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Abstract

Motion recognition is one of the basic cognitive capabilities of many life forms, however, detect-
ing and understanding motion in text is not a trivial task. In addition, identifying motion entities
in natural language is not only challenging but also beneficial for a better natural language under-
standing. In this paper, we present a Motion Entity Tagging (MET) model to identify entities in
motion in a text using the Literal-Motion-in-Text (LiMiT) dataset for training and evaluating the
model. Then we propose a new method to split clauses and phrases from complex and long mo-
tion sentences to improve the performance of our MET model. We also present results showing
that motion features, in particular, entity in motion benefits the Named-Entity Recognition (NER)
task. Finally, we present an analysis for the special co-occurrence relation between the person
category in NER and animate entities in motion, which significantly improves the classification
performance for the person category in NER.

1 Introduction

In semantic approaches such as Semantic Role Labeling (SRL) and Abstract Meaning Representa-
tion (AMR), semantic features can have peculiarities of a particular language (Zhu et al., 2019). In
contrast, the irreducible semantic core considered by the Natural Semantic Metalanguage (NSM) ap-
proach, builds a kind of universal mini-language where its core components, the semantic primes', are
universal to all languages (Goddard, 1997; Wierzbicka, 1980). Semantic primes, are defined as univer-
sal core meanings. The hypothesis in NSM is that meaning could be reconstructed into basic elements
or semantic primes. Then, any complex meaning can be decomposed without circularity and without
residue into a combination of discrete other meanings, the semantic primes, among which is the meaning
of motion represented by the MOVE semantic prime.

In natural language, motion can describe different movement types (e.g. rotational, transactional,
internal, etc), it can relate to changes in a concept or abstract object when it is figurative motion (e.g.
”Her voice twisted from incredulity to astonishment”), or it can describe the movement of physical
object(s) when it is literal motion (e.g. “The player twisted his leg before kicking the ball”). Thus, motion
analysis and detection can be challenging because of the different ways in which motion can be used in
natural language (Beavers et al., 2010). Overall, motion is a linguistic primitive that allows us to express
complicated events more concisely, because of its features motion has been considered extensively in
theoretical linguistic analysis. Many linguists have agreed that motion is a semantic fundamental (Talmy,
1985; Goddard, 1997; Beavers et al., 2010), thus identifying motion in text and its features is important,
and so it is to investigate how motion features could help improve Natural Language Processing (NLP)
tasks.

Although analysis of spatial features in natural language has considered and investigated semantics
related with motion events, their elements, including encoding schemes (Pustejovsky and Moszkowicz,
2008; Pustejovsky and Yocum, 2013; Pustejovsky et al., 2015; Lee et al., 2018), to the best of our
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knowledge, there has not been an investigation of how motion detection in natural language, and motion
features, might impact NLP tasks. To start this investigation, we selected Named-Entity Recognition
(NER), a tagging task that identifies and classifies named entities in a text into predefined semantic types
such as person and organization, among others. NER is a core task of many NLP systems, especially
information extraction and question answering. This paper explores and shows results of a motion entity
tagging model and how leveraging motion entities positively impact models for the NER task.

This paper is organized as follows, Section 2 presents characteristics of motion in natural language
and related work; Section 3 presents the LiMiT dataset, created as a resource to build motion in text
classification and motion entity tagger models, which is publicly released to the community. A model for
motion entity tagging is presented in Section 4; In Section 5, we present the results of our investigation
about the impact of the entity in motion feature in the NER task; Conclusions and future work are
presented in Section 6.

2 Background

In natural language, motion instances can be present as literal or figurative (Talmy, 2000; Matlock,
2004; Pustejovsky and Yocum, 2013). Motion describing the movement of a physical object is consid-
ered literal motion (e.g. ”William lifted the weight”), while figurative motion is when there is no direct
occurrence of motion (e.g. "A gentle slope brought us in one hour to the main summit”), or not occur-
rence of physical motion at all (e.g. “The range runs east and west”). Although figurative motion can
sometimes indirectly indicate motion of physical objects, this is not always the case. Therefore, we de-
cided to focus our analysis on literal motion which directly indicates motion events related with physical
entities in motion.

Four elements of a motion event are identified by contemporary linguistics: (a) an object, also called
the ‘figure’, ‘theme’, or ‘participant’, (b) moving along (c) a ‘path’ (with ‘source’ and ‘goal’) (d) with
respect to another reference-object, also called ‘ground’ (Talmy, 1985). Nevertheless, not all of motion
elements are present in all instances of motion in natural language. For instance, verbs such as ‘wiggle’
or ‘'wave’ describe the manner of motion of an object but do not require traversal of a path. Similarly,
other verbs such as ’dance’ may sometimes not specify a motion path. For this reason, we decided to
identify, as one core element of the motion event, the entities in motion (i.e. figure or participant), and
start our analysis of motion in natural language by focusing on the occurrence of physical motion in text.

To the best of our knowledge, we are the first to investigate how motion features impact an NLP
task. However, there have been related work around motion data sets and motion classification tasks
in natural language. In the context of capturing spatial information in text, MotionBank (Pustejovsky
and Yocum, 2013) was a corpus created with fictive and literal motion sentences, including information
about different features related with location and non-location, one of which is motion. Then the entity-
in-motion annotation was proposed as part of ISO-Space, as the MOVER entity associated with the
MOVELINK relation annotation (Pustejovsky, 2017). Recently, and with the aim to better understand
the semantics of spatial information in text, (Egorova et al., 2018) presented a fiction motion data set
and classification model for fictive motion sentences. Although previous motion data sets could have
been considered for our study, we were not able to find any of the mentioned data sets publicly available
online yet. Therefore, we decided to use the recently released Literal-Motion-in-Text (LiMiT) dataset
(Manotas et al., 2020) of literal motion sentences.

3 The Literal Motion in Text Dataset

The Literal-Motion-in-Text (LiMiT) dataset (Manotas et al., 2020) was created as a resource to identify
both literal motion in text and the entities in motion from a natural language expression describing the
motion of physical entities. With models built with LiMiT dataset, it is also possible to investigate the
impact of motion features in natural language tasks. LiMiT was publicly released” to promote further
research in this area. The size of the LiMiT dataset is 24, 559 sentences: 15,346 sentences describing
literal motion, and 9, 213 sentences describing figurative or no motion events. In this section we briefly

https://github.com/ilmgut/limit_dataset
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MET Model Test Prec.(%) Recall(%) F1(%)

All 74.00 68.04  70.90
BERT NAC 71.18 73.64  72.39
e-books 77.51 62.61  69.27

Table 1: Performance of BERT-based MET model.

describe the characteristics of the LiMiT dataset, which was used for training the model to identify
physical entities in motion in a sentence.

3.1 Data Sources and Sentence Extraction

The LiMiT data set is composed of sentences drawn from two main sources: fiction e-books and novels,
collected from online websites, and sentences from video descriptions extracted from the Net Activity
Captions (NAC) dataset (Krishna et al., 2017). Text documents were first processed with a parser to
identify the main text, then pre-processing was applied on the resulting sentences to remove special
characters and other unnecessary formatting. After identifying all sentences from a document with a
NLP parser, sentences were filtered by using information from their linguistic features, obtained from an
NLP parser, and considering a list of verbs of motion. The final output for each document was a set of
potential motion sentences i.e., sentences containing a motion verb and therefore possibly describing one
or multiple motion events.

3.2 Annotation of Motion Sentences

After potential motion sentences were identified, crowdsourced annotator workers annotated sentences
in the Appen Platform?. In the annotation task, workers were asked to both annotate whether a sentence
described the movement of a physical entity (e.g., animate or inanimate). For literal motion sentences,
workers identified the animate and inanimate entities in motion in the given sentence. To guarantee the
quality of the labels and work provided by annotation workers, participants had to both complete a quiz
before each annotation job, and in every work page workers were given a random test row. Test rows in
the quiz and in work pages look the same as rows in the annotation job, but they had predefined golden
answers hidden from the worker that allow to measure the quality of the responses given by annotators.
After all annotation judgements were completed, the Fleiss Kappa measure of agreement was computed.
The computed Fleiss kappa for the combined sentences was 0.71, which indicates a substantial agreement
among the workers participating in the annotation job.

Sentences in the LiMiT dataset cover a vocabulary of 29, 021 unique words, with an average sentence
length of 98.81 characters. For literal motion sentences in LiMiT, there is at least one annotated entity
in motion and about 40% of sentences have two or more entities in motion.

4 Motion in Text Baseline Model

To investigate how motion features might possibly impact NLP tasks we need a model to identify motion
entities in natural language text. In this section we first describe the baseline model we trained to identify
entities in motion in a sentence. Then we describe an algorithm designed to extract short sentences from
complex long sentences to improve the performance of the model output.

Data. For each of the sentences in the LiMiT dataset, we transformed the text and its labeled entities
in motion to the Inside-outside-beginning (IOB) tagging format. For example, for the tokens sequence
[Thomas,Williams, jumped, over,the, rocks], the corresponding IOB tag sequence with MET
labels was [B-MOT, I-MOT, O, 0, 0, O].

3
https://appen.com/
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MET Model  Prec.(%) Recall(%) F1(%) Support

BERT (Sent)  85.83 62.80  72.54 164
BERT (CnP) 80.613 73.78  76.83 164

Table 2: Motion Entity Tagging on sentences (Sent) and on clauses and phrases (CnP).

Model. We built a Motion Entity Tagging (MET) model to identify the physical entities in motion in
a sentence. For an input sentence, the MET model predicts and tags the tokens that belong to entities in
motion in the text. For example, for the sentence “John took the book from the shelf”, the MET model
will predict John and book as the entities in motion. We used Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019; Vaswani et al., 2017) to built a MET classifier. Specif-
ically, we used the BERT g 45 (Whole word masking) language model, which takes a maximum 512
input word piece token sequence X = [z1;z2;:::;; 2] and uses a L = 12 layer transformer network
(with 12 attention heads and 768 embedding dimensions) to output a sequence of contextualized token
representations H; = [h{; hL;::;; hE]. For the BERT-NER model, we used the representation of the
first sub-token as the input to the token-level classifier over the MET label set. We fine-tuned the model
using five epochs, with a learning-rate of 0.1, and using a 256 maximum sequence length.

Results. Table 1 shows the results of the evaluation for the MET classifier built using the BERT-
NER model. We used sequence labeling evaluation considering exact matches, calculating macro recall,
precision and F1-scores. On literal motion sentences from NAC, the recall is better than on sentences
extracted from fiction e-books; but precision is better on fiction e-books literal motion sentences than
on NAC sentences. We think this is because sentences from NAC are often shorter and contain simpler
language constructs for describing motion than sentences from fiction e-books. Also, sentences from
fiction e-books have a more complex use of natural language (i.e. more descriptive and verbose) than
NAC sentences, which sometimes make it more challenging to tag the correct entities in motion. In some
cases, although the correct motion entity is partially predicted, a good prediction is not considered as
such due to a mismatch to the surface string e.g., when ’bowling ball’ is predicted as the entity in motion
but ’ball’ was the labeled golden entity in motion.

A Method for Improving Predictions on Complex Motion Sentences. The following sentence shows
an example of a motion sentence where there are multiple entities in motion highlighted in bold:

“For five, ten minutes afterwards Frieda continued to hold the floor, and then in the midst of
an account of a party given at the Johnson home she had suddenly stopped talking and thrown
herself down on the floor, tucking a sofa pillow under her blonde head.”

Analyzing the MET classifier results we noticed that the model was not always able to identify all
entities in motion in complex sentences. For instance, for the sentence shown above, the MET model
identifies as entities in motion only Frieda. We observed that recall could be improved if a long sentence
would be split into separate short sentences, clauses or phrases. Then, to tackle this problem and to
improve the performance of our entity in motion prediction, we designed an algorithm to identify and
split clauses and phrases (CnP) from a sentence.

In order to split a sentence we used the following steps: First, analyze the sentence punctuation.
Most of the times, the period (e.g.“.”) is a clear delimiter of independent segments in text, but we also
considered text between matching commas, parentheses and semicolons as separated phrases; Second,
consider the sentence dependencies. A phrase introduced by a sentence complementizer is independent.
Examples include relative clauses, and other phrases such as “in the case of”’, temporal conjunctions like
“before”, “after”, etc; Third, consider the Verb Phrase (VP) domain. Since most of the times semantic
roles are given by the verb, determining the borders of the VP domains is instrumental into separating
the sentence into short phrases. Determining the VP domain is of course difficult, but in our case even an

approximate delimitation is beneficial. We used the verb valencies and prepositions affinity as learned
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from GIGAWORD* to determine the boundaries between tensed verbs. The steps above produce a series
of short sentences, including clauses and phrases.

After short sentences were identified, we ran the MET classifier on the extracted clauses from a sen-
tence, and consolidated all predicted motion entities for clauses in a sentence. We evaluated the results of
our motion prediction over clauses and phrases (CnP) of sentences and compared them with the motion
entity predictions over the original sentence for 100 examples. Table 2 shows the results of our eval-
uation comparing the model performance when predicting motion entities for the sentence as a whole
BERT (Sent), and when predicting the entities in motion over the clauses/phrases in a sentence BERT
(CnP). We can see that by loosing a little on precision, we can boost recall and F1 scores of the motion
entity classifier and predict more motion entities over the identified clauses and phrases of long/complex
motion sentences.

S Case Study: Impact of Motion Entity Features on Named Entity Recognition Task

In this section we present a preliminary study about the proportion of motion sentences in well-known
NLP datasets. Then, we present the case study showing the impact of entity in motion features on NER
models.

5.1 Motion Sentences in NLP Datasets

Before investigating the impact of entity in motion features in NLP tasks, we conducted a study to
analyze the proportion of potential motion sentences in datasets of some established NLP tasks. For this
study, we selected some well-known NLP datasets for our motion in natural language analysis. For each
selected dataset, we identified unique sentences and run our motion text classification model to identify
the proportion of motion sentences in the dataset. The left side of Table 3 shows the proportion of motion
sentences for the SQuAD 2.0 (Rajpurkar et al., 2018), SNLI (Bowman et al., 2015), SICK (Marelli et
al., 2014), MSR Paraphrase (Dolan and Brockett, 2005), and CoNLL-2003 NER (Sang and De Meulder,
2003) datasets. From these results, we can see that overall datasets have between 7% — 53% of motion
sentences, which make them candidates for analyzing how motion-related features could impact the
performance of their related NLP tasks. NLP datasets, such as SNLI and SICK, having more than half
of motion sentences, could be used to further study and show impact on motion features analysis.

5.2 Impact of Entity in Motion Features on NER models

In this section, we present the case study in which motion features benefit a particular task in NLP:
Named Entity Recognition (NER). We investigated and present preliminary results of potential impact of
motion features on the NER task. We selected NER for our case study because: 1) both NER and Motion
Entity Tagging are sequence tagging tasks, and 2) the target of these tasks is identifying entities and
labeling them. Thus, we hypothesized that motion features will benefit the NER task. Specifically, we
also hypothesized a co-occurrence relation between the [PER] category in NER and identified motion
entities in a sentence. For example, the sentence “John kicked the ball”, would have John annotated
as [B-PER] as well as animate motion entity [B-MOT]. To understand how motion features can benefit
the NER task, we purposely built basic models in which no sophisticated or advanced features (such
as word embedding, semantic or syntactic features) are used or significantly contribute to the model
performance. Section 5.2.1 describes the NER models and in section 5.3, we discuss co-occurrence
between [PER] category in NER and identified motion entities.

5.2.1 Datasets and Experiments

Datasets We run experiments on the CoNLL-2003 NER dataset (Sang and De Meulder, 2003). This
dataset has four categories [PER, LOC, ORG, MISC] in which [PER] is label for person names, [LOC]
for locations, [ORG] for organizations, and [MISC] for other categories of entity. This dataset consists
of train (14,987 sentences), validation (3,466 sentences), and test (3,684 sentence) sets.

*nttps://catalog.ldc.upenn.edu/LDC2003T05
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Dataset #Unique Sentences | #Motion Sentences | %Motion || %PER | %LOC | %ORG | %MISC
SQuAD 2.0 (dev) 6,411 910 14.2 NA NA NA NA
SQuAD 2.0 (train) 93,768 6617 7.1 NA NA NA NA
SNLI 1.0 (train) 629,518 331,897 52.7 NA NA NA NA
SNLI 1. 0 (dev) 13,138 6,964 53 NA NA NA NA
SNLI 1.0 (test) 13,137 6,857 52.2 NA NA NA NA
SICK (train) 5,034 2,581 51.3 NA NA NA NA
SICK (test) 5,002 2,551 51 NA NA NA NA
MSRPar (train) 7,923 1,419 17.9 NA NA NA NA
MSRPar (test) 3,440 649 18.9 NA NA NA NA
CoNLL-2003 Train 14,041 1,858 133 8.53 0.29 0.61 0.62
CoNLL-2003 Dev 3,250 525 16.2 10.68 0.89 1.02 0.89
CoNLL-2003 Test 3,453 346 10 6.23 0.81 0.29 0.49

Table 3: Motion Texts in NLP Datasets - Co-occurrence between NER Entities vs. Motion Entities.

Experiment 1. We built two simple NER models using bag-of-words representation and a typical
multi-class classifier. We used this experiment to examine how motion features alone can benefit the
performance of NER task.

Bag-of-Words and Classifier (BoWC). This is our baseline model. It takes in sequences of words
and NER tags (labels). We used bag of words representation from scikit-learn® to produce word vector
 for each word in the NER datasets. The word vectors and their associated NER tags are fed into the
Gradient Boosting Classifier® for training the classification model.

Bag-of-Words and Classifier with Motion Features (BoWC-M). This is the enhanced model from
the baseline BoWC by integrating motion features. First we produced one-hot vectors 1 for our three
motion labels [B-MOT, I-MOT, O]. We run our motion tagger (presented in Section 4) to annotate motion
label for each word in the NER dataset, so each word will have two labels, the motion entity label and the
NER label (e.g., (WORD MOTION _tag NER tag)). For example, for the sentence “Peter kicked the ball”,
the labels for each word would be: (Peter B-MOT B-PER) (kicked O O) (the O O) (ball B-MOT O), where
Peter and ball are entities in motion. We enhanced the BoWC model that at the output of every word
vector, we concatenated each word vector « with the one-hot vector derived from its associated motion
label 7 to obtain the fusion vector ¥ (see 1). The resulting fusion vector ¥/ is used for the classification
model training.

U = concatenate (W, m) €))

Experiment 2. Since NER is a sequence labelling task, we built 2 other models using Conditional
Random Fields (CRFs)’. We used this experiment to examine how motion features interact with other
features and eventually how it can benefit the performance of NER task.

Conditional Random Fields (CRF). This model takes in basic features such as word, word span-
ning, is_uppercase, is_title, is_digit, and Part-of-Speech (POS) tag of the current word w, the previous
word w — 1, and the next word w + 1.

Conditional Random Field with Motion Features (CRF-M). This is an enhanced model of CRF
in which the motion labels are integrated as a new feature together with other basic features.

5.2.2 Evaluations

Table 4 presents and contrasts the performance between model BoWC vs. BoWC-M for CoNLL-2003
validation and test sets. The model BoWC-M with integrated motion features outperforms the baseline

Shttps:/scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
Shttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble. GradientBoostingClassifier.html
"https://sklearn-crfsuite.readthedocs.io/en/latest/
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Model BowC Model BowC-M

VALIDATION
Precision | Recall | F1 Precision | Recall | F1
0.92 0.41 0.57 B-LOC 0.92 042 | 0.57
0.91 062 | 0.74 B-MISC 0.93 0.62 | 0.75
0.77 0.08 | 0.14 B-ORG 0.78 0.09 | 0.17
0.96 0.12 | 0.21 B-PER 0.78 0.26 | 0.39
0.85 0.60 | 0.70 I-LOC 0.83 0.56 | 0.67
0.83 040 | 0.54 I-MISC 0.83 039 | 0.53
0.73 0.20 | 0.31 I-ORG 0.75 0.19 | 0.31
0.89 0.07 | 0.12 I-PER 0.70 0.18 | 0.28
0.87 1.00 | 0.93 o 0.88 099 | 093
0.87 Accuracy 0.88
0.86 0.39 0.47 Macro Avg 0.82 0.41 0.51
0.87 0.87 | 0.83 | Weighted Avg 0.87 0.88 | 0.85
TEST
0.96 0.28 | 043 B-LOC 0.95 0.27 | 043
0.87 048 | 0.62 B-MISC 0.86 0.51 | 0.64
0.74 0.06 | 0.11 B-ORG 0.73 0.06 | 0.11
0.96 0.08 | 0.15 B-PER 0.74 0.17 | 0.28
0.73 0.55 | 0.63 I-LOC 0.79 044 | 0.57
0.71 048 | 0.57 I-MISC 0.74 048 | 0.58
0.75 0.18 | 0.29 I-ORG 0.74 0.19 | 0.30
0.77 0.02 | 0.05 I-PER 0.72 0.11 | 0.20
0.86 1.00 | 0.92 o 0.86 1.00 | 0.92
0.86 Accuracy 0.86
0.82 0.35 0.42 Macro Avg 0.79 0.36 | 045
0.85 0.86 | 0.81 | Weighted Avg 0.85 0.86 | 0.82

Table 4: Model Performance BoWC vs. BoWC-M on CoNLL-2003 Datasets.

Model CRF Model CRF-M
VALIDATION
Precision | Recall F1 Precision | Recall F1
0.91 0.88 0.90 B-LOC 0.92 0.88 0.90
0.93 0.84 | 0.88 B-MISC 0.92 0.84 | 0.88
0.85 0.81 0.83 B-ORG 0.84 0.81 0.83
0.90 0.91 0.90 B-PER 0.91 0.92 | 0.92
0.96 0.77 0.85 I-LOC 0.90 0.77 0.83
0.88 0.72 | 0.79 I-MISC 0.86 0.73 0.79
0.81 0.84 | 0.83 I-ORG 0.80 0.83 0.82
0.94 0.95 0.95 I-PER 0.95 0.95 0.95
0.99 1.00 | 0.99 o 0.99 1.00 | 0.99
0.98 Accuracy 0.98
0.91 0.86 0.88 Macro Avg 0.90 0.86 0.88
0.98 0.98 0.98 | Weighted Avg 0.98 0.98 0.98
TEST
0.86 0.81 0.83 B-LOC 0.85 0.81 0.83
0.81 0.76 | 0.78 B-MISC 0.82 0.76 | 0.79
0.76 0.73 0.75 B-ORG 0.76 0.73 0.75
0.83 0.86 | 0.84 B-PER 0.84 0.86 | 0.85
0.75 0.60 | 0.67 I-LOC 0.77 0.64 | 0.70
0.69 0.67 0.68 I-MISC 0.69 0.67 0.68
0.67 0.74 | 0.70 I-ORG 0.66 0.75 0.70
0.87 0.95 0.91 I-PER 0.88 0.95 0.91
0.99 0.99 0.99 o 0.99 0.99 0.99
0.96 Accuracy 0.96
0.80 0.79 0.79 Macro Avg 0.81 0.79 0.80
0.96 0.96 | 0.96 | Weighted Avg 0.96 0.96 | 0.96

Table 5: Model Performance CRF vs. CRF-M on CoNLL-2003 Datasets.

model BoWC on all measures for most of the label classes. The results prove that using a basic level of
language representation like bag-of-words, integrated with motion features, benefits the NER task.

In contrast, Table 5 shows the same overall performance between CRF and CRF-M models but with a
slight improvement for category [PER] when motion features are integrated.
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5.3 Co-occurrence Relation between Category [PER] and Animate Motion Entity

In this section, we discuss the co-occurrence relation between category [PER] in NER and animate
motion entity in texts describing the motion of physical entities. The category [PER] represents person
names in natural language, and motion entity represents a physical entity in motion. In literal motion,
a physical motion entity can be either animate or inanimate. And an animate motion entity may be a
person(s). Therefore, there should be a co-occurrence relation between category [PER] and animate
motion entities. For example in the sentence “John kicked the ball”, John is an animate entity and ball is
an inanimate entity. Table 4 shows the performance improvements of model BoWC-M (enhanced motion
features) for most of categories in NER, however, the improvements for category [PER] (B-PER and
I-PER) on validation and test sets are most significant. As shown in Table 5, although the model CRF-
M does not return better overall result, it slightly improves the performance for category [PER]. The
following examples illustrate the co-occurrence relation between category [PER] and animate motion
entities. We present the data in format (WORD MOTION-label NER-label) for better reading.

e (Zhirinovsky B-MOT B-PER) (visited O O) (Iraq O B-LOC) (twice O O) (in O O) (1995 O O)

¢ (Kenny B-MOT B-PER) (Dalglish I-MOT I-PER) (spoke O O) (on O O) (Thursday O O) (of O O)
(his O O) (sadness O O) (at O O) (leaving O O) (Blackburn O B-ORG)

e (Thousands O O) (of O O) (demonstrators B-MOT O) (have O O) (marched O O) (through O O)
(London O B-GEO)

e (They B-MOT O) (marched O O) (from O O) (the O O) (Houses O O) (of O O) (Parliament O O)

The first 2 examples show the co-occurrence of [PER] entity and animate motion entity in text which
helps our model to identify category [PER] better. However, the animate motion entities also can co-
occur with general entities, such as demonstrators or they in the 3" and 4" examples. In this case, the
animate motion entity can help to identify general entities in other applications. The right side of Table 3
shows the co-occurrence between each NER category and our animate motion entity in the CoNLL-2003
datasets. We can see a strong co-occurrence relation between [PER] entities and animate motion entities
which results in more significant classification improvement for [PER] category by the models BoWC-M
and CRF-M.

6 Conclusions and Future Research

We presented a motion entity tagger model to identify entities in motion in text, and presented a method
to improve entity in motion predictions for complex, long motion sentences. Furthermore, we present our
initial results towards analyzing how features of literal motion, specifically motion entities, can impact
NLP tasks. Specifically, we investigated the impact of motion features on the NER task and proved
our hypothesis that motion features can improve the performance of the NER model. Finally, we show
the study of co-occurrence between category [PER] in NER and animate motion entity, which indicates
how the motion feature benefits the classification results for the [PER] category. For future research, we
plan to continue investigating how motion features can benefit other more complex NLP tasks such as
textual inference. We also study approaches for integrating motion features to obtain better performance
in different tasks which helps with better understanding of natural language overall.
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