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Abstract

Knowledge graph (KG) embedding aims at embedding entities and relations in a KG into a low
dimensional latent representation space. Existing KG embedding approaches model entities and
relations in a KG by utilizing real-valued , complex-valued, or hypercomplex-valued (Quaternion
or Octonion) representations, all of which are subsumed into a geometric algebra. In this work,
we introduce a novel geometric algebra-based KG embedding framework, GeomE, which uti-
lizes multivector representations and the geometric product to model entities and relations. Our
framework subsumes several state-of-the-art KG embedding approaches and is advantageous
with its ability of modeling various key relation patterns, including (anti-)symmetry, inversion
and composition, rich expressiveness with higher degree of freedom as well as good general-
ization capacity. Experimental results on multiple benchmark knowledge graphs show that the
proposed approach outperforms existing state-of-the-art models for link prediction.

1 Introduction

Knowledge graphs (KGs) are directed graphs where nodes represent entities and (labeled) edges repre-
sent the types of relationships among entities. This can be represented as a collection of triples (h, r, t),
each representing a relation r between a ”head-entity” h and an ”tail-entity” t. Some real-world knowl-
edge graphs include Freebase (Bollacker et al., 2008), WordNet (Miller, 1995), YAGO (Suchanek et al.,
2007), and DBpedia (Auer et al., 2007).

However, most existing KGs are incomplete. The task of link prediction alleviates this drawback
by inferring missing facts based on the known facts in a KG and thus has gained growing interest.
Embedding KGs into a low-dimensional space and learning latent representations of entities and relations
in KGs is an effective solution for this task. In general, most existing KG embedding models learn to
embed KGs by optimizing a scoring function which assigns higher scores to true facts than invalid ones.

Recently, learning KG embeddings in the complex or hypercomplex spaces has been proven to be a
highly effective inductive bias. ComplEx (Trouillon et al., 2016), RotatE, pRotatE (Sun et al., 2019), and
QuatE (Zhang et al., 2019) achieved the state-of-the-art results on link prediction, due to their abilities of
capturing various relations (i.e., modeling symmetry and anti-symmetry). They both use the asymmetri-
cal Hermitian product to score relational triples where the components of entity/relation embeddings are
complex numbers or quaternions.

Complex numbers and quaternions can be described by the various components within a Clifford mul-
tivector (Chappell et al., 2015). In other words, the geometric algebra of Clifford (1882) provides an
elegant and efficient rotation representation in terms of multivector which is more general than Hamil-
ton (1844)’s unit quaternion.

In this paper, we propose a novel KG embedding approach, GeomE, which is based on Clifford mul-
tivectors and the geometric product. Concretely, we utilize N multivector embeddings of N grades
(N = 2, 3) to represent entity and relation. Each component of an entity/relation embedding is a multi-
vector in a geometric algebra of N grades, GN , with scalars, vectors and bivectors, as well as trivectors
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creativecommons.org/licenses/by/4.0/.
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(for N = 3). In terms of a triple (h, r, t), we use an asymmetrical geometric product which involves the
conjugation of the embedding of the tail entity to multiply the embeddings of es, r, eo, and obtain the
final score of the triple from the product embedding.

The advantages of our formulas include the following points:

• Our framework GeomE subsumes ComplEx, pRotatE and QuatE. A complex number can be re-
garded as a scalar plus a bivector in the geometric algebra G2. A quaternion is isomorphic with a
scalar plus three bivectors in the geometric algebra G3. Thus, GeomE inherits the excellent prop-
erties of pRotatE, ComplEx and QuatE and has the ability to model various relation patterns, e.g.,
(anti-)symmetry, inversion and composition.
• The geometric product units the Grassmann (1844) and Hamilton (1844) algebras into a single

structure. Compared to the Hamilton operator used in QuatE, the geometric product provides a
greater extent of expressiveness since it involves the operator for vectors, trivectors and n-vectors,
in addition to scalars and bivectors.
• Our proposed approach GeomE is not just a single KG embedding model. GeomE can be general-

ized in the geometric algebras of different grades and is hence more flexible in the expressiveness
compared to pRotatE, ComplEx and QuatE. In this paper, we propose two new KG embedding
models, i.e., GeomE2D and GeomE3D, based on multivectors from G2 and G3, and test their com-
bination model GeomE+.

Experimental results demonstrate that our approach achieves state-of-the-art results on four well-
known KG benchmarks, i.e., WN18, FB15K, WN18RR, and FB15K-237.

2 Related Work

Most KG embedding models can be classified as distance-based or semantic matching based, according
to their scoring functions.

Distance-based scoring functions aim to learn embeddings by representing relations as translations
from head entities to tail entities. Bordes et al. (2013) proposed TransE by assuming that the added
embedding of s and r should be close to the embedding of o. Since that, many variants and extensions of
TransE have been proposed. For example, TransH (Wang et al., 2014) projects entities and relations into
a hyperplane. TransR (Lin et al., 2015) introduces separate projection spaces for entities and relations.
TransD (Ji et al., 2015) uses independent projection vectors for each entity and relation and can reduce
the amount of calculation compared to TransR. TorusE (Ebisu and Ichise, 2018) defines embeddings
and distance function in a compact Lie group, torus. The recent distance-based KG embedding models,
RotatE and pRotatE (Sun et al., 2019), propose a rotation-based distance scoring functions with complex-
valued embeddings. Likewise, TransComplEx (Nayyeri et al., 2019) also maps entities and relations into
a complex-valued vector space.

On the other hand, semantic matching models include RESCAL (Nickel et al., 2011), DistMult (Yang
et al., 2014), ComplEx (Trouillon et al., 2016), SimplE (Kazemi and Poole, 2018) and QuatE (Zhang
et al., 2019). In RESCAL, each relation is represented with a square matrix, while DistMult replaces it
with a diagonal matrix in order to reduce the complexity. SimplE is also a simple yet effective bilinear
approach for knowledge graph embedding. ComplEx embeds entities and relations in a complex space
and utilizes an asymmetric Hermitian product to score triples, which is immensely helpful in modeling
various relation patterns. QuatE extends ComplEx in a hypercomplex space and replaces the Hermi-
tian product with the Hamilton product which provides a greater extent of expressiveness. In addition,
neural network based KG embedding models have also been proposed, e.g., NTN (Socher et al., 2013),
ConvE (Dettmers et al., 2018), ConvKB (Nguyen et al., 2019) and IteractE (Vashishth et al., 2020).

Our proposed approach, GeomE, subsumes ComplEx, pRotatE and QuatE in the geometric algebras.
In addition to the inheritance of the attractive properties of these existing KG embedding models, our
approach takes advantages of the multivectors, e.g., the rich geometric meanings, the excellent repre-
sentation ability and the generalization ability in the geometric algebras of different grades. Due to the
above merits of the geometric algebras and multivectors, they have also been widely applied in computer
vision and neurocomputing (Bayro-Corrochano, 2018).
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3 Geometric Algebra and Multivectors

Leaning on the earlier concepts of Grassmann (1844)’s exterior algebra and Hamilton (1844)’s quater-
nions, Clifford (1882) intended his geometric algebra to describe the geometric properties of scalars,
vectors and eventually higher dimensional objects. In addition to the well known scalar and vector
elements, there are bivectors, trivectors, n-vectors and multivectors which are higher dimensional gen-
eralisations of vectors. An N -dimensional vector space RN can be embedded in a geometric algebra of
N grades , GN . In this section, we take G2 and G3 as examples to introduce multivectors and some
corresponding operators.

3.1 2-Grade and 3-Grade Multivectors

Figure 1: An example of a 3-grade multivector space G3

Let {e1, e2, e3} be an orthonormal basis of R3. The algebra G3 is based on two rules: (a) eiei = 1,;
(b) eiej = −ejei, where i 6= j. The multivector space G3 is 8-dimensional with basis:

1 spans 0-vectors, scalars,

{e1, e2, e3} spans 1-vectors, vectors,

{e1e2, e2e3, e1e3} spans 2-vectors, bivectors, and

{e1e2e3} spans 3-vectors, trivectors.

Hence an arbitrary 3-grade multivector M ∈ G3 can be written as
M = a0 + a1e1 + a2e2 + a3e3 + a12e1e2 + a23e2e3 + a13e1e3 + a123e1e2e3,

where a0, a1, a2, a3, a12, a23, a13, a123 are all real numbers. Each element of a multivector, e.g., a scalar,
a vector, or an N-vector, is called as a blade. A 2-grade multivector M ∈ G2 is build from one scalar,
two vectors and one bivector.

M = a0 + a1e1 + a2e2 + a12e1e2.
The norm of a multivector is equal to the root of the square sum of real values of all blades. Taking the
2-grade multivector as an example, its norm is defined as:

||M || =
√
a2

0 + a2
1 + a2

2 + a2
12. (1)

3.2 Multivectors vs Quaternions
Quaternions are elements of the form: Q = q0 + q1i + q2j + q3k, where q0, q1, q2, q3 are real numbers
and i, j, k are three different square roots of -1 and are the new elements used for the construction of
quaternions. They have the following algebraic properties: i2 = j2 = k2 = ijk = −1

Bivectors from G3 have similar algebraic properties as the basis of the quaternion space.
(eiej)

2 = −eiejejei = −1 where i, j = 1, 2, 3, and i 6= j

e1e2e2e3e1e3 = e1e3e1e3 = −1
(2)

Thus we can embed a quaternion in a 3-grade geometric algebra G3 with a scalar plus three bivectors.
A complex number can likewise be regarded as a scalar plus one bivector from G2.
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3.3 Geometric Product and Clifford Conjugation

Geometric algebra also introduces a new product, geometric product, as well as three multivector invo-
lutions, space inversion, reversion and Clifford conjugation.

The geometric product of two multivectors comprises of multiplications between scalars, bivectors,
trivectors and n-vectors. The product of two 2-grade multivectors Ma = a0 + a1e1 + a2e2 + a12e1e2

and Mb = b0 + b1e1 + b2e2 + b12e1e2 from G2 is equal to

Ma ⊗2 Mb =a0b0 + a1b1 + a2b2 − a12b12 + (a0b1 + a1b0 − a2b12 + a12b2)e1

+ (a0b2 + a1b12 + a2b0 − a12b1)e2 + (a0b12 + a1b2 − a2b1 + a12b0)e1e2.
(3)

The product of two 3-grade multivectors Ma = a0 + a1e1 + a2e2 + a3e3 + a12e1e2 + a23e2e3 +
a13e1e3 + a123e1e2e3 and Mb = b0 + b1e1 + b2e2 + b3e3 + b12e1e2 + b23e2e3 + b13e1e3 + b123e1e2e3

from G3 is represented in Appendix B.
Clifford Conjugation: The Clifford Conjugation of an n-grade multivector M is a subsequent com-

position of space inversionM∗ and reversionM † asM = M †∗,where space inversionM∗ is obtained
by changing ei to −ei and reversion is obtained by reversing the order of all products i.e. chang-
ing e1e2 · · · en to enen−1 · · · e1. For example, the conjugation of M ∈ G2, which is formed as
M = A0+A1+A2 withA0 = a0,A1 = a1e1+a2e2, A2 = a12e1e2, is computed asM = A0−A1−A2.
Note that the product of a multivector M and its conjugation M is always a scalar. For a given 2-grade
multivector M = a0 + a1e1 + a2e2 + a12e1e2, we have

M ⊗2 M = a2
0 − a2

1 − a2
2 + a2

12, (4)

producing a real number, though not necessarily non-negative.

4 Our Method

4.1 Knowledge Graph Embedding Model based on Geometric Algebras

Let E denote the set of all entities andR the set of all relations present in a knowledge graph. A triple is
represented as (h, r, t), with h, t ∈ E denoting head and tail entities respectively and r ∈ R the relation
between them. We use Ω = {(h, r, t)} ⊆ E ×R× E to denote the set of observed triples. The key issue
of KG embeddings is to represent entities and relations in a continuous low-dimensional space.

Our approach GeomE uses the geometric product and multivectors for KG embedding. In this paper,
we propose two models built with our approach, GeomE2D and GeomE3D, based on 2-grade multivec-
tors and 3-grade multivectors respectively.

GeomE2D represents each entity/relation as a k dimensional embedding M where each element
is a 2-grade multivector, i.e., M = [M1, . . . ,Mk], Mi ∈ G2, i = 1, . . . , k, where k is the dimen-
sionality of embeddings. Given a triple (h, r, t), we represent embeddings of h, r and t by Mh =
[Mh1 , . . . ,Mhk ],Mr = [Mr1 , . . . ,Mrk ], and Mt = [Mt1 , . . . ,Mtk ] respectively. Note that each element
of M is a 2-grade multivector. For example, Mh1 = {h1

0 +h1
1e1 +h1

2e2 +h1
12e1e2, h

1
0, h

1
1, h

1
2, h

1
12 ∈ R}.

GeomE3D embeds h, r, t into k dimensional embeddings Mh,Mr and Mt respectively where each
element of the embeddings is a 3-grade multivector i.e. Mhi ,Mri ,Mti ∈ G3 for i = 1, . . . , k, where
Mhi = hi0 + hi1e1 + hi2e2 + hi3e3 + hi12e1e2 + hi23e2e3 + hi13e1e3 + hi123e1e2e3.

Scoring Function of GeomE is defined as the scalar of the product of the embeddings of h, r and t by
using the geometric product and the Clifford conjugation.

φGeomE(h, r, t) = 〈Sc(Mh ⊗n Mr ⊗n Mt), 1〉, (5)

where n = 2 for GeomE2D and n = 3 for GeomE3D, ⊗n denotes element-wise Geometric Product
between two k dimensional n-grade multivectors (e.g. Mh⊗n Mr = [Mh1 ⊗nMr1 , · · · ,Mhk ⊗nMrk ]),
Sc denotes the scalar component of a multivector, 1 denotes a k × 1 vector having all k elements equal
to one, M denotes the element-wise conjugation of multivectors i.e. M = [M1, . . . ,Mk]. The expanded
formulation of scoring functions for GeomE2D and GeormE3D are presented in the Appendix C.
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4.2 Training
Most of previous semantic matching models, e.g., ComplEx, are learned by minimizing a sampled binary
logistic loss function (Trouillon et al., 2016). Motivated by the solid results in (Lacroix et al., 2018), we
formulate the link prediction task as a multiclass classification problem by using a full multiclass log-
softmax loss function, and apply N3 regularization and reciprocal approaches for our models.

Given a training set Ω 3 (h, r, t), we create a reciprocal training set Ω∗ 3 (t, r−1, h) by adding reverse
relations and the instantaneous multiclass log-softmax loss is defined as:

L =
∑

(h,r,t)∈(Ω∪Ω∗)

[− log(
exp(φ(h, r, t))∑

h′∈E exp(φ(h′ , r, t))
)− log(

exp(φ(h, r, t))∑
t′∈E exp(φ(h, r, t′))

)

+
λ

3

∑k

i=1
(||Mhi ||

3
3 + ||Mri ||33 + ||Mti ||33)]

(6)

N3 regularization and reciprocal learning approaches have been proven to be helpful in boosting the
performances of semantic matching models (Lacroix et al., 2018; Zhang et al., 2019). Different from
the sampled binary logistic loss function which generates a certain number of negative samples for each
training triple by randomly corrupting the head or tail entity, the full multiclass log-softmax considers
all possible negative samples and thus has a fast converge speed. On FB15K, the training process of a
GeomE3D model with a high dimensionality of k = 1000 needs less than 100 epochs and cost about 4
minutes per epoch on a single GeForce RTX 2080 device.

4.3 Connection to QuatE, Complex and pRotatE
As mentioned in Section 3, a bivector unit in a geometric algebra has similar properties to an imaginary
unit in a complex or hypercomplex space. Thus, a quaternion is isomorphic with a 3-grade multivector
consisting of a scalar and three bivectors, and a complex value can be regarded as a 2-grade multivector
consisting of a scalar and one bivector.

Subsumption of QuatE: By setting the coefficients of vectors and trivectors of Mh, Mr, and Mt in
Equation 5 to zero, we obtain the following equations for GeomE3D

φGeomE3D(h, r, t) =

(h0 ◦ r0 − h12 ◦ r12 − h23 ◦ r23 − h13 ◦ r13) ◦ t0 + (h0 ◦ r12 + h12 ◦ r0 − h13 ◦ r23 + h23 ◦ r13) ◦ t12+

(h0 ◦ r23 + h23 ◦ r0 − h12 ◦ r13 + h13 ◦ r12) ◦ t23 + (h0 ◦ r13 + h13 ◦ r0 + h12 ◦ r23 − h23 ◦ r12) ◦ t13.

(7)

where ◦ denotes Hadamard product, hj = [h1
j , . . . , h

k
j ], j ∈ {0, 12, 23, 13}. We can find that Equation 7

recovers the form of the scoring function of QuatE regardless of the normalization of the relational
quaternion. Therefore, GeomE3D subsumes the QuatE model.

Subsumption of ComplEx: By setting the coefficient of vectors Mh, Mr, and Mt to zero in Equa-
tion 5 for GeomE2D, we obtain

φGeomE2D(h, r, t) = (h0 ◦ r0 − h12 ◦ r12) ◦ t0 + (h0 ◦ r12 + h12 ◦ r0) ◦ t12, (8)
where hj = [h1

j , . . . , h
k
j ], j ∈ {0, 12}. The Equation 8 recovers the form of the scoring function of

ComplEx. Therefore, GeomE2D subsumes the ComplEx model. Additinally, comparing equations 7
and 8, we conclude that GeomE3D also subsumes ComplEx.

Subsumption of pRotatE: Apart from ComplEx and QuatE, GeomE also subsumes pRotatE. We start
from the formulation of the scoring function of pRotatE and show that the scoring function is a special
case of Equation 8. The scoring function of pRotatE is defined as

φpRotatE(h, r, t) = −‖h ◦ r− t‖, (9)

where the modulus of each element of relation vectors is |ri| = 1, i = 1, . . . , k, and |hi| = |ti| =
C ∈ R+. After some derivation on the score of pRotatE and GeomE2D (see details in Appendix D),

we can obtain φGeomE2D(h, r, t) = φpRotatE2
(h,r,t)−2kC2

2 . Note that 2kC2 is a constant number as k and
C, and thus does not affect the overall ranking obtained by computing and sorting the scores of triples.
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For a triple (h, r, t), there is a positive correlation between its GeomE score and pRotatE score since
pRotatE scores are always non-positive. Therefore, GoemE2D and consequently GeomE3D subsumes
the pRotatE model in the terms of ranking.

Overall, it can be seen that our framework subsumes ComplEx, pRotatE and QuatE and provides more
degrees of freedom by introducing vectors and trivectors. In addition, our framework can be generalized
into the geometric algebras with higher grades (Gn, n > 3) and is hence more flexible in expressiveness.

Although we introduce more coefficients in our framework, our models have the same time complexity
as pRotatE, ComplEx and QuatE as shown in Table 1. And the memory sizes of our models increase
linearly with the dimensionality of embeddings.

Model Scoreing Function Relation Parameters Otime Ospace
TransE −||h + r− t|| r ∈ Rk O(k) O(k)

DistMult < h, r, t > r ∈ Rk O(k) O(k)
ComplEx Re(< h, r, t >) r ∈ Ck O(k) O(k)

ConvE f(vec(f([Wh;Wr] ∗ ω))W)t Wr ∈ Rkw×kh O(k) O(k)
(p)RotatE −||h ◦ r− t|| r ∈ Ck O(k) O(k)

QuatE Qh ⊗W/
r ·Qt Wr ∈ Hk O(k) O(k)

GeomE2D 〈Sc(Mh ⊗2 Mr ⊗2 Mt), 1〉 Mr ∈ G2×k O(k) O(k)
GeomE3D 〈Sc(Mh ⊗3 Mr ⊗3 Mt), 1〉 Mr ∈ G3×k O(k) O(k)

Table 1: Scoring functions of state-of-the-art link prediction models, their parameters as well as their
time complexity and space complexity. vec() denotes the matrix flattening. ∗ denotes the convolution
operator. f denotes a non-linear function. ⊗ denotes the Hamilton product. H denotes a hypercomplex
space. / denotes the normalization of quaternions.

4.4 Ability of Modeling Various Relation Patterns
Our framework subsumes pRotatE, ComplEx and QuatE, and thus inherits their attractive properties:
One of the merits of our framework is the ability of modeling various patterns including symmetry/anti-
symmetry, inverse and composition. We give the formal definitions of these relation patterns.
Definition A relation r is symmetric (anti-symmetric), if ∀h, t r(h, t)⇒ r(t, h) (r(h, t)⇒ ¬r(t, h)).
Definition A relation r1 is inverse of relation r2, if ∀h, t r1(h, t)⇒ r2(t, h).
Definition relation r3 is composed of relation r1, r2, if ∀h, o, t r1(h, o) ∧ r2(o, t)⇒ r3(h, t).
Clauses with the above-mentioned forms are (anti-)symmetry, inversion and composition patterns.

GeomE can infer and model various relation patterns defined above by taking advantages of the flexi-
bility and representational power of geometric algebras and the geometric product.

(Anti-)symmetry: By utilizing the conjugation of embeddings of tail entities, our framework can
model (anti-)symmetry patterns. The symmetry property of GeomE2D and GeomE3D can be proved by
enforcing the coefficients of vectors and bivectors in relation embeddings to be zero. On the other hand,
their scoring functions are asymmetric about relations when the coefficients of vectors and bivetors in
relation embeddings are nonzero. For GeomE2D, the difference score of (h, r, t) and (t, r, h) is equal to

φGeomE2D(h, r, t)− φGeomE2D(t, r, h) = 2[(h1 ◦ t0 − h0 ◦ t1 + h12 ◦ t2 − h2 ◦ t12) ◦ r1+

(h2 ◦ t0 − h0 ◦ t2 + h1 ◦ t12 − h12 ◦ t1) ◦ r2 + (h0 ◦ t12 − h12 ◦ t0 + h2 ◦ t1 − h1 ◦ t2) ◦ r12].
(10)

This difference is equal to zero when r1, r2, r12 = 0. Embeddings of multiple symmetric relations could
still express their different semantics since their scalar parts might be different.

Inversion: As for a pair of inverse relations r and r′, the scores of (h, r, t) and (t, r′, h) are equal
when Mr= Mr′ . Concretely, the difference score of (h, r, t) and (t, r′, h) is equal to

φGeomE2D(h, r, t)− φGeomE2D(t, r′, h) = (h1 ◦ t0 − h0 ◦ t1 + h12 ◦ t2 − h2 ◦ t12) ◦ (r1 + r′1)+

(h2 ◦ t0 − h0 ◦ t2 + h1 ◦ t12 − h12 ◦ t1) ◦ (r2 + r′2) + (h0 ◦ t12 − h12 ◦ t0 + h2 ◦ t1 − h1 ◦ t2)

◦ (r12 + r′12) + (h0 ◦ t0 − h1 ◦ t1 − h2 ◦ t2 + h12 ◦ t12) ◦ (r0 − r′0).

(11)
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This difference is equal to zero when r0 = r′0, r1 = −r′1, r2 = −r′2, r12 = −r′12.
Composition: GeomE can also model composition patterns by introducing some constraints on em-

beddings. The detailed proof can be found in Appendix E.

5 Experiments and Results

5.1 Experimental Setup

Datasets We use four widely used KG benchmarks for evaluating our proposed models, i.e., FB15K,
WN18, FB15K-237 and WN18RR. The statics of these datasets are listed in Table 6. FB15K and WN18
are introduced in (Bordes et al., 2013). The former is extracted from FreeBase (Bollacker et al., 2008),
and the latter is a subsampling of WordNet (Miller, 1995). It is firstly discussed in (Toutanova et al.,
2015) that WN18 and FB15K suffer from test leakage through inverse relations, i.e. many test triples can
be obtained simply by inverting triples in the training set. To address this issue, Toutanova et al. (2015)
generated FB15K-237 by removing inverse relations in FB15K. Likewise, Dettmers et al (Dettmers et
al., 2018) generated WN18RR by removing inverse relations in WN18. The recent literature shows that
FB15K-237 and WN18RR are harder to fit and thus more challenging for new KG embedding models.
The details of dataset statistics are listed in the Appendix F.

Evaluation Protocols Link prediction is to complete a fact with a missing entity. Given a test triple
(h, r, t), we corrupt this triple by replacing h or t with all possible entities, sort all the corrupted triples
based on their scores and compute the rank of the test triple. Three evaluation metrics are used here,
Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hits@k. We also apply the filtered setting
proposed in (Bordes et al., 2013).

Implementation Details We used Adagrad (Duchi et al., 2011) as the optimizer and fine-tuned the
hyperparameters on the validation dataset. We fixed batch size b = 1000 and learning rate lr = 0.1.
We decided to focus on influences of the embedding dimensionality k ∈ {20, 50, 100, 200, 500, 1000}
and the regularization coefficient λ ∈ {0.0001, 0.00025, 0.0005, 0.00075, 0.001, · · · , 0.1}. The default
configuration for our proposed models is as follows: lr = 0.1, b = 1000, k = 1000 and λ = 0.01.
Below, we only list the non-default hyperparameters for both GeomE2D and GeomE3D: λ = 0.025
on WN18, λ = 0.05 on FB15K-237, and λ = 0.1 on WN18RR. We implemented our model using
PyTorch (Paszke et al., 2017) and ran the training processes on a single GeForce RTX 2080 GPU. To
prevent over-fitting, we used the early-stop setting on validation set and set the maximum epoch to 100.
The code is available at https://github.com/soledad921/GeomE.

Baselines We compare our models against a variety of baselines including: DistMult (Yang et al.,
2014), ComplEx (Trouillon et al., 2016), R-GCN+ (Schlichtkrull et al., 2018), ConvE (Dettmers et al.,
2018), SimplE (Kazemi and Poole, 2018), TorusE (Ebisu and Ichise, 2018), RotatE, pRotatE (Sun et
al., 2019), InteractE (Vashishth et al., 2020) and QuatE2 (Zhang et al., 2019). We choose QuatE2 as
baseline since this variant of QuatE applies N3 regularization and reciprocal approaches as our models
and get the best results among all variants of QuatE. Lacroix et.al., (2018) also uses these approaches
to boost the performance of ComplEx. The results reported in (Lacroix et al., 2018) are quite close
to QuatE2 regarding MRR and Hits@10. Apart from GeomE2D and GeomE3D, we test a combina-
tion model GeomE+ by utilizing the ensemble method used for DistMult (Kadlec et al., 2017) and R-
GCN+ (Schlichtkrull et al., 2018) to ensemble GeomE2D and GeomE3D. A GeomE+ model consists of
a GeomE2D model plus a GeomE3D model which are separately trained with the optimal hyperparame-
ters, i.e., φGeomE+(h, r, t) = φGeomE2D(h, r, t) + φGeomE3D(h, r, t).

5.2 Experimental Results

Link prediction: Results on four datasets are shown in Tables 2 and 3. GeomE3D and GeomE2D,
as single models, surpass other baselines on FB15K regarding all metrics. GeomE3D and GeomE2D
achieve the state-of-the-art results on WN18 except Hits@10 and MR. On FB15K-237 and WN18RR
where the local information is less salient, the results of GeomE3D and GeomE2D are close to QuatE2.
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FB15K WN18

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
DistMult* 42 0.798 - - 0.893 655 0.797 - - 0.946
ComplEx - 0.692 0.599 0.759 0.840 - 0.941 0.930 0.945 0.947

ConvE 51 0.657 0.558 0.723 0.831 374 0.943 0.935 0.946 0.956
R-GCN+ - 0.696 0.601 0.760 0.842 - 0.819 0.697 0.929 0.964
SimplE - 0.727 0.660 0.773 0.838 - 0.942 0.939 0.944 0.947
TorusE - 0.733 0.674 0.771 0.832 - 0.947 0.943 0.950 0.954
RotatE 40 0.797 0.746 0.830 0.884 309 0.949 0.944 0.952 0.959
pRotatE 43 0.799 0.750 0.829 0.884 254 0.947 0.942 0.950 0.957
QuatE2 - 0.833 0.800 0.859 0.900 - 0.950 0.944 0.954 0.962

GeomE2D 34 0.853 0.816 0.877 0.913 259 0.951 0.946 0.954 0.960
GeomE3D 36 0.846 0.806 0.876 0.915 325 0.951 0.947 0.954 0.959
GeomE+ 30 0.854 0.817 0.880 0.916 254 0.952 0.947 0.955 0.962

Table 2: Link prediction results on FB15K and WN18. * indicates that results are taken from (Kadlec et
al., 2017). Other results are taken from the original papers. Best results are written in bold.

FB15K-237 WN18RR

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
DistMult� 254 0.241 0.155 0.263 0.419 5110 0.43 0.39 0.44 0.49
ComplEx� 339 0.247 0.158 0.275 0.428 5261 0.44 0.41 0.46 0.51

ConvE� 244 0.325 0.237 0.356 0.501 4187 0.43 0.40 0.44 0.52
R-GCN+ - 0.249 0.151 0.264 0.417 - - - - -
RotatE 177 0.338 0.241 0.375 0.533 3340 0.476 0.428 0.492 0.571
pRotatE 178 0.328 0.230 0.365 0.524 2923 0.462 0.417 0.479 0.552
InteracE 172 0.354 0.263 - 0.535 5202 0.463 0.430 - 0.528
QuatE2 - 0.366 0.271 0.401 0.556 - 0.482 0.436 0.499 0.572

GeomE2D 155 0.363 0.269 0.399 0.552 3199 0.483 0.439 0.499 0.571
GeomE3D 151 0.364 0.270 0.399 0.555 3303 0.481 0.441 0.494 0.564
GeomE+ 145 0.366 0.272 0.401 0.557 2836 0.485 0.444 0.501 0.573

Table 3: Link prediction results on FB15K-237 and WN18RR. � indicates that results are taken
from (Dettmers et al., 2018). Best results are written in bold.

GeomE2D achieves the best MR, MRR and Hits@3 on WN18RR, and GeomE3D achieves the best MR
on FB15K-237 as well as the best Hits@1 on WN18RR.

By combining GeomE2D and GeomE3D, GeomE+ shows more competitive performance. On FB15K,
FB15K-237 and WN18RR, GeomE+ outperforms all baselines regarding all metrics. Especially on
FB15K, GeomE+ improves MRR by 2.1%, Hits@1 by 1.7%, Hits@3 by 2.1% and Hits@10 by 1.6%,
compared to QuatE2. On WN18, GeomE+ achieves the state-of-the-art results regarding MR, MRR,
Hits@1 and Hits@3, and achieves the second highest numbers on Hits@10.

The effect of the grade of the multivector space: Our approach can be generalized in the geometric
algebras GN with different grades N . In this paper, we mainly focus on GeomE models embeded in G2

and G3. We do not use multivectors with higher grade N > 3 in this paper because that would increase
the time consumption and memory sizes of training GeomE models and the results of GeomE3D and
GeomE2D on the four benchmarks are close. On the other hand, we also test the performances of
GeomE1D where each multivector consists of a scalar plus a vector, and find the results drop since the
1-grade multivectors lose some algebra properties after bivectors which square is −1 are removed.

The effect of the embedding dimensionality: Figure 2 shows the link prediction results of GeomE2D
models with different embedding dimensionalities k = {20, 50, 100, 200, 500, 1000} on FB15K-237
and WN18RR regarding MRR and Hits@10. It can be seen that the performances of GeomE2D improve
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FB15K-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
GeomE1D 0.355 0.261 0.391 0.545 0.453 0.409 0.465 0.541

Table 4: Link prediction results of GeomE1D on FB15K-237 and WN18RR.

Figure 2: Results of GeomE2D with different dimensionalities on FB15K-237 and WN18RR

with the increasing of the embedding dimensionality. We follow the previous work (Zhang et al., 2019;
Sun et al., 2019) to set the maximum dimensionality to 1000 in order to avoid too much memory and
time consumption. It will still be interesting to explore the performances of GeomE models with higher-
dimensional embeddings, e.g., Ebisu et al. (2018) use 10000-dimensional embeddings for TorusE.

Figure 3: Visualization of the embeddings of symmetric and inverse relations. 100-dimensional embed-
dings are reshaped into 10× 10 matrices here for a better representation.

Modeling symmetry and inversion: In FB15K, sibling relationship is a typical symmetric relation.
By constraining φ(h, sibling relationship, t) ≈ φ(t, sibling relationship, h) during the training process,
we find that the vector and bivector parts of its embedding learned by a 100-dimensional GeomE2D are
close to zero as shown in Figure 3. For a pair of inverse relations film/film format and film format/film
in FB15K, their embeddings are matually conjugate by constraining φ(h,film/film format, t) ≈
φ(t,film format/film, h). These results support our arguments in Section 4.4 and empirically prove
GeomE’s ability of modeling symmetric and inverse relations.

6 Conclusion

We propose a new gemetric algebra-based approach for KG embedding, GeomE, which utilizes multi-
vector representations to model entities and relations in a KG with the geometric product. Our approach
subsumes several state-of-the-art KG embedding models, and takes advantages of the flexibility and rep-
resentational power of geometric algebras to enhance its generalization capacity, enrich its expressiveness
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with higher degree of freedom and enable its ability of modeling various relation patterns. Experimental
results show that our approach achieves the state-of-the-art results on four well-known benchmarks.
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Appendices
Appendix A Supported Vector Space for GeomE

Table 5: Supported Vector Space.
Models Real R Complex

C
Quaternion
H

Octonion
O

n-grade
Gn

TransE (Bordes et al., 2013) X 7 7 7 7

DistMult (Yang et al., 2014) X 7 7 7 7

TuckEr (Balažević et al., 2019) X 7 7 7 7

(p)RotatE (Sun et al., 2019) X X 7 7 7

ComplEx (Trouillon et al., 2016) X X 7 7 7

TransComplEx (Nayyeri et al., 2019) X X 7 7 7

QuatE (Zhang et al., 2019) X X X 7 7

OctonionE (Zhang et al., 2019) X X X X 7

GeomE X X X X X

Appendix B The Geometric Product of 3-grade Multivectors

The product of two 3-grade multivectorsMa = a0+a1e1+a2e2+a3e3+a12e1e2+a23e2e3+a13e1e3+
a123e1e2e3 and Mb = b0 + b1e1 + b2e2 + b3e3 + b12e1e2 + b23e2e3 + b13e1e3 + b123e1e2e3 from G3 is
represented as follows.

Ma ⊗3 Mb =a0b0 + a1b1 + a2b2 + a3b3 − a12b12 − a23b23 − a13b13 − a123b123

+ (a0b1 + a1b0 − a2b12 + a12b2 − a3b13 + a13b3 − a23b123 − a123b23)e1

+ (a0b2 + a2b0 + a1b12 − a12b1 − a3b23 + a23b3 + a13b123 + a123b13)e2

+ (a0b3 + a3b0 + a1b13 − a13b1 + a2b23 − a23b2 − a12b123 − a123b12)e3

+ (a0b12 + a12b0 + a1b2 − a2b1 − a13b23 + a23b13 + a3b123 + a123b3)e1e2

+ (a0b23 + a23b0 + a1b123 + a123b1 + a2b3 − a3b2 − a12b13 + a13b12)e2e3

+ (a0b13 + a13b0 + a1b3 − a3b1 − a2b123 − a123b2 + a12b23 − a23b12)e1e3

+ (a0b123 + a123b0 + a1b23 + a23b1 − a2b13 − a13b2 + a3b12 + a12b3)e1e2e3.

(12)

Appendix C Extended Score Function of GeomE

More specifically, we define the scoring functions for GeomE2D and GeomE3D as:
φGeomE2D(h, r, t) =

(h0 ◦ r0 + h1 ◦ r1 + h2 ◦ r2 − h12 ◦ r12) ◦ t0 − (h0 ◦ r1 + h1 ◦ r0 − h2 ◦ r12 + h12 ◦ r2) ◦ t1−
(h0 ◦ r2 + h2 ◦ r0 + h1 ◦ r12 − h12 ◦ r1) ◦ t2 + (h1 ◦ r2 − h2 ◦ r1 + h0 ◦ r12 + h12 ◦ r0) ◦ t12

(13)

φGeomE3D(h, r, t) =

(h0 ◦ r0 + h1 ◦ r1 + h2 ◦ r2 + h3 ◦ r3 − h12 ◦ r12 − h23 ◦ r23 − h13 ◦ r13 − h123 ◦ r123) ◦ t0−
(h0 ◦ r1 + h1 ◦ r0 − h2 ◦ r12 + h12 ◦ r2 − h3 ◦ r13 + h13 ◦ r3 − h23 ◦ r123 − h123 ◦ r23) ◦ t1−
(h0 ◦ r2 + h2 ◦ r0 + h1 ◦ r12 − h12 ◦ r1 − h3 ◦ r23 + h23 ◦ r3 + h13 ◦ r123 + h123 ◦ r13) ◦ t2−
(h0 ◦ r3 + h3 ◦ r0 + h1 ◦ r13 − h13 ◦ r1 + h2 ◦ r23 − h23 ◦ r2 − h12 ◦ r123 − h123 ◦ r12) ◦ t3+

(h0 ◦ r12 + h12 ◦ r0 + h1 ◦ r2 − h2 ◦ r1 − h13 ◦ r23 + h23 ◦ r13 + h3 ◦ r123 + h123 ◦ r3) ◦ t12+

(h0 ◦ r23 + h23 ◦ r0 + h1 ◦ r123 + h123 ◦ r1 + h2 ◦ r3 − h3 ◦ r2 − h12 ◦ r13 + h13 ◦ r12) ◦ t23+

(h0 ◦ r13 + h13 ◦ r0 + h1 ◦ r3 − h3 ◦ r1 − h2 ◦ r123 − h123 ◦ r2 + h12 ◦ r23 − h23 ◦ r12) ◦ t13+

(h0 ◦ r123 + h123 ◦ r0 + h1 ◦ r23 + h23 ◦ r1 − h2 ◦ r13 − h13 ◦ r2 + h3 ◦ r12 + h12 ◦ r3) ◦ t123

(14)

where ◦ denotes the Hadamard product.
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Appendix D Proof of pRotatE assumption

Apart from ComplEx and QuatE, GeomE also subsumes pRotatE. We start from the formulation of the
scoring function of pRotatE and show that the scoring function is a special case of Equation 8. The
scoring function of pRotatE is defined as

φpRotatE(h, r, t) = −‖h ◦ r− t‖, (15)

where the modulus of each element of relation vectors is |ri| = 1, i = 1, . . . , k, and |hi| = |ti| = C ∈
R+. Therefore, we have

φpRotatE(h, r, t) = −‖h ◦ r− t‖ = −

√√√√ k∑
i=1

|hiri − ti|2

= −

√√√√ k∑
i=1

(
|(hiri)|2 + |ti|2 − 2Re((hiri)t̄i)

)
.

(16)

Since |ri| = 1 and |hi| = |ti| = C ∈ R+, we have φpRotatE(h, r, t) = −
√

2kC2 + 2Re((hiri)t̄i)
)
.

Considering scalars in Equation 8, i.e., h0, r0, t0, as real parts of complex values and bivectors h12,

r12, t12 as imaginary parts of complex values, we can obtain φGeomE2D(h, r, t) = φpRotatE2
(h,r,t)−2kC2

2 .
Note that 2kC2 is a constant number as k and C, and thus does not affect the overall ranking obtained by
computing and sorting the scores of triples. For a triple (h, r, t), there is a positive correlation between
its GeomE score and pRotatE score since pRotatE scores are always non-positive. Therefore, GoemE2D
and consequently GeomE3D subsumes the pRotatE model in the terms of ranking.

Appendix E Proof of Modeling various Relation Patterns in a Matrix Form

The geometric product between two 2-grade multivectors can also be represented in the form of matrix
vector product as

Ma⊗2Mb = Mat(Ma)×vec(Mb)×vec(e)T =


a0 a1 a2 −a12

a1 a0 a12 −a2

a2 −a12 a0 a1

a12 −a2 a1 a0

×

b0
b1
b2
b12

×

e0

e1

e2

e1e2


T

, (17)

where Mat(Ma) is a matrix corresponding to Ma, and vec(Mb) is vector representation of Mb. Like-
wise, The coefficients of the geometric product of two 3-grade multivectors also can be represented as a
multiplication of a 8× 8 symmetric matrix and a vector.

Scoring function of GeomE can be written in the above form of matrix vector product,

k∑
i

Sc(Mhi ⊗nMri ⊗nMti) =
k∑
i

〈Mat(Mri)× vec(Mhi), vec(Mti)� 1̄〉 (18)

where × and � denote matrix multiplication and element-wise vector multiplication. Mhi ,Mri ,Mti ∈
Gn are the ith multivector elements of Mh,Mr,Mt, respectively. 1̄ is a 2n-dimensional vector used for
changing the signs of coefficients of vector parts in an n-grade multivector (n ≤ 3 in our case).

For a triple (h, r, t) where r is involved in an (anti-)symmetry pattern, inversion pattern or composition
pattern, we import the following constraints:

Mat(Mri)× vec(Mhi) = λhi · vec(Mhi)

Mat(Mri)× vec(Mti) = λti · vec(Mti).
(19)

where · denotes scalar multiplication, λhi and λti are the eigenvalues corresponding to vec(Mhi) and
vec(Mti).
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(Anti-)Symmetry By utilizing the conjugation of embeddings of tail entities, our framework can
model both two patterns. Concretely, considering equation 18 and 19, we show GeomE models symmet-
ric pattern by φ(h, r, t)− φ(t, r, h) = 0 as follows

Sc(Mhi ⊗nMri ⊗nMti)− Sc(Mti ⊗nMri ⊗nMhi) =

〈Mat(Mri)× vec(Mhi), vec(Mti)� 1̄〉 − 〈Mat(Mri)× vec(Mti), vec(Mhi)� 1̄〉 =

〈λhi · vec(Mhi), vec(Mti)� 1̄〉 − 〈λti · vec(Mti), vec(Mhi)� 1̄〉 =

λhi · 〈vec(Mhi), vec(Mti)� 1̄〉 − λti · 〈vec(Mti), vec(Mhi)� 1̄〉.

(20)

Let assume that the matrix Mat(Mri) is householder. Therefore, it has two eigenvalues {−1, 1}. The
eigenvectors corresponding to -1 are orthogonal to the eigenvalues corresponding to 1. There are two
conditions

• Both of vec(Mti), vec(Mhi) are eigenvectors (parallel) corresponding to the same eigenvalue.
Therefore, we have

λhi〈vec(Mhi), vec(Mti)� 1̄〉 − λti〈vec(Mti), vec(Mhi)� 1̄〉 =

〈vec(Mhi), vec(Mti)� 1̄〉 − 〈vec(Mti), vec(Mhi)� 1̄〉 =

〈vec(Mhi), vec(Mti)� 1̄〉 − 〈vec(Mhi), vec(Mti)� 1̄〉 = 0.

(21)

• Both of vec(Mti), vec(Mhi) are eignevectors (orthogonal) corresponding to different eigenvalues.
Therefore, we have

λhi〈vec(Mhi), vec(Mti)� 1̄〉 − λti〈vec(Mti), vec(Mhi)� 1̄〉 =

〈vec(Mhi), vec(Mti)� 1̄〉+ 〈vec(Mti), vec(Mhi)� 1̄〉 =

〈vec(Mhi), vec(Mti)� 1̄〉 = 2〈vec(Mhi), vec(Mti)� 1̄〉.
(22)

The abovementioned equation equals to zero if for either vec(Mhi) or vec(Mti), the elements (co-
efficents of vector parts in this case) corresponding to the negative sign (-1) of 1̄ will be zero.

The abovementioned conditions hold for each multivector element Mi of the k-dimensional embeddings
M, i.e. i = 1, . . . , k. Therefore, there are 2k possible options (capacity of model) to have φ(h, r, t) −
φ(t, r, h) = 0 (modeling symmetric pattern).

Inversion Given two relations r1, r2 which form inverse pattern i.e. r1 = r−1
2 (e.g. r1 =SonOf,

r2 =FatherOf ), we show that GeomE models inverse pattern by φ(h, r1, t) − φ(t, r2, h) = 0. This is
proved as follows

Sc(Mhi ⊗nMr1i ⊗nMti)− Sc(Mti ⊗nMr2i ⊗nMhi) =

〈Mat(Mr1i)× vec(Mhi), vec(Mti)� 1̄〉 − 〈Mat(Mr2i)× vec(Mti), vec(Mhi)� 1̄〉 =

〈λ1hi · vec(Mhi), vec(Mti)� 1̄〉 − 〈λ2ti · vec(Mti), vec(Mhi)� 1̄〉 =

λ1hi · 〈vec(Mhi), vec(Mti)� 1̄〉 − λ2ti · 〈vec(Mti), vec(Mhi)� 1̄〉.

(23)

Let assume that the matrices of Mat(Mr1i) and Mat(Mr2i) have same eigenvalues λ1i = λ2i. There-
fore, we have

λ1hi〈vec(Mhi), vec(Mti)� 1̄〉 − λ2ti〈vec(Mti), vec(Mhi)� 1̄〉 =

λ1hi(〈vec(Mhi), vec(Mti)� 1̄〉 − 〈vec(Mti), vec(Mhi)� 1̄〉) =

λ1hi(〈vec(Mhi), vec(Mti)� 1̄〉 − 〈vec(Mhi), vec(Mti)� 1̄〉) = 0.

(24)

Since for n-grade multivector, there are 2n variables in the vector, the corrsponding matrices
Mat(Mr1i),Mat(Mr2i) are 2n × 2n dimensional. Since a 2n × 2n matrix has at most 2n distinct
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eigenvalues/eigenvectors, GeomE with k dimension for embedding can at most represent 2n
k

distinct
entity embedding vectors (model capacity) for encoding inverse pattern.

Composition By enforcing the coefficents of vector parts of Mh and Mt to be zero, we obtain

Sc(Mhi ⊗nMri ⊗nMti) = 〈Mat(Mri)× vec(Mhi), vec(Mti)〉
subject to: hi1, · · · , hin = 0

ti1, · · · , tin = 0

(25)

where hi1, · · · , hin and ti1, · · · , tin are the vector parts of Mhi and Mti , n ≤ 3 in our case.
Since vec(Mhi) and vec(Mti) are eigenvectors of Mat(Mri) (defined in Equation 19), the maximiza-

tion of Sc(Mhi⊗nMri⊗nMti) is equivalent to minimizing ∠(Mat(Mri)×vec(Mhi), vec(Mti)) under
the following constraints,

arg max Sc(Mhi ⊗nMri ⊗nMti) = arg max 〈Mat(Mri)× vec(Mhi), vec(Mti)〉 =

arg min ∠(Mat(Mri)× vec(Mhi), vec(Mti))

subject to: Mat(Mri)× vec(Mhi) = λhi · vec(Mhi)

Mat(Mri)× vec(Mti) = λti · vec(Mti).

hi1, · · · , hin = 0

ti1, · · · , tin = 0

(26)

Note that eigenvectors are scale-free. It means given A× x = λ · x where A is a matrix, x and λ are
its eigenvector and the corresponding eigenvalue, the multiplication of λ by any real number c is also an
eigenvector, i.e., A× (c ·x) = λ · c ·x. Therefore, maximization of 〈Mat(Mri)× vec(Mhi), vec(Mti)〉,
is equivalent to minimizing the angle between two vectors under the scale-free condition. Based on the
above-mentioned assumption, and in order to model composition pattern r1(h, o) ∧ r2(o, t) ⇒ r3(h, t),
we have

Mat(Mr1i)× vec(Mhi) = α1 · vec(Moi),

Mat(Mr2i)× vec(Moi) = α2 · vec(Mti),

Mat(Mr3i)× vec(Mhi) = α3 · vec(Mti),

(27)

where α1, α2, α3 are real numbers. Furthermore, we obtain the following connection between embed-
dings of r1, r2 and r3.

Mat(Mr3i) = α ·Mat(Mr1i)×Mat(Mr2i) (28)

where α = α3/(α1 ·α2) can be any real number. Thus, ∀h, o, t r1(h, o)∧ r2(o, t)⇒ r3(h, t) holds true
under the constraints in Equation 19 when Equation 28 is valid.

Appendix F Dataset

Datasets #Entities #Relations #Training #Validation #Training
FB15K 14951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 6: Number of entities, relations, and observed triples in each split for four benchmarks.


