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Abstract

Despite the advances in Natural Language Inference through the training of massive deep models,
recent work has revealed the generalization difficulties of such models, which fail to perform on
adversarial datasets with challenging linguistic phenomena. Such phenomena, however, can be
handled well by symbolic systems. Thus, we propose Hy-NLI, a hybrid system that learns to
identify an NLI pair as linguistically challenging or not. Based on that, it uses its symbolic or deep
learning component, respectively, to make the final inference decision. We show how linguistically
less complex cases are best solved by robust state-of-the-art models, like BERT and XLNet, while
hard linguistic phenomena are best handled by our implemented symbolic engine. Our thorough
evaluation shows that our hybrid system achieves state-of-the-art performance across mainstream
and adversarial datasets and opens the way for further research into the hybrid direction.

1 Introduction

Natural Language Inference (NLI), the task of determining whether a premise sentence entails, contradicts
or is neutral with respect to a hypothesis sentence given a specific setting, has recently seen tremendous
advances. The growing availability of increasingly large datasets has enabled the training of massive
deep models, pushing the state-of-the-art (SOTA) to human performance (Liu et al., 2019; Zhang et al.,
2020). This performance, however, has triggered various questions: is the task now solved; is it possible
to outperform humans; what do the models really understand, etc. Much work has been undertaken, with
researchers detecting bias or artifacts in the training sets (Gururangan et al., 2018; Poliak et al., 2018)
and “breaking” the models with adversarial datasets that expose the generalization and compositionality
difficulties of the models (Glockner et al., 2018; Nie et al., 2018; Zhu et al., 2018; Dasgupta et al., 2018;
Naik et al., 2018; McCoy et al., 2019; Richardson et al., 2020). This raises the question of how we can
mitigate those shortcomings while taking advantage of the current advances in the field.

In this paper we propose a hybrid NLI system, which combines the strengths of a symbolic NLI engine
with a deep learning (DL) model. As argued elsewhere (Lewis and Steedman, 2013; Beltagy et al., 2016),
we also believe in the division of semantic labour. Distributional features are well suited for dealing with
graded, fluid and robust conceptual aspects of the meaning of words, phrases, and sentences (Mikolov
et al., 2013; Pennington et al., 2014; Devlin et al., 2019), but struggle with Boolean and contextual
phenomena such as negation, modals, quantifiers, implicatives. These are phenomena to which more
symbolic approaches are well suited. Thus, inference pairs of the former category that mostly rely on
word/phrase similarity, and require taxonomic- and world-knowledge are considered easy, e.g., The
dog is walking entails The animal is moving. In contrast, pairs of the latter category that require more
complex inference around phenomena such as modals, negation, quantifiers, implicatives, conditionals,
etc., are considered hard, e.g., The boy faked the illness contradicts The boy was sick (see Appendix A for
more such phenomena and relevant examples). To deal with such hard pairs, we build a symbolic NLI
engine, GKR4NLI. We hybridize this engine by exploiting the power and robustness of SOTA language
representation models, which achieve high performance in the mainstream, easy pairs. We then train a
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classifier, which determines whether the inference label of the symbolic or the DL component should be
used, based on the nature of the pair, i.e., whether it involves challenging linguistic phenomena or not. Our
evaluation shows that this approach achieves SOTA results across mainstream and adversarial datasets.
Our contributions in the paper are three-fold: First, we implement a symbolic NLI system, GKR4NLI,
and show its suitability for the task. Second, we describe how our trained classifier learns to distinguish
between the easy and hard cases. Third, we show how such a hybrid setting reaches the current SOTA and
propose the training of more hybrid models, able to assign each NLI problem to the most suitable solver.

2 Related Work

In recent years, two broad methodologies have been used to tackle the problems posed by NLI. On the one
hand, there have been logic-based systems that involve linguistic methods such as syntactic and semantic
parsing, and systems that employ a theorem prover or use Natural Logic and monotonicity principles
(Abzianidze, 2017; Martinez-G6émez et al., 2017; Yanaka et al., 2018; Hu et al., 2020). Such systems have
been largely evaluated on the SemEval-2014 version of the SICK dataset (Marelli et al., 2014b). On the
other hand, NLI has been tackled with machine-learning methods in two major directions. One strand of
research has trained end-to-end deep models, which transform the premise and hypothesis sentences into
n-dimensional vectors and learn to classify them into one of the inference relations. Such methods range
from attention architectures, e.g., Rocktéschel et al. (2016), to approaches integrating linguistic features
such as syntactic parses, e.g., Chen et al. (2016), and external knowledge like WordNet, e.g., Chen et al.
(2018), to models trained on multiple tasks, e.g., Liu et al. (2019), to name just a few. The other strand of
work has focused on language representation models, building on the efforts of popular word (Mikolov et
al., 2013; Pennington et al., 2014), sentence (Kiros et al., 2015; Bojanowski et al., 2017; Conneau et al.,
2017) and contextualized embeddings, such as ELMO (Peters et al., 2018), Open GPT (Radford et al.,
2018), BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019). Such representations are then efficient
for supervised downstream tasks, like NLI, by only fine-tuning them on the specific task.

Although such SOTA systems achieve high performance on massive multi-domain datasets like SNLI
(Bowman et al., 2015), MNLI (Williams et al., 2018) or SciTail (Khot et al., 2018), it has repeatedly been
shown that they lack the generalization and compositionality power needed to truly understand language.
They are easily “broken” when presented with differently biased data (Gururangan et al., 2018; Poliak et
al., 2018) or with challenging adversarial data, e.g., including semantic (Glockner et al., 2018; Zhu et al.,
2018; Naik et al., 2018; Richardson et al., 2020) or structural phenomena (Dasgupta et al., 2018; Nie et
al., 2018; McCoy et al., 2019). Such phenomena may include comparatives, implicatives, conditionals,
coordination, negation, modals (see Appendix A for a fuller list of phenomena and relevant examples). For
example, comparatives are hard because the models cannot yet efficiently capture the complex interaction
between the order of the compared constituents and comparative notions like more or less. Similarly,
implicatives are challenging for models because they inherently possess an implication signature which
is not only unique for each predicate and thus needs to be explicitly learnt for each of them, but also
undergoes changes based on how the implicative is embedded and whether it is negated. Pairs with
conditionals, modals and coordination challenge the models due to the high lexical overlap between the
sentences of the pair — which the models have learnt to interpret as entailment — and due to the inability
of current models to exploit the notions of causality and modality.! Most of this “breaking NLI” work
has proposed augmenting the training data with such complex phenomena and has shown that models
can then successfully improve their performance. However, augmenting the training data with specific
phenomena does not solve the bigger problem (Nie et al., 2018; McCoy et al., 2019). Due to the recursive
nature of language, there are infinitely many ways of composing information into meaningful sentences.
But each type of adversarial set can only improve performance for one specific linguistic phenomenon
and already generating high-quality data for a single phenomenon is extremely costly. Indeed, Nie et al.
(2018) show that training on one type of adversaries does not improve performance for other types; in
fact, it might even harm the overall performance due to over-fitting. McCoy et al. (2019) also observe

!See relevant literature for more discussion on why models fail in such cases and explore potential heuristics of DL models
through our explainable user interface presented in Kalouli et al. (2020).
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that augmenting the training data with only a subset of their adversarial set enables the model to learn
this subset, but does not help it solve the withheld set. Thus, we need to focus on the kind of learning
process that will allow for the desired generalizations without having to include all possible constructions
in the training data. One solution is to pursue a direction where such complex phenomena are treated
separately by suitable symbolic components and other cases are treated by deep models. We propose
training suitable hybrid models that can learn when to use which method.

Our work shows how such a hybrid approach can work in practice. Recently, work in a similar
direction was conducted by Hu et al. (2020), who develop a monotonicity/Natural Logic system capable
of producing entailing or contradictory sentences for a premise, in the search of the actual hypothesis.
When combining their system with BERT, they improve BERT’s performance on SICK by 1%. However,
this slight performance boost does not reveal the real value of such a hybrid system, compared to pure
deep-learning models like BERT, because it does not show its performance on adversarial sets.

3 The Hy-NLI System

The proposed system consists of a symbolic and a deep learning component, whose outputs are used for
the training of the hybrid classifier. The overall architecture of Hy-NLI can be found in Figure 1. The
explainability of our proposed system and an intuitive user interface are presented in Kalouli et al. (2020).
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Figure 1: The overall architecture of Hy-NLI. Top: Deep learning component. Bottom: symbolic
component. Right: Hy-NLI classifier.

3.1 GKRA4NLI: the Symbolic Component

We develop GKR4NLI,? a symbolic inference engine which implements a version of Natural Logic (NL)
(Van Benthem, 1986; Valencia, 1991; MacCartney and Manning, 2007; McCartney, 2009). NL seeks to
determine specificity and monotonicity relations between words, phrases and sentences, i.e., determine
whether the concepts of a sentence can become “more general” or “more specific” salva veritate. For
example, in the sentence a dog is eating, dog can be replaced by the more general animal while preserving
truth. GKR4NLLI, fully implemented in Java, exploits an improved version of the Graphical Knowledge
Representation (GKR)? (Kalouli and Crouch, 2018), which allows for the kind of inference mechanism
we require. Briefly, the GKR parser separates the sentence information into six different graphs: the
dependency graph, the concept graph, the context graph, the lexical graph, the properties graph and the
coreference graph. The dependency graph is self-explanatory: it holds the dependency parse (Enhanced++
Universal Dependencies; Schuster and Manning (2016)) of the sentence. The concept graph abstracts
away from the dependency graph and holds only the predicate-argument structure of the sentence, i.e.,
who is doing what to whom. The context graph holds the existential commitments and assertions of

2 Available under https://github.com/kkalouli/GKRANLI
3 Available under github.com/kkalouli/GKR_semantic_parser
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the sentence, i.e., in what worlds there are instantiations of the concepts of the concept graph. The
lexical graph contains lexical information of the words of the sentence, while the property graph includes
additional morpho-syntactic information about e.g., the cardinality of nouns, tense and aspect, quantifiers.
Last, the coreference graph resolves coreference phenomena. Overall, an important characteristic of the
representation that makes it suitable for our symbolic inference engine is its strict separation between the
concept and the context graphs. For more details on GKR, refer to Kalouli and Crouch (2018). Using
these representations, we implement the symbolic inference engine GKR4NLI; its overall architecture can
be found on the lower level of Figure 1 and is detailed in the following. We use the pair P: The dog is
eating a bone. H: The dog is not eating a large bone as our working example.

Stage 1: Semantic Preprocessing In the first stage, the premise (P) and hypothesis (H) are parsed to
their GKR representations, each producing the six graphs outlined above. Each of the graphs is used in a
different stage of the inference pipeline. Due to space limitations we only present the merged concept
(blue nodes) and context (grey nodes) graphs of our working example in Figure 2a: the concept graphs
capture the propositional structure (dog eat (large) bone) of the sentences, while the context graphs capture
the assertions of the sentences: eating in P is instantiated (or the ctx_hd in GKR terms) in the top context
(i.e., in the actual, real world), while in H it is uninstatiated (or antiveridical in GKR terms), which
captures the fact that H says that eating of a bone by a dog does not happen.

top top bone_8 eat_5 dog_2
ctx_hd antiveridical ~ ctx.hd
eat_4 ctx(eat_5) not_4 bone_6 eat_4 dog_2
sem-obj  sem.subj ctx_hd (b) Initial Term Matching. Top: H nodes. Bottom: P nodes
eat_5 —sem_obj bone_8
bone_6 dog_2 bone_8 eat_5 dog_2
- - sem|subj amod
dog_2 large_7
(a) Semantic Preprocessing (concept and context graphs). Left: bone_6 eat_4 dog_2

the premise (P). Right: the hypothesis (H) o
(c) Specificity Update. Top: H nodes. Bottom: P nodes

Figure 2: The stages of the symbolic engine for the working example P: The dog is eating a bone. H: The
dog is not eating a large bone.

Stage 2: Initial Term Matching We make use of the GKR lexical graphs to determine possible matches
between H and P. These graphs contain the top five disambiguated WordNet (Fellbaum, 1998) senses and
SUMO (Niles and Pease, 2003) concepts of each node of the concept graph, as well as their corresponding
super- and subsenses/concepts, antonyms and synonyms. Based on this information and on plain word
lemmas, matches between H and P are determined and assigned one of the specificity markers equals,
subclass, superclass, disjoint — we always define the specificity of the P-term with respect to the H-term.
In our working example in Figure 2b, the words bone, eat, dog of H (at the start nodes of the edges) match
to the corresponding words in P (end nodes of the edges) solely based on their lemmas, and are all assigned
the equals specificity. In an example where H would contain the word animal, the match animal-dog
would be found based on the hypernyms of dog, and the specificity subclass would be assigned.

Stage 3: Specificity Updater The specificity of the lexical matches of the previous stage has to be
updated based on the children (i.e., modifiers/arguments) that each of the P and H terms have. For instance,
in our example, bone is equally specific to bone, but it is not equally specific to a large bone (not all bones
are large). For updating the matches, we use the conceptual and properties graph of GKR.

The update process considers each match separately. For the two terms of a match H-P, the system
considers whether none, both or only one of them have children in their respective concept graph. Based
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on that, different update rules apply.* For example, if both terms have no further children in their concept
graphs, then the initial specificity remains unchanged (cf. dog in Figure 2c¢). On the other hand, if
the H-term has additional children but the P-term does not, then H becomes more specific. Thus, in
our example in Figure 2c, the specificity of the match bone-bone has to be revised because bone in H
has the additional modifier large, while bone in P has no modifiers: since H becomes more specific, P
becomes more general and thus the specificity equals is converted to superclass (i.e., bone is more general
(superclass) than large bone). Similarly, the specificity of the match eat-eat has to be adapted based on
the children of its terms: the children dog-dog and their specificity have no effect on the specificity of
eat-eat because an equal match has no effect on an equal match. In contrast, the superclass specificity of
the children bone-bone modifies the specificity of eat-eat by projecting up, and converts it to superclass.

The matching process described so far will not always be valid because the matched terms might have
different, incompatible relations in the sentences. For instance, in our working example, the matched
children dog-dog of the match eat-eat are compatible and valid because they both stand in the sem_subj
relation to eat (see Figure 2a). However, in a pair like P: The dog is chasing the cat. H: The cat is chasing
the dog, the matched children dog-dog of the match chase-chase are not compatible because dog is the
sem_subj of P but the sem_obj of H. So, since two children may match no matter their relation to their
head, and thus produce an invalid match, the matches of each pair are assigned a flag based on whether
they are more often associated with an (E)ntailment, a (C)ontradiction or a (N)eutral relation. To find such
associations, we use association rule mining (Agrawal et al., 1993), a rule-based machine learning method
for discovering interesting relations between items in large databases. Specifically, we use the fpgrowth
algorithm (Han et al., 2000): we run an annotated inference training set (see Section 4 for more details
on the set) through the first 3 stages of the pipeline and extract all possible matches for each pair and
map them to their semantic relations, e.g., in our working example, the matches dog-dog and bone-bone
are mapped to their semantic relations {sem_subj — sem_subj} and {sem_obj — sem_obj}, respectively.
A balanced subset of these relations-combinations along with the inference label of each pair is used
as input (itemsets) for the association algorithm, as shown in Table 1. The algorithm then learns rules
for which relations-combinations are mostly associated with what label. We manually verify the rules
with the highest confidence and bootstrap them in the current stage to act like the flagging mechanism
for the pair. For example, the algorithm finds that the combination of the matched semantic relations
{sem_subj — sem_obj} and {sem_obj — sem_subj} in one sentence is mostly found in Cs; we verify this
rule, which allows us to account for pairs like P: The dog is chasing the cat. H: The cat is chasing the
dog or P: The fish is following the turtle. H: The turtle is following the fish. Similarly, the algorithm
finds that the combination of the matched relations amod, sem_subj — amod,nmod, sem _subj with the other
items shown in Pair 2 of Table 1 is mostly found in neutral pairs: in P, asian is the amod (adjectival
modifier) of people and people is the sem_subj of eat. In H, asian is the amod of restaurant, restaurant is
an nmod (nominal modifier) of people and people is the sem_subj of eat. We can then verify that such a
relations-combination should indeed be flagged as neutral. Currently, there are more than 20 verified rules
included in the system, with the possibility of extension.’

Once all matches have been updated, we still need to deal with determiners/quantifiers. Quantifiers can
flip the specificity of a match, according to the monotonicity principles (van Benthem, 2008; Valencia,
1991; McCartney, 2009). For instance, bone is more general that large bone, but every bone is more
specific than every large bone, i.e. every large bone does not entail every bone. The determiner/quantifier
information is provided in the GKR properties graph.

Inference Checker After all the H-P matches have been updated, the inference relation is determined
based on the GKR context graphs and the determined specificities. First, we look for contradictions
coming from opposing contexts. A contradiction requires an instantiated term (termed veridical or ctx_hd

4See Appendix B for the full update rules.

Note that this method will not always learn accurate associations. For example, in a pair like P: The boy met the girl. H :
The girl met the boy, the combination {sem_subj — sem_obj}, {sem_obj — sem_subj} should not lead to a contradiction but to
an entailment due to the nature of the predicate meet. However, attempting to learn lexicalized associations, i.e., including the
specific lexical items and/or their Levin (Levin, 1993) class, did not lead to reliable associations due to the high sparsity of each
relation-combination. Richer corpora are needed for better (lexicalized) association mining.
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Transactions | Itemsets Example
Pair 1 {sem_subj — sem_obj } {sem_obj —sem_subj} {C} | P: The turtle is following the fish.
H: The fish is following the turtle
Pair 2 {sem_subj — sem_subj} {nmod — nmod,sem_subj} | P: Asian people are eating at a restaurant.
{amod,sem_subj — amod,nmod,sem_subj} {N} H: People in an Asian restaurant are eating.
Pair 3 {sem_subj — sem_subj} {amod,nmod-nmod} P: The cat is playing passionately with a watermelon.
{amod -} {E} H: The cat is playing with a watermelon

Table 1: Sample itemsets (input) for the fpgrowth algorithm. The left-side of the dash represents P and the
right-side H. No relation before/after the dash means that there was no match for this term.

within GKR) being matched with an uninstantiated term (antiveridical) in the same context. For example,
if the H-term is instantiated and more or equally specific than the uninstantiated P-term, then there is a
contradiction, as in P: No man is walking. H: A (young) man is walking. In contrast, if the H-term is
uninstantiated and more or equally specific than the instantiated P-term, we cannot determine the relation,
as in our working example: from A dog is eating a bone we cannot infer whether the dog is eating a large
bone or not. Similar rules apply for contradictions coming from disjoint relations. For instance, if the
root node of the H-graph has a disjoint match in the P-graph and both terms have the same instantiability
and the path of the match is not associated with a contradiction flag, there is a contradiction, as in the
example P: The man is carrying a big bag. H: The man is carrying a small bag: the root node carry of
H has the match carry in P, both are instantiated in the top context, no contradiction flag is assigned to
them, but they are in a disjoint relation due to their disjoint modifiers big and small. Similarly, we find
entailments. For example, if the root node of H-graph has a match in the P-graph, the match is equally or
more specific, both terms are instantiated and the path of the match is not associated with a contradiction
or neutral flag, there is an entailment, as in the pair P: The dog is eating. H: The animal is eating. If none
of the rules apply, the relation cannot be determined and defaults to neutral.

3.2 The Deep Learning Component

For the deep learning (DL) component we choose to experiment with two state-of-the-art language
representation models, BERT (Devlin et al., 2019) (base, uncased) and XLNet (Yang et al., 2019) (base),
which we fine-tune for our task. Details on the train and test sets are given in the next section. We use the
HuggingFace implementation of the models® and we fine-tune the parameters suggested by the authors:
batch size, learning rate and number of epochs. Our best performing models use a batch size of 32,
learning rate of 2e-5 and 3 epochs. The trained model can classify an input inference pair into E, C or N.

3.3 The Hybrid Classifier

Each of the two described components makes an inference decision for a given pair, as shown in Figure 1.
What we need to know is which of the two decisions we should trust, if any. If we go with the DL
decision, we will probably do well on the mainstream (easy) pairs but performance will suffer for the
adversarial ones, as described in Sections 1 and 2. If we go with the decision of the symbolic component,
we might miss some of the easier cases due to lower robustness of the system, but we will have high
performance on the adversarial cases. So, if we can determine whether a pair is hard or easy, i.e., if it
contains phenomena that require deeper semantic analysis like modals, negations, quantifiers, implicatives,
factives, etc., we can choose to trust the component we know to work best in each case. Most of these
harder phenomena cannot be traced solely based on surface forms, e.g., even if modals can be captured
through a short list of words, the semantic implications that actually make them complex cannot be
modeled so straightforwardly. But the GKR architecture lends itself to the extraction of such information:
the GKR context graphs capture exactly the complex implications and assertions that come from such
phenomena. Thus, to distinguish between hard and easy pairs, a classifier only needs to learn which
combinations of such implications and of match specificities are indeed complex and which are easier.
To learn that, the classifier is given a fake task: it learns which component of our system delivers the
correct inference label for a given pair. By learning this, the classifier indirectly learns whether the pair

8 Available under github.com/huggingface/transformers
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is hard or easy: if the symbolic component is right, the pair is probably hard; if the DL component is
right, the pair is probably easy’; if both components can get the inference right, then the pair does not
require any special treatment; if none of the components gets it right, then no claims about the nature of
the pair can be made. Thus, to build the training set for our classifier, for each H-P pair, we convert the
following information to features: the specificity relations (equals, subclass, superclass, disjoint) and the
instantiability (veridical, antiveridical, averidical) of all matches of the pair and the path flags (entail_flag,
contra flag, neutral_flag) of the matches. So, our working example would be encoded by the features
veridical, antiveridical, equals, superclass due to the instantiabilities of eat in P and H (see Figure 2a)
and the updated specificities of the matches (see Figure 2c). As learning target, we annotate each pair
with the component that assigns to it the correct inference label (based on the gold labels provided by the
training set): the symbolic one (S), the DL one or both of them (B). If none of the components delivers
the right label, this pair is left out of the classifier’s training to reduce training noise (since these are only
a few cases). We experiment with various classifiers and best performing is a Multi-Layer Perceptron
(MLP) classifier with 8 hidden layers, the ReLU activation function (Hahnloser et al., 2000), Adam solver
for weight optimization (Kingma and Ba, 2014), adaptive learning rate, L2 penalty at 0.01, learning rate
initialization at 0.01 and maximum iterations of 1000.® The classifier learns one of the labels S, DL or B
(3-way classification). In the testing phase, each pair is classified as one of S, DL or B and then mapped to
the respective label: if classified as S or DL, the symbolic or the DL inference label are used, respectively;
if classified as B, then either one of S or DL could be chosen: to increase robustness the label of the DL
component is preferred . After this classification, a final unique inference relation is assigned to each pair.
Table 2 gives a glimpse into the output of the classifier.

It should be noted that the proposed hybrid approach is different from an approach which simply uses a
DL model whenever the symbolic engine fails or produces a neutral label (e.g., Hu et al. (2020)). In such
approaches, the core of the approach is the symbolic engine and the DL model is just a fall-back strategy.
In Hy-NLI, however, both components have an equal standing and there is an apriori decision for which
component should be trusted. With this, we can fully exploit the robustness and power of DL models.
Additionally, Hy-NLI can be used to reliably label unannotated data. In contrast, approaches that employ
the DL fall-back strategy can mainly be exploited in settings where gold labels are available and thus the
fall-back strategy can be triggered.

Pair/Label Symbolic | DL | Hybrid (S, DL, B) | Mapped | Gold
P: The artist encouraged the secretary.

H: The secretary encouraged the artist. C E S C C
P: A man is running. H: A man is standing still. N C DL C C
P: A boy is happily playing the piano.

H: A white bird is landing swiftly in the water. N N B N N

Table 2: Sample output of the Hy-NLI classifier and its mapping to real inference labels.

4 Evaluation

4.1 Datasets

For evaluation we choose three different datasets: SICK (Marelli et al., 2014b), the set of Dasgupta et al.
(2018) (DAS) and HANS (McCoy et al., 2019). SICK is considered an easy dataset, where DL approaches
do well. DAS is one of the adversarial datasets, where DL approaches struggle. HANS lies squarely in
the middle: half of it can be easily solved by DL methods and half of it is hard for such models.

SICK SICK is an English corpus of almost 10,000 pairs, annotated for the similarity and for the
inference relation between the sentences of each pair. The corpus was created from captions of pictures

"Recall that “easy” refers to sentences not involving any semantically complex phenomena but this does not mean that the
inference is an easy inference. A pair like P: Chicago Bulls won the game. H: A basketball game took place is not semantically
complex, but still requires a good deal of world-knowledge to get the inference right.

8 Available under https://github.com/kkalouli/Hy—-NLI
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talking about daily activities and non-abstract entities. For guidelines the annotators were given one
example for each inference type and no specific directions. This process caused much confusion (Marelli
et al., 2014b), especially since it did not resolve event and entity coreference issues. So, a pair like A
woman is carrying a bag and A woman is not carrying a bag ended up labeled as N in its A — B direction,
but as C in the B — A direction, because the indefinite a could be referring to two different women or not,
depending on how one defines the task. To mitigate this shortcoming, we work with a corrected version of
SICK made available by Kalouli et al. (2017).° The correction work has only revised the pairs originally
labeled as E or C, i.e., around 1/3 of the corpus. Although we also report performance on the original
SICK, we focus on the corrected version, which naturally leads to better results. For all purposes, we use
the SemEval 2014 version of SICK (Marelli et al., 2014a) with the corresponding test and train splits: the
train split is used for learning the association rules (Section 3.1), fine-tuning the DL models (Section 3.2)
and training the Hy-NLI classifier (Section 3.3), and the test split is used for evaluation.

We do not evaluate on the commonly-used benchmarks of SNLI (Bowman et al., 2015) and MNLI
(Williams et al., 2018) after careful inspection of the corpora. Specifically, we investigated whether these
corpora suffer from the same problems as the original SICK corpus. Although the event coreference
weakness was specifically targeted in these corpora, there still seems to be confusion between the relations
of C and N. Contradictions need a common reference background, as argued in Zaenen et al. (2005) and
de Marneffe et al. (2008), but this is not what happens with contradictions in these corpora: a pair like
Two women are embracing while holding to go packages and The men are fighting outside a deli is labeled
as C, although there is no coreference whatsoever between them. This confusion was also discussed in a
recent experiment by Kalouli et al. (2019) and in the work of McCoy et al. (2019). Since this notion of C
and N does not correspond to our definitions of C and N, and since the annotations of these corpora seem
inconsistent, we do not learn or test on these corpora.

DAS Dasgupta et al. (2018) create an NLI set of 40,000 pairs that cannot be solved only with word-level
knowledge but instead involve more complex phenomena. The set contains three different phenomena
between sentences: the same type (P and H only differ in the order of the words), the more-less type
(comparison sentences with more/less) and the not type (P and H differ by whether they contain the word
‘not’). An example combining the two latter types is P: The woman is more cheerful than the man. H: The
man is not less cheerful than the woman, labeled as C. They train a classifier on SNLI, using the InferSent
(Conneau et al., 2017) embeddings, and find that the performance on all of their created sets barely reaches
50%, when there is no explicit training on these phenomena. For the current work, we use the entire
40,000 dataset for testing; no portion of this dataset is used for learning association rules, fine-tuning the
DL model or training the Hy-NLI classifier, since we want to test how much we can achieve with the
hybrid approach, especially GKR4NLI, when such phenomena are not explicitly in the train set.

HANS McCoy et al. (2019) create a hard NLI set of 30,000 pairs with syntactic heuristics: the lexical
overlap heuristic, the subsequence heuristic and the constituent heuristic. These three broad categories
include 5 phenomena each, from passives and relative clauses to coordination and embedded verbs under
factives, etc. For example, the set contains pairs with embedded verbs like P: The lawyer knew that the
judges shouted. H: The judges shouted or pairs with coordination P: The artist and the student called
the judge. H: The student called the judge., etc. McCoy et al. (2019) collapse the labels C and N to
non-entailment after training, as they also find that the annotation of the two is not clear-cut in in the
training corpus.!® They train four different SOTA models on MNLI and test on their adversarial set,
showing that performance is high when the correct answer is in line with the hypothesized heuristic (one
half of the corpus), but drops under chance when the heuristic leads to an incorrect prediction (other half
of the corpus). For our evaluation, we use the entire 30,000 dataset, again without any portion used for
any kind of training.

° Available under github.com/kkalouli/SICK-processing
19They also experiment with collapsing the labels before training, but the results are the same.
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4.2 Results

In Table 3 we compare SOTA logic-based systems, end-to-end DL models like ESIM (Chen et al., 2016)
and language representation models like BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019), our
symbolic engine GKR4NLI and our hybrid Hy-NLI system. The All column shows the average accuracy of
each setting across datasets.!! The results confirm previous published findings and demonstrate the value
of the proposed approach. Concerning SICK, BERT and XLNet achieve SOTA performance at 85-86%
(comparable to BERT’s and XL.Net’s performance on SNLI and MNLI), while the logic-based ccg2lambda
and the symbolic GKR4NLI reach 73% and 78% accuracy, respectively. Concerning the adversarial sets,
the DL models’ performance falls short and they only achieve majority-baseline performance — consistent
with the findings of Dasgupta et al. (2018) and McCoy et al. (2019). In contrast, on these sets GKR4NLI
shows performance above 70% and 90% for HANS and DAS, respectively. Across datasets and thus across
linguistic complexity, the DL models barely reach an average performance of 63%, while GKR4NLI
achieves 80.3%. ccg2lambda is also competitive in the HANS set, but fails to perform in the DAS set,
thus achieving an average accuracy of 62.1%. By combining the best of both worlds, Hy-NLI with BERT
is able to achieve an average accuracy of 81.5% across datasets, almost 18% higher than the pure DL
models and 1.5% to 19% higher than the purely logical systems of GKR4NLI and Yanaka et al. (2018),
respectively. With this, it approaches the ceiling average performance of 83%, which suggests that for
each dataset it almost achieves the performance of the best component. On the other hand, Hy-NLI with
XLNet does not deliver as good results. Interestingly, even when comparing the pure DL models, XL Net
delivers worse results than BERT in two of the three datasets, although the differences are negligible to a
large extent. This could be due to the fine-tuning process being more optimized for BERT than XLNet or
even to the models’ architecture, which favors one kind of data over others. Hy-NLI with XLNet struggles
to reach the best performance, especially for the hard datasets DAS and HANS.

[ Method [ SICK [ DAS | HANS [ Al |
Baselines

hypothesis-only baseline (Poliak et al., 2017) 56.8 - - -

majority baseline 56.8 50 50 52.2
Logic-based systems

ccg2lambda (Yanaka et al., 2018) 73.3 32.8 80.4* 62.1

MonaLog (Hu et al., 2020) 52.5 16 50 39.5

DL/RL systems

InferSent (Kiros et al., 2015) - 48.6 - -

ESIM (Chen et al., 2016) 80.7 50.3 47.6 59.5

BERT (Devlin et al., 2019) 86.5*% | 50.2 47.5 61.4

XLNet (Yang et al., 2019) 85.8 49.9 53.6 63.1
Hy-NLI (this work)

GKR4NLI (symbolic component) 78.5 90.8% | 71.7 80.3

Hy-NLI (with BERT) 84.8 90.8 68.9 81.5

Hy-NLI (with XLNET) 83 72.6 53.5 69.7

[ Ceiling performance (best components’s performance) [ 86.5 [ 908 [ 717 [ 83 ]

Table 3: Accuracy on the three datasets. All shows the average accuracy of each setting across datasets.
*figures are the best performances for each dataset. Bolded figure is the best performance across datasets.

5 Discussion

Overall, the reported results show the efficiency of the proposed approach. By utilizing general features
about the semantic nature of the pair, Hy-NLI becomes competitive to the average ceiling performance
across datasets.'?> The fact that the system does not reach the ceiling performance in two of the three
datasets suggests that the training of the classifier did not include several of the feature combinations.
SICK, a training corpus of simple inferences, does not contain a large variety of feature combinations
'Note that the results reported for SICK concern its corrected version by Kalouli et al. (2017) and do not include any manual
pre/post-processing and might thus differ from the original numbers reported by the creators of the respective systems.

"2The ceiling performance refers to the performance of the best component of Hy-NLI on each dataset, and not of the best
system in general. The computation of the latter is pointless for systems not offering hybridization methods.
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of complex phenomena. Thus, the classifier could only learn a limited number of types of complex
inferences, which is reflected in the lower performance for HANS (which combines easy and hard cases,
as discussed). On the other hand, the sampling process might also have disadvantaged the learning of
easy patterns because the pairs on which only the DL component gave the correct label had to be severely
downsampled to match the low number of pairs on which only GKR4NLI gave the correct label (again,
due to the nature of the SICK corpus that mainly contains easy pairs). Thus, this could have led to the
performance difference for SICK, where Hy-NLI’s performance misses the best performance by 1.7%.
In fact, an error analysis showed that the errors originate either from the hybrid classifier predicting the
wrong component or the classifier predicting the correct component but the component itself predicting
the wrong label. In the former case, for a pair like P: Several people are in front of a building which is
covered by colors. H: Several people are in front of a colorful building, Hy-NLI predicted S and was thus
mapped to the neutral label of GKR4NLI; however, given the required robustness of colorful — covered by
colors, the better label would have been DL which would have indeed mapped to entailment. In the latter
case, there are pairs like P: The player is missing the basket and a crowd is in background. H: The player
is dunking the basketball into the net and a crowd is in background, where Hy-NLI correctly predicts DL
(no complex phenomenon involved, only lexical semantics), but the DL component incorrectly assigns the
neutral label as it fails to recognize the contradiction. This shows that there is potential in improving all
parts of the system: the hybrid classifier as such but also its distinct components. We can also observe that
the average performance of Hy-NLI across datasets is higher only by a small margin than the average
performance of GKR4NLI. This is not so puzzling considering that Hy-NLI achieves higher performance
than GKR4NLI on SICK but lower performance on HANS, bringing the two average performances closer.

Hy-NLI achieves its goal to combine the strengths of very different components and is able to perform
across the board. By considering what types of inference each kind of component is best at, the system
can successfully implement the idea of using the most suitable solver for a given problem. By exploiting
features about the semantic nature of a pair, it can determine which pairs should be best handled by which
component. The features that Hy-NLI exploits are generalizable semantic properties and not specific
sentence combinations, so that the augmentation of the training data with further properties combinations
should give a direct boost to the performance. In fact, given the small number of features used for
training, this kind of classifier should be able to perfectly learn to classify the pairs, if presented with all
combinations of the few used generic features.

Training and testing on the original SICK (not the corrected version) does not change the overall picture:
BERT’s accuracy remains the same for all three datasets and the accuracy of XLLNet improves to 88%
for SICK but remains the same for HANS and DAS. The accuracy of GKR4NLI unsurprisingly drops to
76.3% for SICK but remains stable for the hard sets. This means that the slight differences balance each
other out and the overall performance of Hy-NLI remains the same.

The reader might also wonder what happens with pairs where both DL robustness/world-knowledge
and symbolic reasoning are required. Currently, NLI datasets contain pairs that are either linguistically
complex or lexically/world-knowledge-wise complicated. Thus, this otherwise very realistic situation
does not occur and Hy-NLI does not need to deal with it. However, Hy-NLI has the potential of doing so
by extending the initial term matching stage of GKR4NLI: the matching process could be enhanced with
embeddings, thus gaining on robustness and informativity. With such an improvement, dual cases, where
symbolic reasoning and DL robustness are required, could still be best handled by GKR4NLI.

6 Conclusion

This paper presented a hybrid NLI system that marries up the strengths of a symbolic and a DL component
to close the gap between the performance of SOTA models on mainstream and adversarial datasets. The
proposed system achieves SOTA results across the tested datasets, highlighting the advantages of the
approach. Thus, we propose concentrating on such hybrid settings, able to learn which technology is most
suitable for the problem at hand. Future work on Hy-NLI involves determining how the properties of
each component are used and hence how to improve them. The modularity of the system allows each
component to be improved independently by focusing on the problems each component is good at.
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Appendix A: Examples of complex linguistic phenomena where DL models struggle

Phenomenon

Example

Adversarial Set

comparatives

P: The waiter is less disgusted than the teacher.
H: The teacher is more disgusted than the waiter.

Dasgupta et al. (2018)

implicatives

P: The judge believed the tourist arrived.
H: The judge believed the tourist.

McCoy et al. (2019)

conditionals

P: If the judge encouraged the managers, the lawyers supported
the doctors.
H: The judge encouraged the managers.

McCoy et al. (2019)

coordination

P: The secretary and the managers saw the actor.
H: The secretary saw the managers.

McCoy et al. (2019)

negation

P: Enthusiasm for Disney’s Broadway production of The Lion
King dwindles.

H: The broadway production of The Lion King is no longer
enthusiastically attended.

Naik et al. (2018)

modals

P: And, could it not result in a decline in Postal Service volumes
across—the—board?
H: There may not be a decline in Postal Service volumes
across—the—board.

Naik et al. (2018)

word-order scrambling

P: A woman is pulling a child on a sled in the snow.
H: A child is pulling a woman on a sled in the snow.

Nie et al. (2018)

passivization

P: Harley asked Abigail to bake some muffins.
H: Abigail is asked to bake some muffins.

Zhu et al. (2018)

Table 4: Examples of complex linguistic phenomena where DL models struggle. This list is not meant to
be exhaustive; see relevant literature for more cases.

Appendix B: Update rules for the specificity update stage of the GKR4NLI pipeline

Initial Updated Specificity
Specificity H has dependents, P does not P has dependents, H does not
= H more specific = P more specific
equal superclass subclass
subclass none subclass
superclass superclass none
disjoint none none
none none none

Table 5: Updated specificity of a match, when only one term has dependents.

H-P Specificity Hdependent-Pdependent Specificity
equals L subclass L superclass L disjoint L none
equals equals subclass | superclass | disjoint | none
subclass subclass | subclass none disjoint | none
superclass superclass none superclass | disjoint | none
disjoint disjoint none none disjoint | none
none none none none none | none

Table 6: The computation of the updated specificity of an H-P match, when both terms have dependents.
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