = 10g B g, (zlx)

where g4(z|x) is an encoder trained to map each text into its posterior latent code space.
To maintain the training efficiency, we define p(z) as a standard Normal distribution and
parametrize g4(z | x) as a Gaussian distribution with a diagonal covariance matrix. 6 and ¢
are simultaneously trained to minimize £(6,¢) by gradient descent. The reparametrization
trick (Kingma and Welling, 2013; Rezende et al., 2014) is used to backpropagate gradients
through sampled stochastic latent variables.

Eq. 1 can also be extended to a label-dependent form. This essentially turns it into a condi-
tional variational autoencoder (CVAE) (Sohn et al., 2015; Zhao et al., 2017; Shen et al., 2019a).
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Dataset Category Sizes Average Size | # Minority Classes
Wikipedi RACE tenb NN MCTest -
CoQA ikipedia C Gutenberg C CTes 18,661 1
21,127 21,615 21,488 21,819* 7,2554 -
lass A lass B 1 lass D lass E -
IS Class Class Class C Class Class 65,183 3
62,739 59,693 49,0841 77,680* 76,716
NEWS Politics Wellness  Entertainment Style&Beauty Travel Parenting 11813 4
23,728* 14,292 10,756 7,672 7,482 6,945%

Table 1: Class distribution of training data in CoQA, ICS, and NEWS datasets, where * indi-
cates the class with the largest number of data samples and ' denotes the smallest.

The objective function is changed accordingly to condition on an extra label I:

‘C(G’ 4)) = logIEZNpg(z\l) PG(X|ZIZ)

)
>, qg(zlx) 10g Po(x|2,1) — KL(gy(2|x, 1) || po(2]l))

po(z|l) is parametrized as a label-dependent Gaussian distribution with a diagonal covariance
matrix (Shen et al., 2019b).

The training of VAEs often falls into a posterior collapse (Bowman et al., 2015; Yang et al.,
2017; Shen et al., 2019a), where the KL term tends to be over-optimized. When the KL term
reduces to zero, the entire model degenerates to the vanilla language model with the latent
code losing its impact. We adopt the common practice of reserving some bits for the KL
term (Kingma et al., 2016), where it is only optimized when it exceeds the reserved value.

When using the VAE to generate augmented text, we can either train separate uncondi-
tional VAEs (Eq. 1) for each class, or train a single conditional VAE (Eq. 2) by taking the class
information as an additional input. As for the sampling strategy of the latent code, we also
have two options: sampling from the prior distribution or from the posterior distribution for
each training data point. The posterior distribution has a lower variance, and thus it usually
corresponds to text semantically similar to the training data. On the contrary, samples from
the prior distribution exhibit a greater diversity and can often synthesize novel text different
from the training corpus (Bowman et al., 2015; Serban et al., 2017; Shen et al., 2018). By com-
bining these variants, we arrive at the following three kinds of models for data augmentation:
1) SentenceVAE: Unconditional VAE + prior sampling; 2) CVAE: conditional VAE + prior
sampling; 3) CVAE-posterior (CVAE-p): conditional VAE + posterior sampling

2.4 Sweet Spot Optimization

As suggested by Lépez et al. (2013), a blend of oversampling and undersampling might mit-
igate the imbalance issues in binary classification tasks. Here, we propose that in multi-class
classification tasks, there exists a sweet spot with regard to the balance of majority and minor-
ity classes. That is to say, supplementing the data of some categories while decreasing that of
others may achieve better results in some cases. Hence, in our framework, for each generation
method and classifier, the most optimal balanced sweet spot is identified. The procedure of
how this balanced spot is found is illustrated in Section 3.4.

3 Experiments

In this section, we describe the datasets used in the experiments, followed by an elaboration
of our experimental setup and pertinent implementation details. Subsequently, we provide
our quantitative experimental results as well as a detailed analysis.

3.1 Datasets

For a fair and comprehensive comparison, we conducted our experiments on three large multi-
class datasets, including two conversational datasets and one news dataset. We set apart 10%
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of the data as the validation set, and 10% of the data as the testing set. The number of training
examples for each class in the training set is listed in Table 1.

CoQA: CoQA (Reddy et al., 2019) is a large English language conversational question answer-
ing dataset, consisting of more than 127,000 questions with answers collected from more than
8,000 conversations. We used data from five open domains and reconstruct the dataset to
make it more suitable for our task: each extractive answer is a data sample in a class, and we
combined the short answer and the question as source, and used the extractive answer as the
target in the Seq2Seq models.

Intelligent Customer Service Dataset (ICS): We further obtained more than 400K Chinese
language user—agent conversations from a real intelligent customer service system from five
different domains in the financial sector of a company. Considering that the lack of diver-
sity in automatic system responses might adversely affect the generative models, only the
users’ questions were retained, except for Seq2Seq generative models, which require system
responses to generate user questions. Based on the domain information, each data sample is
annotated with a label (Classes A to E).

News Category Dataset (NEWS): This dataset by Misra (2018) is an English news archive
consisting of 200K news headlines and short descriptions along with their corresponding
categories in the Huffington Post from the years 2012 to 2018. In our task, short descriptions
are used to predict the labels, and, thus, data samples without such short descriptions were
omitted. Given that our experiment focused on large datasets, 6 categories of news with
comparatively large amounts of data samples were selected.

3.2 Experimental Settings

Text preprocessing. For ordinary text such as news or reviews, no additional preprocessing
was required. For utterances in a multi-turn conversational system, we combined the user’s
questions within one dialogue into a sequence and separated each question by a vertical bar.

Ex.: Hello, I have a question about a 1310 bucks payment I made by credit pay just now| Why
the money hasn’t arrived?| Right

Data generation. To ensure that the comparison between each generation method was fair and
thorough, a uniform experimental workflow with the same training and test data split was
required, and in this part of experiment, the optimal balanced spot search was not included.
Thus, for all of the methods, we oversampled the generated data to the size of the largest
class.

The general flow was as follows: The imbalanced data D; is oversampled to dataset D, based
on different generation methods. For simple resample methods, sentences in D, are randomly
selected from D;, and word transformation approaches apply arbitrary simple word-level
changes to sentences in D; so as to obtain an enlarged dataset D,. Neural sentence generation
models demand a learning process to build their D,. Thus, for each system, one or several
neural generative model M, ; is trained using D; to generate new texts according to the learned
distributions to expand D;. Note that for the CoQA dataset, the combination of short answer
and question are sources, while the corresponding extractive answers are targets. For the ICS
dataset, system responses serve as sources, whereas user questions are considered targets to
be generated. We do not apply Seq2Seq models to augment the NEWS dataset.

Augmentation Models. The SentenceVAE model we used in our experiment was identical
with that of Bowman et al. (2015). The CVAE model was inspired by Sohn et al. (2015)’s work,
which concatenates label information with each data sample. The architecture of the CVAE-
posterior model was similar to the model of Yoo et al. (2019). For each generative model, we
used a word embedding of dimensionality 300 with stochastic initialization.

Classification Models. For the evaluation, we used 4 popular classification models: BiLSTM
(Schuster and Paliwal, 1997), TextCNN (Kim, 2014), TextRCNN (Lai et al., 2015), and FastText
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Classifier Original U-Samp. O-Samp. SR EDA OpenNMT MASS Sent.VAE CVAE CVAE-p

CoQA TextCNN  0.6387 0.5599 0.6418* 0.6390* 0.6369  0.6119 0.6256 0.6384 0.6357  0.6386
BiLSTM  0.6224 0.5247 0.6250* 0.6207  0.6237* 0.5977 0.6126 0.6287* 0.6230  0.6229
TextRCNN  0.6496 0.5831 0.6511* 0.6389  0.6412  0.6092 0.6403 0.6414 0.6485  0.6469
FastText 0.6592 0.5994 0.6629* 0.6574  0.6641* 0.6226 0.6525 0.6613* 0.6565  0.6617*
ICs TextCNN  0.8061 0.8061 0.8061 0.8058  0.8067* 0.8052 0.8025 0.8044 0.8038  0.8074*
BiLSTM  0.8182 0.8144 0.8174 0.8171  0.8175 0.8168 0.8167 0.8162 0.8160  0.8189*
TextRCNN  0.8180 0.8143 0.8163 0.8156  0.8158  0.8162 0.8147 0.8153 0.8146  0.8192*
FastText 0.8180 0.8150 0.8170 0.8168 0.8162 0.817 0.8168 0.8163 0.8166  0.8180
NEWS  TextCNN 0.6774 0.6605 0.6789* 0.6908* 0.6871* — — 0.6714 0.6794*  0.6893*
BiLSTM  0.6847 0.6551 0.6700 0.6854* 0.6957* — e 0.6916* 0.6881* 0.6974*
TextRCNN  0.6946 0.6689 0.6935 0.6956" 0.6985* — — 0.6839 0.6985*  0.6998*
FastText 0.6917 0.6606 0.6833 0.6865 0.6874 — — 0.6714 0.6908  0.6985*

Table 2: F; scores for classification tasks on the testing sets of the CoQA, ICS, and NEWS
datasets. Here, * denotes that the corresponding augmentation approaches improve the re-
sults. Bold highlighting reflects the best result across all augmentation methods.

(Joulin et al., 2016). To counterbalance the effect of randomicity in the training process, we
selected 5 different random seeds for each of the five models, and evaluated each model by
computing the average F; scores. For each classification model, we used Adam (Kingma and
Ba, 2014) optimization with the same learning rate (0.001) for parameter optimization. We
padded or clipped each sentence to 32 characters for the Chinese data, and 64 words for the
English datasets, with the same embedding size of 300. We trained each classifier with an
early stopping strategy for at most 20 epochs to get optimal results, which are shown in the
following section.

3.3 Results

In the following, we present the general experimental results comparing different augmenta-
tion strategies in Section 3.3.1 and further fine-grained analysis in Section 3.3.2.

3.3.1 Comparison of Augmentation Strategies

Table 2 shows the F; scores for the text classification tasks with different augmentation ap-
proaches before best balanced spot optimization, over all the three datasets, which means all
the classes were supplemented to the size of the largest one except for Undersampling.

From Table 2, it can be observed that some data augmentation approaches can improve
the classification performance while some cannot, and for different datasets, the most effec-
tive methods vary. Simple resampling is the most effortless way to achieve data augmenta-
tion. In our experiment, Undersampling was shown to be inferior across all datasets, a result
consistent with the intuition that dropping data samples from majority classes can lead to
information loss (He and Garcia, 2009), thus impeding the classification results. Although
Oversampling did not show improvements across all of the three datasets, it achieved a no-
ticeable performance gain on CoQA.

Regarding word-level transformation approaches, EDA was more effective than SR, as it
was able to enhance the F; score in more situations, and compared with Oversampling, EDA
had more positive impact on ICS and NEWS.

Seq2Seq models have proven extremely useful in NLG tasks such as neural translation and
dialogue generation. However, in our setting, both of the two Seq2Seq models were found
to be counterproductive. Interestingly, we observed that MASS produced the most fluent
sentences among all the generation methods under consideration, yet it is a far less ideal choice
for data augmentation. This may stem from the fact that, during the pretraining step, to build
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Figure 1: The performance gain for each class with different augmentation approaches. From
top to bottom, the plots are for CoQA, ICS, NEWS.

up a robust language model, we feed in all data samples for training. Although we fine-tuned
the pretrained model for each class, the pretrained model still introduced a lot of common
features shared across different classes, which may contradict the goal in classification tasks
of recognizing the distinctive features of different categories.

Another type of neural generation model, VAE, performed much better than Seq2Seq mod-
els as data augmentation methods for text classification tasks. Comparing different variants,
although conditional VAE has been shown effective in classification tasks (Sohn et al., 2015),
it barely improved the results in this case. It can easily be observed from Table 2 that there
is a negligible difference between F; scores for classification with training sets augmented by
SentenceVAE and by the CVAE model with prior sampling. The CVAE model with posterior
sampling, however, notably facilitated classification, as it had greatly positive influence on all
of the classifiers, especially on the ICS and NEWS datasets. These considerable gains suggest
that posterior sampling can help to generate data samples with better categorical characteris-
tics.

3.3.2 Imbalance Level Evaluation and Dataset Disparity

He and Garcia (2009) argue that the imbalanced data problem cannot simply be reduced to
considering the relative imbalance between the majority and minority class sizes, as the abso-
lute sample sizes and concept complexity substantially affect the classifier’s learning ability
as well. Therefore, merely evaluating the overall performance of a classifier is insufficient. In-
stead, additional analysis of the specific changes for majority and minority classes is needed.
In the following, we consider those classes with a number of data samples substantially below
the average number for each category as minority classes, and the remaining ones as majority
classes, as shown in Table 1.

Figure 1 illustrates the performance gain for each category compared with the original class
distribution under different augmentation schemes. The expectation is that minority classes
suffer more from data imbalance and augmentation strategies are typically invoked to boost
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Figure 2: Distribution of features in two-dimensional space. The top row visualizes the origi-
nal imbalanced data, while the bottom row shows the data after application of the augmenta-
tion approach with the best F; score.

the classifier’s performance on minority classes more than for the majority ones. The results
on our NEWS dataset accord with this intuition: According to the Figure 1 (bottom), on the
NEWS dataset, with the application of most augmentation methods, the F; scores of minority
classes are enhanced. Regarding the majority classes in NEWS: For Poritics and WELLNESS,
the augmentation approaches had a negligible effect or even impeded the classification results,
except for WELLNESs with TextRCNN. On the CoQA dataset, in Figure 1 (top), we find that
there was only one minority class: MCTEst. Compared with NEWS, the skew of the class
distribution in CoQA is more severe, however, the F; score of MCTEST was improved most
with TextCNN and FastText, while when using BiLSTMs, the class with the largest number
of data samples: CNN, improved the most. In addition, it can be observed from Figure 1
(middle) that the change of classification results on the ICS dataset was inconsistent with
the conclusion made in previous works, as there is no conspicuous sign indicating that data
augmentation can help the minority classes.

The discrepancy among the three datasets can mainly be analysed from two perspectives:
1) the absolute sample size of minority classes along with the level of relative imbalance
(Japkowicz and Stephen, 2002), and 2) the feature overlap degree among the different classes.
First, as shown in Table 1, the data volume of each class in ICS is much larger than that of the
two English datasets. The number of samples in the smallest class of the two English datasets
is around 7K, while the smallest class in ICS Crass C, has around 50K samples, which is 7
times as many as for the other two datasets. Moreover, for the English datasets, the number
of samples in the largest category (PoLitics, CNN) is more than three times as large as that of
the smallest one (TRAVEL, MCTEsT), and thus the relative data imbalance is much more severe.

Second, the features for each data sample within a category can affect the performance of
data augmentation. Figure 2 shows the distribution of sentence vectors encoded by the BERT
(Devlin et al., 2018) pretrained model, the dimensionality of which is reduced to 2 using PCA
(Wold et al., 1987). Of course, a 2-dimensional visualization can only be regarded as indicative
of the distribution of each class, due to the loss of information in the dimensionality reduction
process. Still, comparing the data sample distribution of different classes in three datasets
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Figure 3: Performance gain of different balance spots for each dataset. From top to bottom,
the plots are for CoQA, ICS, NEWS.

in the top row of Figures 2(a), (b), and (c), we observe that ICS suffers from an overlap of
features more than from the relative imbalance, as the distribution of data samples within one
class severely overlaps with the others and the divergence between different classes is overly
small. After leveraging the CVAE-posterior model as the augmentation approach, the patterns
of different classes are still hard to recognize (Figure 2(a) bottom). The two English datasets,
especially NEWS, suffer more from class imbalance than the Chinese one. For instance, PAR-
ENTING and TRAVEL might be regarded as noise relative to the majority classes. After applying
augmentation to eliminate the imbalance, the distribution of the minority data becomes much
more distinct, so that the margin between each class is more easily recognizable, thus facili-
tating the classifier’s learning ability in discerning minority classes.

3.4 Sweet Spot Identification

Finally, we explored the relationship between the sizes of categories chosen for augmentation
and the performance gains on all of the three datasets. We argue that conducting oversampling
and undersampling operations simultaneously on different categories within a dataset may
achieve a better performance gain than strictly undersampling or oversampling all categories
to the same amount as the smallest or largest class, respectively.

The results of the best balanced spot search are illustrated in Figures 3. It can easily be
observed that for across all three datasets, in most cases, a comparatively optimal spot be-
tween the smallest and the largest categories exists regardless of the generation approach.
For example, when trained with an RCNN, the classification results on CoQA dataset show
the highest F; score at the balance spot 20,000 with the CVAE-posterior model. The results
confirm that random undersampling may significantly hamper the learning ability of all clas-
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sifiers, while there remains a small probability that the optimal spot is found above the largest
amount, such as on NEWS with FastText. The precise location of the sweet spot depends
on the specific classification model and datasets. For instance, the overall tendencies on the
ICS dataset are less stable than for others. Even when a particular dataset is augmented by
the same approach, the optimal spot for different classifiers can be different. Overall, these
results confirm the utility of augmentation methods that more flexibly choose a hybrid form
of oversampling and undersampling.

4 Conclusion

This paper presents a survey and systematic experimental framework to investigate state-of-
the-art data augmentation schemes for text classification, considering both utterance classifica-
tion and ordinary multi-class text categorization. We carried out a thorough set of experiments
to compare the effectiveness of different strategies. Our results highlight the potential of using
recent neural generative models as a method to facilitate classification for large datasets. In
particular, we VAE methods were found to be comparable to if not better than previous state-
of-the-art approaches such as EDA. Our experiments further show that an optimal balanced
spot is able to further improve the classification results. Finally, based on our detailed analy-
ses regarding multiclass imbalance, we argue that the imbalance issue cannot be reduced to
merely considering the relative imbalance in the number of data samples. Rather, more focus
should be placed on the absolute counts and the feature representations within each class.
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