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Abstract

Determining whether an event in a news article is a foreground or background event would be
useful in many natural language processing tasks, for example, temporal relation extraction, sum-
marization, or storyline generation. We introduce the task of distinguishing between foreground
and background events in news articles as well as identifying the general temporal position of
background events relative to the foreground period (past, present, future, and their combina-
tions). We achieve good performance (0.73 F} for background vs. foreground and temporal
position, and 0.79 F for background vs. foreground only) on a dataset of news articles by lever-
aging discourse information in a featurized model. We release our implementation and annotated
data for other researchers'.

1 Introduction

Grimes et al. (1975) defined foreground events as the events that form the skeleton of a story whereas
background events add supporting information. Ability to automatically extract such a distinction could
guide document understanding and potentially be helpful in many natural language processing tasks such
as temporal relation extraction (Naik et al., 2019) , summarization (Zhang et al., 2018), and storyline gen-
eration (Zhou et al., 2018). We introduce the task of distinguishing between foreground and background
events, as well as identifying the general temporal position of backgrounds events relative to the fore-
ground period (past, present, future, and their combinations). Identifying the general temporal position
is a coarser analog to detailed, pairwise temporal relation extraction, and provides an intermediate step
to ease the integration of discourse information into temporal understanding of the text.

Following (Grimes et al., 1975), we define foreground events as those that comprise the main topic of
a news article, as indicated by the headline. In contrast, background events add supporting or contextual
information. Note that while the document creation time (DCT) usually occurs after the foreground
period, there is no reason why the DCT could not appear within or before it; our approaches does not
assume any particular relationship between the DCT and the foreground period. Figure 1 shows a snippet
of text where foreground events in red, and background events in other colors, divided into six general
temporal position categories as illustrated in Figure 2 and defined in Table 1.

Background Past (BPast) events end before the foreground events begin.

events start before and continues during the foreground period.

Background Present (BPres) events happen within the foreground event period.

events begin during the foreground period and continue in the future.

Background Future (BFut) events begin after the foreground event period.

Background Past Present Future (BAll) events begin in the past, continue during the foreground period, and into the future.

Table 1: Background Event Categories, which are distinguished by their temporal position relative to the
foreground period.

This work is licensed under a Creative Commons Attribution 4.0 International License. License
details: http://creativecommons.org/licenses/by/4.0/.
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A car bomb| damaged half a city block in Istanbul Tuesday while the Prime Minis-
ter attendeds a peace conference, which is scheduled from Monday to Wednesday.
No casualtiess were reporteds. The terrorist group behind the attack; has been
from the military since the first major bombingq in 1998. The group
promised o more bombings|, soon, while the military said,> that special security
have been and would remain in place for the foreseeable future.

Figure 1: An example text with foreground events marked in red, and background events in other colors,
as defined in Figure 2.

| | | o) |

I | | | I
DCT = Document Creation Time Background Present Future
s FOreground Background Past Present

— Background Past
Background Future

Background Present
Background Past Present Future

Figure 2: An illustration of the relative temporal position of foreground events in relation to background
event categories. The document creation time (DCT) is here assumed to occur after the foreground
events, but this is not strictly necessary.

The task is to classify an event as Foreground, Background, or Other, and additionally assign back-
ground events to one of the six possible general temporal positions relative to the foreground period. We
assumes events are provided through some other process. The Other category includes events that are
neither foreground nor background, such as generics or reporting events (e.g., reportedg in Figure 1).

Our contributions are as follows: (1) we introduce a new task, namely, distinguishing foreground
and background events and marking the general temporal position of background events relative to the
foreground period; (2) we provide an annotated corpus with high inter-annotated agreement; (3) we
demonstrate a simple featurized model that achieves reasonable performance (0.73 I} for background
vs. foreground and temporal position, and 0.79 F for background vs. foreground only); and (4) we show
the utility of this task for three different NLP tasks—subevent detection, event coreference resolution and
temporal relation extraction—by showing improvements in performance between 1 and 5 points of F}.

The paper proceeds as follows. First we consider the prior work (§2), then describe the corpus and its
annotations (§3). We next explain our model (§4) and its performance (§5), followed by a discussion (§6)
that followed by an error analysis (§7). We show the utility of this information for downstream tasks (§8)
and conclude by reiterating the contributions (§9).

2 Prior Work

Both Upadhyay et al. (2016) and Choubey et al. (2018) demonstrated approaches for identifying the cen-
tral event in news articles. Upadhyay et al. (2016) proposed a rule-based system to identify the central
event in a human-generated document summary. They evaluated their system on a human generated sum-
maries from the New York Times Corpus (Sandhaus, 2008) where the central event had been identified.
Similarly, Choubey et al. (2018) used several rule-based systems and statistical classifiers to identify the
most important event in a news article. They trained and evaluated their systems on 30 news articles from
the RED corpus (Mitamura et al., 2015) and 74 news articles from the KBP 2015 corpus (O’Gorman et
al., 2016). Both were focused only on identifying a single central event, whereas we seek to label all
events in a document as either Foreground, Background, or Other.

Huang et al. (2016) demonstrated an approach to placing events in news articles into three coarse tem-
poral categories: Past events that have already occurred; On-Going events that are currently happening;
and Future events that may happen. In that work, the temporal category was relative to the document
creation time (DCT) and did not distinguish between foreground and background events. In contrast,
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our work seeks to mark the general temporal position of all background events relative to the foreground
period.

3 Corpus

We annotated 99 news articles from the Intelligence Community (IC) corpus (Hovy et al., 2013). The IC
corpus contains 100 news article but one article was merely a list of events rather than being a narrative.
We used the gold event mentions that had been annotated on the corpus. The definition of event in Hovy
et al. follows that of TimeML (Pustejovsky et al., 2003; Sauri et al., 2006), which has been well studied
and shown to be reliably annotatable:

We mean both events and states when we say ‘event’. A sfate refers to a fixed, or regularly
changing, configuration of entities in the world, such as ‘it is hot’ or ‘he is running’. An event
occurs when there is a change of state in the world, such as ‘he stops running’ or ‘the plane
took off’. (Hovy et al., 2013, p. 21)

The first and second authors labeled each event in the IC corpus with one of eight categories: Fore-
ground, Other, or six varieties of Background (listed in Table 1). Disagreement was adjudicated by the
third author. Overall agreement was 0.69 Cohen’s «. Table 2 shows agreements for individual classes as
well as the statistics of the corpus. Note that in the corpus BAIl only occurred 5 times, and BPresFut not
at all. Table 2 shows the characteristics of the corpus and label counts.

Articles 99

Sentences 1,955

Tokens 48,737

Event Mentions 4,086

Avg. Sentences / article 19.7

Avg. Tokens / article 487.4

Avg. Events / article 30 K
Foreground 1,501 0.66
Background Past (BPast) 851 0.66
Background Past-Present (BPastPres) 365 0.61
Background Present (BPres) 89 0.21
Background Present-Future (BPresFut) 0 -
Background Future (BFut) 160 0.43
Background Past-Present-Future (BAll) 5 0.66
Other 1,115 0.90
Overall Markings / Agreement 4,086 0.69

Table 2: Corpus Statistics

4 Model

Our model is a straightforward featurized logistic regression classifier. The features can be divided into
five categories: Lexical, Syntactic, Semantic, Discourse and Time.

Lexical and Syntactic Temporal signals (e.g., after or before) often occur before background events.
We used the temporal signals list collected by Derczynski and Gaizauskas (2010). This feature is encoded
as bag of signals capturing whether a temporal signal is present in the text between the target event and
the immediate preceding event. For syntactic features, we use the major part of speech (POS), tense, and
aspect, all encoded as one-hot vector. We used spaCy (Honnibal and Montani, 2017) to compute both
lexical and syntactic features.

Semantic To capture semantics we computed an event contextualized representation using (Akbik et
al., 2018)’s implementation of BERT model bert-base-uncased (Devlin et al., 2019). The vector for an
event is defined as the weighted sum of all subword embeddings extracted from BERT’s last layer. We
also captured the semantic frame of the event using SEMAFOR (Das et al., 2010), encoded as one-hot
vector.
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Fine-grained Coarse-grained

Model Class Prec. Rec. F;  Class Prec. Rec. F
Foreground  0.75 0.71  0.73 Foreground  0.73 074  0.74
BPast 0.67 0.65 0.66
BPastPres 0.52 0.60 0.56
Our Model BPres 0.18 017 0.8 Background  0.73 073 0.73
BFuture 0.38 0.51 043
Other 094 092 093 Other 0.93 092 0.93
macrog.g 0.57 0.59 0.58 macrog.g 0.80 0.80  0.80
microgy gy 073 073  0.73 microg., 079 079 079
Baseline (MFC) macrog.g 0.17 0.06 0.09 macrog.g 0.33 0.12  0.18
microg g 0.37 037  0.37 microg.g 0.37 0.37  0.37
Baseline (Coref) macrog.g 0.21 0.14  0.15 macrog.g 0.42 034 035
microg.g 0.34 0.34  0.34 microgug 0.46 046 046

Table 3: Our model’s performance on all classes. Background is abbreviated as (B).

Discourse We employed two discourse features: RST discourse relation and the position of the event’s
sentence in the text. Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) is useful for many
NLP tasks including sentiment analysis (Bhatia et al., 2015), information extraction (Maslennikov and
Chua, 2007), and subevent detection (Aldawsari and Finlayson, 2019). We used Feng-Hirst discourse
parser (Feng and Hirst, 2014) to build a discourse tree of each text, and post-processed the output to
build a graph (Neumann, 2015). For events after the first, we extracted the rhetorical relation between
the target event mention and the immediately preceding event. This feature is encoded as a one-hot
vector covering all 16 main relation classes. We also captured the position of the event’s sentence in the
discourse. This was encoded as real number, normalized to a value between 0 and 1 by the number of
sentences in the article.

Time We compute the difference, in days, between the date of the event mention and the date in the
first sentence. If there is no date in the first sentence, we use the document creation time. The date of the
event mention is taken to be any date used as an argument to the event, or otherwise the nearest date that
appears in the sentence; if the event has neither, we assume the difference is zero. We normalized both
dates to a calendar value using HeidelTime utility (Strotgen and Gertz, 2013). The difference is then
encoded as one-hot vector feature with three possible values: negative, zero, or positive.

Classifier We used a logistic regression classifier from scikit-learn package (Pedregosa et al.,
2011) for classification over the gold annotated event mentions. The classifier handles multi-class clas-
sification using a one-vs-rest scheme. Most of the parameters were left at their default settings 2. We
addressed data imbalance (seen in Table 2), by using the class_weight=balanced parameter to
assign a higher mis-classification penalty to the minority class. We conducted 5-fold cross-validation for
the experiment.

5 Results

We evaluated model performance using both macro and micro F;. We conducted two experiments: in
the first (the fine-grained condition) we use all classes from Table 2 except for two (BAIl and BPresF ur).
In the second experiment (the coarse-grained condition) we collapsed all background classes into one.
Table 3 shows our model’s performance under both conditions. In addition to a most frequent class
(MFC) baseline, we designed a strong baseline inspired by the observation that the central event of a
document usually has many co-referential event mentions (Choubey et al., 2018). This baseline operates
as follows: (1) Mark an event as Foreground if it is part of an event coreference chain and the length

2penaltyle ,C=0.1, random_state=42, max_-iter=1000 class-weight=balanced,
solver=liblinear, multi class=ovr.

3We merged the BAll class with the BPres class due to the small number of examples, and BPresFut had no examples in the
corpus.
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Foreground BPast BPastPresent BPresent BFuture Other

Foreground - 22% 44% 5% 20% 9%
BPast 59% - 22% 9% 4% 6%
BPastPresent 48% 32% - 4% 12% 4%
BPresent 60% 21% 9% - 4% 6%
BFuture 53% 15% 22% 6% - 4%
Other 31% 24% 18% 2% 25% -

Table 4: Fine-grained labeling error percentage between actual labels (rows) and predicted labels
(columns).

of that chain is longer than or equal to the average of the lengths of event coreference chains for each
article (the event coreference chains are identified based on the IC gold annotation); (2) Mark an event
as Other if it is a reporting event corresponding to the IC gold annotation; (3) Otherwise mark the event
as BPast for the fine-grained condition (the most frequent Background class), or Background for the
coarse-grained condition.

6 Discussion

As shown in Table 3 the model performance in the fine-grained condition is lower compared to the
coarse-grained performance, which is not surprising given the increased number of classes (and thus
reduced data) and general difficulty of detecting temporal relationships.

We investigated the importance of each of the four feature sets to our model under the fine-grained
condition by retraining while leaving out one set at time. In order of importance, they are: semantic (35%
performance loss), discourse (4%), time (2%), syntactic and lexical (2%). Apparently, the most important
feature set is the semantic features. The BERT vector is the most important feature for all classes, but
the frame feature contributed more to the Other class. This is because of most of the events in this class
are reporting events and were captured by the Statement frame. In the discourse set, the event’s sentence
position and discourse relation contributed equally to the model. The time feature contributed most to
the BPast class because the BPast events mostly associated with past temporal dates. The syntactic and
lexical features were the least contributing features to the model. On the other hand, when we dropped the
contextualized embedding, the syntactic features contributed the most. By replacing BERT embeddings
with ELMo (Peters et al., 2018) and Fasttext (Bojanowski et al., 2017) embeddings under the fine-grained
condition, the performance decreases by 4% and 13%, respectively. Therefore, because it is known that
BERT and ELMo capture more syntactic information than Fasttext, we hypothesize that the syntactic
features were mostly—but not completely—captured by the BERT contextualized embeddings.

Finally, The lowest performing class is the BPresent class, which is to be expected because of the low
number of examples.

7 Error Analysis

Upon detailed inspection we were able to discern several error classes aside from the usual noise intro-
duced by the various sub-components. We observe that the model wrongly classifies Foreground events
as Background if the event appears towards the end of the article. In our analysis, we also observe that
this mislabeling occurs when the event is referred to in conjunction with some sort of temporal refer-
ence. For example, in an article regarding the capture of two people, in the sentence, “The captured
bomb-maker, Sami Muhammad Ali Said al-Jaaf , was seized in Baghdad on Jan. 15, the word seized is
labeled as a Background event even though it is directly tied to the foreground. As shown in Table 4, this
mislabeling constitutes 91% of the foreground event labeling error. Similarly, Background events that
appear early in the article are often mistaken for Foreground events. Our model mistaking Background
events as Foreground comprises 91% of the model’s background labeling error. The model also wrongly
classifies foreground events as Other (9% of the foreground labeling error) if the event mention looks
like a reporting event due to the missing sense (e.g., claimed is used in the construction claimed lives,
but can be mistaken for a reporting event). Another common error was the lack of explicit discourse or
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temporal information (e.g., a date) for identifying background events.

Within the fine-grained labeling of background events, we see that errors occur mainly between the
distinction between events that are BPast and BPastPresent. Of the fine-grained error, the mislabeling
of BPast as BPastPresent was 22% of the error (see Table 4); the labeling of BPastPresent as BPast
constituted 32%. This being the largest error in the sub-classification task makes sense given that the two
classes are quite similar. Consider the the text shown in Figure 3. In this example, the operations event
is a BPast event incorrectly labeled as BPastPresent. We believe this is due in part to model not being
sensitive to the precursory descriptors like the word suspended. For without that descriptor it would
imply that the operations event is still ongoing.

Israeli security forces have been on high alert to guard against possible terror at-
tacks by Hamas, which has suspended operations against Israel since its spiritual
leader and founder Sheikh Ahmed Yassin was released from Israeli jail last October.

Figure 3: Example text showing an event which is subject to the common mislabeling of BPastPresent
for BPast.

With regard to general temporal position, changes of tense related to the document creation time (i.e.,
an event is in the past relative to the DCT, but in the future relative to the foreground period), caused diffi-
culties in distinguishing between BFut and BPast. Though this error did not occur frequently, the failure
to distinguish between the two classes comprises 19% of the overall fine-grained Background error, as
shown in Table 4. We see the model struggle with examples such as “Another cell was uncovered last
fall , when the police carried out an operation against a group of Algerian and Moroccan radicals who
were believed to be planning an attack on Madrid ’s High Court and perhaps other targets”. Difficulties
in distinguishing between background classes in general were often the result of the writer assuming
some commonsense or world knowledge on the part of the reader to infer the temporal relationship.

8 Applications

To validate the importance of capturing background and foreground events as well as the temporal po-
sition of background events to the foreground events, we experimented with incorporating this feature
into three different NLP tasks, namely: subevent detection, event coreference resolution and temporal
relation extraction. The goal of this experiment was to measure the performance with and without in-
cluding Foreground/Background fine-grained classes as features. Even though some of the experiments
we developed along the way outperform the state of the art, the emphasis here is on the contribution of
these features in these tasks. All experiments were performed under the fine-grained condition and all
experiments’ implementation are released.

Model | Prec. Rec. F,
Model | Prec. Rec. F;

Liu et al. (2014) | 048 0359 053
Aldawsari and Finlayson (2019) | 045 0.56 0.50
+Fine-grained Labels 050 0.61 0.55 Our System 052 084 0.65

+Fine-grained Labels | 0.55 0.85 0.67

Table 5: Subevent experiment result. .
Table 6: Event coreference experiment result.

In another fatality,, a Spanish military adviser, Gonzalo Perez Garcia, who felly
into a coma after being seriously woundeds in a shootout last month died Wednes-
day, the Spanish Defense Ministry said.

Figure 4: Example of a text where the relationship between one event and two others events is mis-
classified without the fine-grained Foreground/Background feature.
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Subevent Detection Task The subevent detection is the process of identifying when one event is a
subevent of another. The subevent relationship is defined in terms of (e;,e;), where e; and e; are events:
event e; is a subevent of event e; if e; is spatiotemporally contained by e; (Hovy et al., 2013). The task is
to classify a pair of events into one of the three classes: parent-child, child-parent or no relation (NoRel),
corresponding to the direction in the discourse flow. For subevent and event coreference experiments,
we used the IC coprus, annotated with both event coreference and subevent relation, and compare our
experiment to the state of the art models reported on the corpus (i.e. we used the gold annotation of
background and foreground events). In the subevent experiment, we completely re-implemented the
state of the art in this task (Aldawsari and Finlayson, 2019) and used the same evaluation metric, we
refer interested readers to the paper for more details. For each event of a pair of event, we include the
Foreground/Background fine-grained features as one-hot vector. As shown in table 5, after including
these features, the performance increases by 5%. We performed an analysis of the increase and found
that these features helped the model to distinguish between pairs with complex structure. For example,
in Figure 4, both fello and woundeds; were previously classified as subevents of fatality,, but after
including the fine-grained labels, the model learned the NoRel class between .; and (c2, (3) since the
latter events are BPast events.

Event Coreference Task Event coreference is the task of determining whether two events refer to
the same event in the real world. For this experiment, we adapted some of the features mentioned in
(§4) for event pairs coreference classification. That is, we used the major POS, tense, aspect, semantic
frames, discourse relation between pairs and semantic similarity between pair’s BERT embedding. Also
we include an argument feature to determine whether the pair’s arguments corefer. We extracted and
resolved the arguments of events using AllenNLP’s semantic role labeling (Gardner et al., 2018; He et
al., 2017) and coreference resolution (Lee et al., 2017). We train a pairwise logistic regression classifier
from scikit—-learn over the features using parameters shown in table 8. As mentioned earlier, we
used the IC corpus and conducted 5-fold cross-validation for the experiment. As shown in Table 6, the
pairwise performance increases by 2% after including the Foreground/Background fine-grained features.
The first column in the table shows Liu et al.’s (2014) pairwise model, the state of the art model on IC
corpus® trained on 65 documents of the IC corpus which we use as a baseline. A shallow error analysis
after including Foreground/Background fine-grained features reveals that almost all corrected cases were
false negative and the events involved are foreground events. This observation indicates that detecting
foreground events could be a useful intermediate step for event coreference improvement.

| TDD-Auto TDD-Man

Model | Pre. Rec. Fl | Pre. Rec. Fl | hyper-parameters

MAJOR 034 032 033]037 036 037 Task | multiclass  solver c

CAEVO 0.61 032 042|032 010 0.16 —

BiLSTM 055 048 052|024 023 024 Subevent ovr liblinear  0.01

Ning et al. (2017) 046 045 046 | 023 023 024 Event coref. | multinomial ~ Ibfgs 0.1
Temporal ovr liblinear  0.0001

Our System 0.60 0.60 0.60 | 042 042 042

+Fine-grained Labels | 0.61 0.61 0.61 | 042 042 0.43
£ Table 8: The hyper-parameters used

in all experiments corresponding to the
scikit—-learn’s implementation of

Table 7: The first four models are an adaptation of
state-of-the-art temporal models on TDD-Auto and - ;
TDD-Man reported by (Naik et al.,, 2019). The last logistic regression.
two rows show our model without and with Fore-
ground/Background fine-grained features, respectively.

Temporal Relation Extraction Task Last but not least, extracting temporal information from text is a
challenging but important task in NLP. In this experiment, we target the extraction of temporal relation
between events which is one of the fundamental tasks in temporal processing as identified in the series

“Note that Liu et al.’s (2014) is not the state of the art result in event coreference generally, but merely the best performing
result on the IC corpus.
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TempEval (TE) workshops (Verhagen et al., 2007; Verhagen et al., 2010; UzZaman et al., 2013). We
used the recently published dataset TDDiscourse (Naik et al., 2019), an augmented dataset of TimeBank-
Dense (Cassidy et al., 2014) focused on discourse-level temporal ordering and used the same set of
temporal relations as TimeBank-Dense (i.e., after, before, simultaneous , includes and is-included). The
annotation of the corpus consists of two sets: Manual annotation (TDD-Man) and Automatic inference
(TDD-Auto), we experiment on both.

For this task, we designed a simple and effective approach by concatenating pair’s BERT embedding?,
POS, tense and aspect as one vector. We trained a logistic regression classifier over these features using
hyper-paramters shown in table 8. We followed Naik et al.’s (2019) split setup of train, validation and
test sets and compared the performance of our model to all models reported on the corpus. Similar
to our previous experiments, we add Foreground/Background fine-grained features to the model and
measure the performance with and without these features. As shown in Table 7, our approach in general
outperforms all models on both TDD-auto and TDD-man by 9% and 5%, respectively. The reason behind
the low performance of the other models has been addressed in Naik et al. (2019), and is out of scope for
this paper. With regard to our model, as shown in the table, adding Foreground/Background fine-grained
features did not help much in improving the model performance. This is in fact expected due to the
fact that the fine-grained model was trained on a closed-domain (i.e., Intelligence Community (IC) news
articles), which is a small fraction—55% are IC news articles and 40% of these are broadcast news—in
the TDDiscourse corpus test set.

9 Contributions

We have presented a novel task: distinguishing between foreground and background events, as well
marking the general temporal position of background events relative to the foreground period. We pro-
vided an annotated dataset, demonstrated a simple, featurized logistic regression model that performs
well on this task which relies heavily on discourse understanding and show the utility of this task for
three different NLP tasks. Our error analysis shows that while our model’s performance is reasonable,
there is still room for improvement by the introduction of commonsense or world knowledge to aid in
reasoning.
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