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Abstract

Classifiers trained on auxiliary probing tasks are a popular tool to analyze the representations
learned by neural sentence encoders such as BERT and ELMo. While many authors are aware of the
difficulty to distinguish between “extracting the linguistic structure encoded in the representations’
and “learning the probing task,” the validity of probing methods calls for further research. Using a
neighboring word identity prediction task, we show that the token embeddings learned by neural
sentence encoders contain a significant amount of information about the exact linear context of
the token, and hypothesize that, with such information, learning standard probing tasks may be
feasible even without additional linguistic structure. We develop this hypothesis into a framework
in which analysis efforts can be scrutinized and argue that, with current models and baselines,
conclusions that representations contain linguistic structure are not well-founded. Current probing
methodology, such as restricting the classifier’s expressiveness or using strong baselines, can help
to better estimate the complexity of learning, but not build a foundation for speculations about the
nature of the linguistic structure encoded in the learned representations.

il

1 Introduction

The impressive performance of neural language models such as ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019) has led many authors to believe that these models must have learned linguistic
structure, and a whole new research branch concerned with the analysis and interpretation of neural models
has emerged, with dedicated areas at many conferences and the BlackboxNLP workshop being established
as a large and well-known venue in a short time. An appealing and widespread analysis technique, perhaps
due to its simplicity and generalizability, is to use a model’s word representations as input to a simple
classifier, and train this classifier on an auxiliary task that can be expected to benefit from linguistic
knowledge. The argument behind this technique is that, if a simple classifier is enough to learn the task
based on word-level representations alone, then it is probable that these representations indeed encode the
hypothesized linguistic structure (Hupkes et al., 2018). Many of the papers applying classifier probes
suggest that models such as BERT and ELMo encode structure that is similar to well-known syntactic
annotations, e.g. dependency trees (Hewitt and Manning, 2019), or even to a traditional NLP pipeline
(Tenney et al., 2019a).

A standard assumption in probing is that, if we feed only the representation of one word at a time to the
classifier, then no complex inference based on other words in the sentence can happen, and the probe will
not be able to learn the classification task well—unless the necessary linguistic information already is
encoded in the representation (Lin et al., 2019). Therefore, the argument goes, high performance on a
probing task can be taken as evidence that the word-level representations encode linguistic structure. In
Section 3, we challenge this view by showing experimentally that the word-level representations learned
by ELMo and BERT encode the closer neighborhood of the word in a surprisingly exact way. To explore
the consequences of this observation, we formulate the context-only hypothesis, which offers an alternative
explanation of how a probe could reach high accuracy on the auxiliary task: it could simply make use of a
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compressed representation of the neighboring words. We propose that any work arguing to have found
linguistic structure in word representations should be able to reject this hypothesis.

In Section 4, we examine whether past studies using classifier probes are capable of rejecting our
context-only hypothesis, and find that they are not. To argue for the presence of linguistic structure in
word embeddings, most of these studies either compare the probe’s performance to a baseline, or restrict
the probe’s expressiveness or the number of training examples. Regarding the first line of argument, we
scrutinize proposed baselines and argue that none of them allows us to conclude the presence or absence of
linguistic structure in embeddings. We posit that, as long as a model is not fully understood, such baselines
probably cannot be found. Regarding the second line, we argue that training restrictions do not provide
a reliable setup either, as long as no theoretical ground exists that proves that a certain classifier with a
certain set of training data is too weak to learn the probing task. We present experiments showing that the
most restricted probes often fail to outperform even uncontextualized baselines. A high variation in very
restricted setups also indicates that the results of experiments with restricted training scenarios are hard to
interpret, and that their interpretation hence mandates careful testing and error analyses. We speculate
that the correct interpretation of such experiments would probably also require full understanding of the
model, as well as a clear definition of the distinction between “learning the task” and “extracting linguistic
structure”’, which is lacking for dense embeddings.

We conclude the paper by arguing for an alternative view of the results obtained with classifier probes,
namely to regard word representations as containing features that are more or less helpful to learn the
probing task.

2 Preliminaries
We start the paper by introducing our notation and general experimental setup.

2.1 Neural Sentence Encoders

A neural sentence encoder can be viewed as a parametrized function R that maps a sentence s = wy., to a
sequence of d-dimensional embedding vectors w.,, one vector w; € R4 for each token w; in s. We denote
this token embedding by R(w;), leaving the sentence s implicit. We study two neural sentence encoders:

ELMo ELMo (Peters et al., 2018) was arguably the first contextualized word representation that was
widely adopted in the NLP community. It implements the function R as a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) consisting of a forward and a backward language model that predict the next
(respectively the previous) token conditioned on the LSTM accumulation of the preceding (respectively
the future) tokens, jointly maximizing the log likelihood of both directions. The ELMo model that we use
for our experiments has a character-based word representation layer with 512 dimensions, and 2 bi-LSTM
hidden layers with 1024 units each. The token representation R(w;) is the weighted sum of the 3 layers.
We use the original pre-trained version available at TensorFlow Hub.

BERT BERT (Devlin et al., 2019) is based on a Transformer model’s encoder (Vaswani et al., 2017),
which contextualizes the word representations with self-attention and fully connected layers. BERT is
pre-trained with two objectives: The Masked Language Model randomly replaces some input tokens with
a special MASK token, with the objective to predict the vocabulary id of the original token at that position.
This approach naturally includes both left and right context. The Next Sentence Prediction objective
makes BERT learn the relationship of two sentences by predicting if the second sentence is following the
first one in the original document or not. For our experiments, we use the original English BERT-Base
model published by Google, with 12 layers and 16 attention heads per layer, accessed via the HuggingFace
Transformers library (Wolf et al., 2019).

2.2 Probes and Probing Tasks

By a classifier probe or simply probe, we mean a classifier that is trained on pairs (x;, y;) consisting of
representations x; and labels y;, with the intention of revealing what linguistic structure is encoded in
the representations. Like several other works on probing, we target probing tasks related to syntactic
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dependency parsing based on the English Web Treebank data set from the Universal Dependencies (UD)
project (Nivre et al., 2018). The probes in our experiments are simple feed-forward networks with one
hidden layer consisting of 64 units and a final softmax layer. We train and evaluate on 5 random seeds and
shuffles of the data and report the sample mean. We implement all our probes in PyTorch (Paszke et al.,
2017) and optimize them with Adam (Kingma and Ba, 2015) with an initial learning rate of 0.001. The
code behind the experiments is available at https://github.com/jekunz/probing.

3 Extracting Linguistic Structure, One Embedding at a Time

The purpose of a probe is to reveal what linguistic structure is encoded in word representations. There is
little doubt that these representations contain useful information; but whether this information takes the
form of traditional relational information between words, such as syntactic or semantic structure, is quite a
different issue.

3.1 Extracting Structure vs. Learning a Task: A Continuum

In the context of probing, we need to have a methodology that allows us to answer the question whether a
word representation encodes linguistic structure, or whether it merely encodes some features useful for
learning the probing task. This question cannot be satisfactorily answered. For dense embeddings, there is
likely to be a continuum between two extreme scenarios:

1. The embeddings contain no useful information at all, and the probing task is learned from scratch.

2. The embeddings contain a direct, human-interpretable representation of linguistic information.

Many works in probing motivate their methodology like Lin et al. (2019), who argue that because they
feed one embedding at a time, it is not possible for the probe to “compute complex contingencies among
the representations of multiple words”. We claim that there is no safe ground for this assumption. Neural
sentence encoders employ non-local mechanisms such as recurrent neural networks and attention, and are
therefore well able to learn representations of words in their sentential context. It seems reasonable to
assume then, that a probe with access to representations computed with the help of these mechanisms
should, at least in principle, be able to learn any task which can be learned by end-to-end-systems
that include the encoders as architectural components. We hypothesize that BERT’s masked language
model objective in particular may make the learned representations memorize words in the immediate
neighborhood, as the states associated with these words are what is used for predictions during pre-training.

3.2 Neighboring Word Identity Probes

To assess the extent to which the sentential context of a token is encoded in pre-trained representations, we
use a neighboring word identity prediction task, as first suggested by Zhang and Bowman (2018). In this
task, given a single token representation R(w;) as input, the probe predicts the identity of the word type of
the token w;,¢, for some fixed offset k € Z. We interpret the performance on this task as a conservative
estimate of the utility of the information encoded in R(w;) about the exact linear neighborhood of w;. It is
a conservative estimate because, even if a probe is unable to predict the exact neighbor of w;, it may still
be able to recover a distributionally similar word, say, a different inflectional form, which for many tasks
would be almost as useful as an exact match.

Experimental Setup Using the general setup described in Section 2.2, we train and evaluate seven
different classifiers, one classifier for each offset =3 < k < +3. Our data set gives us 43,124 training
examples and a vocabulary (set of output labels) of size 8,282. Note that for k = 0, the classifier uses
the token embedding to predict the identity of its own word type. We interpret the performance on this
specific task as an upper bound for the performances on the tasks with |k| > 1.

3.2.1 Results: BERT

For BERT, the accuracy on the neighboring word identity task across different layers is shown in Figure 1.
Because the scores for all but the immediate neighbors (|k| = 1) differ only little between the left context
(negative k) and the right context (positive k), we conflate them into one mean score for £k to increase the
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Figure 1: Neighboring word identity probes: Results for BERT

readability of the plot. For the immediate neighbors, there is a performance gap especially in the middle
layers, and we therefore report both accuracies separately.

While the prediction accuracy for all words but the center word is only between 6% and 12% in layer 0,
it increases in the next layers, suggesting that the word representations available in these layers have
memorized configurations of neighboring words in the training set. The accuracy for the next word tops at
62.3% in layer 3, while that for the previous word reaches its maximum in layer 2 with 51.2%. For words
two steps steps away, the top result is in layer 6 with 24.2%, and for words three steps away it is 14.7% in
layer 5. For higher layers, the performance at all offsets is dropping again. The word itself can be best
recovered from layer 0, and accuracy drops steadily until layer 11.

Our results clearly show that the linear context of a word can be recovered from the word representation
to a substantial extent, especially when it comes to the word’s direct neighbors. When comparing results to
the baseline accuracies for layer 0 (representing an uncontextualized language model) and to the accuracies
for recovering the word itself (as an upper bound), we see that, although the encoding of the linear context
is clearly not a lossless compression, it is still quite informative. Not surprisingly, the context information
is the noisier the further away the neighboring words are; but even for words three steps away (k = +3)
the word representations in higher layers are still clearly more predictive than the representation in the
uncontextualized layer—for example, we see 14.7% accuracy in layer 4, compared to 5.9% in layer 0.

Clark et al. (2019) find that one of BERT’s attention heads in layer 3 specifically attends to the next
token. The results in Figure 1 are consistent with this observation, as in layer 3 we see a clear peak in the
accuracies for the prediction of the next token.

3.2.2 Results: ELMo

The results for ELMo can be found in Table 1. ELMo always has the highest performance in layer 1,
except for the prediction of the word itself, which is best predicted by the word embedding layer. Layer 2
seems to correspond to BERT’s late layers in that the performance drops for all context words.

ELMo’s best layer generally underperforms BERT’s best layers in predicting neighboring words. These
results raise the question of whether BERT’s superior performance e.g. in syntax probes may be due not to
its better modeling of linguistic structure, but due to its better modeling of the exact context. Especially

self -1 +1 +2 +3

BERT (best) 84.786 51.180 62.322 24.188 14.685
Embedding 84.971 11294 12.083 7.594  5.634
Layer 1 81.458 43.851 43.699 21.494 12.784
Layer 2 72.933 34.865 33.711 15920 10.086
Weighted Sum | 81.261 38.552 37.650 17.496 10.395

Table 1: ELMo Results: Word Identity
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the direct neighbors seem to have a notably more exact representation in BERT.

4 A Framework for the Analysis of Probing Experiments

The experiments that we presented in the previous section show that pre-trained word representations
encode the sentential context of a token to a significant extent. But how can we know whether they encode
any specific linguistic structure? In this section we provide a framework for the theoretical analysis of a
probing experiment with regards to this question.

4.1 The Context-Only Hypothesis

Two common lines of reasoning when arguing that a probing experiment does show the presence of
linguistic structure in word representations are the use of strong baselines and restrictions on expressiveness
and learning scenarios. Similar to other areas of NLP, probing baselines should be designed in such a
way that performance above the baseline can be taken as evidence that the word representations encode
linguistic structure. The reasoning behind restrictions on expressiveness and learning is exemplified by
Peters et al. (2018), who write: “As the linear classifier adds only a small amount of model capacity, this is
direct test of the biLM’s [bidirectional language model’s] representations.” Other approaches to limiting a
probe’s learning capabilities include restricting the number of hidden units or training set size.

We will review the validity of baselines and restrictions on learning relative to the following hypothesis,
which serves a role similar to that of a null hypothesis in statistical significance testing:

The Context-Only Hypothesis: The only information that the classifier probe uses to learn the auxiliary
task 7 is information about the identity of the neighboring words of each w;.

In the preceding section, we have shown that this hypothesis is not trivially false, as information about
neighboring words appears to be present in the word representations to a high extent. We argue that a
probing study that claims that word representations encode linguistic structure should be able to reject
the context-only hypothesis—that is, it should show that the probe uses information that goes beyond
information about the identity of neighboring words, such as syntactic or semantic structure.

4.2 Review of Baselines under the Hypothesis

The most widespread instrument to test if the representation R(w;) really encodes linguistic information
that is specifically useful for the probing task 7" is to compare the performance of the probe as it operates
on R(w;) with its performance as it operates on some baseline representation that can be assumed not to
contain information useful for 7. We identify four categories of baselines in previous work: random input
embeddings, random targets, uncontextualized word embeddings, and contextualized embeddings where
the contextualization process is not learned.

Random Word Embeddings In this baseline, each word type is assigned a random embedding. This
baseline is used, e.g., by Zhang and Bowman (2018). As random embeddings contain no structural
information at all, this baseline is obviously weak with regard to the context-only hypothesis. It only
tests the model’s capacities to memorize random inputs, but discards even similarities of words that
have been shown useful already in earlier uncontextualized word embeddings.

Random Targets (Control Tasks) This baseline was proposed by Hewitt and Liang (2019). Each
word type is assigned an output randomly using a deterministic function. As this baseline cannot
meaningfully use any pre-existing information, it is obviously weak with regard to the hypothesis—it
only tests the model’s capacities to memorize. As the targets are randomly assigned, no information
from the embeddings can be useful, which makes this baseline comparable to the random word
embeddings baseline with respect to the context-only hypothesis.

Uncontextualized Embeddings This baseline is often the uncontextualized part of the model, e.g. the
embedding layer in ELMo (word embedding) or BERT (BERT-0). As the context-only hypothesis
assumes explicit information about neighboring words, strong performance relative to this baseline is
not enough to disprove the hypothesis.
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Learning-Free Contextualized Embeddings Some works include baselines where the word representa-
tions are enriched with sentence context in the form of, e.g., randomly initialized LSTMs (Zhang and
Bowman, 2018) or, similarly, ELMo with all layers except for the character-based embedding layer
randomized (Hewitt and Manning, 2019; Tenney et al., 2019b). These baselines are arguably stronger
than the previous ones as they have the potential to include the same information about the context
as the representations we are seeking to probe. However, we cannot assume the representations in
these baselines to be “R(w;) minus a representation of 7”. The R(w;) can still contain more useful
information than the baseline that are not related to 7. They could, for example, represent a better
compression of the context; they could model different types of context (as we have seen in Section
3.2, which context is modeled even varies largely across layers of the same model); or, under a more
restricted definition of a representation of 7', they could include features or relations in higher layers
that are useful, but still have no connection to 7 other than being features useful for 7. As long as we
do not have full understanding of the information encoded in R, we do not know enough about the
relation of R(w;) and the baseline and cannot reject the context-only hypothesis.

4.3 Review of Model and Training Restrictions under the Hypothesis

The idea behind putting explicit restrictions on probes is that a less expressive probe or a probe that is
only trained on a small number of samples can only access information that is easily available, and will
therefore only be able to succeed in learning the auxiliary task if the linguistic structure needed to solve
the task was encoded already during pre-training.

One approach to restricting a probe is to restrict its classifier architecture, e.g. using a linear model or
only few hidden units. This idea was most systematically studied by Hewitt and Liang (2019), but other
works are also arguing for simple design, e.g. Lin et al. (2019) and Alain and Bengio (2016). However, the
justification for the choice of expressiveness has been the empirical comparison against a baseline—in
Hewitt and Liang’s case the control tasks described in the previous subsection. As we already pointed out,
this approach has the problem that we do not know how the baseline relates to the representation even for
strong baselines, as long as we do not have full understanding of the representation. To the best of our
knowledge, there have not been attempts to provide a theoretical proof that it is not possible to learn an
auxiliary task 7" with a specific set of embeddings and design of the probe, and this is probably difficult
because a definition of the distinction between learning the task vs. learning to decode is lacking.

Restricting the size of the data or the number of training steps has also been explored by some works.
Zhang and Bowman (2018) and Hewitt and Liang (2019) limit the data set by taking only a portion of it
for training. Talmor et al. (2019) take an even more restricted approach: Their proposed metric WS, based
on work by Blier and Ollivier (2018), is a weighted sum over the scores at different training steps, giving
higher weight to earlier training steps and starting as early as at 64 training steps. However, no theoretical
reasoning why a certain number of data points or training steps is too small to learn the task is provided.
WS is motivated by the work of Yogatama et al. (2019), who use a related setup for the evaluation of
models in generalizing to new tasks. Our own attempts at finding grounding for training restrictions
in learning theory, particularly for lower bounds on the learning of certain tasks, were not successful.
There are several “rules of thumb” for how many training examples are necessary to learn a task, e.g. the
Vapnik-Chervonenkis (VC) dimension or Foley’s rule (Priddy and Keller, 2005); but they are not provable
lower bounds but meant for practitioners who look after a suitable data size for good performance. We
argue that there will be a large variation depending on the number of classes, the complexity of the task,
etc., making general rules probably an inappropriate way of addressing this problem.

4.4 Empirical Analysis of Training Restrictions

In the following experiments, we test the behavior of restricted probes with two types of modifications:
decreasing the number of hidden units and the number of training examples, similar in spirit to Talmor
etal. (2019)’s WS metric. Like several other works on probing, we target syntactic dependency parsing
based on the English Web Treebank data set from the Universal Dependencies (UD) project (Nivre et al.,
2018). Following Tenney et al. (2019b) and Hewitt and Manning (2019), we use an edge probing setup
and two specific tasks:

5141



100 T

~
|9

9]
]

Mean/SD Accuracy

|
16 3

|
2

100

—— BERT-0
4| —=— BERT-6

64 64 4096
o —— BERT-0
8 J| —=— BERT-6
3
<
a
<
§ 25 125t :
=
O | | | L | | | 0 | | | |
1 23468 16 32 64 64 128 256 5121024 4096

Hidden Units (log scale) Training Examples (log scale)

Figure 2: Restrictions on BERT-based models for label (above) and head-dependent pair (below) prediction,
trained with representations from the uncontextualized layer BERT-0 and on BERT-6.

* Dependency Label Prediction, where for a given head—dependent pair (w;, w ), the objective is to
determine the type of the dependency edge.

* Dependency Edge Prediction, where for a pair of words (w;, w;), the objective is to determine
whether w; is the syntactic head of w;. The negative samples are reduced randomly so that both
labels have the same number of training examples, i.e. 50% for each.

Experimental Setup We use the general setup described in Section 2.2. We decrease the number of
hidden units and the number of training examples systematically by halving: from 64 hidden units down
to just 1 hidden unit, and from 4,096 training examples down to 64. As the evaluation measure for both
tasks, we use the prediction accuracy for all labels. We restrict the data size to the dependencies in 400
sentences, resulting in about 5,000 dependencies.! In addition to the sample mean accuracy, we also
report one sample standard deviation with Bessel’s correction.

4.4.1 Results: BERT

The results for the restricted BERT models are shown in Figure 2. We show the performances of
the layer that performs best at the two probing task (BERT-6; red curve) and the performances of the
uncontextualized layer (BERT-0; black curve). When comparing the two curves, we find that, for the most
restricted models in terms of the number of hidden units, the differences in performance are very small.
They increase in favor of BERT-6 with increasing number of hidden units especially for the dependency
labels task. For this task we see a larger increase with more complex probes probably because having
fewer parameters than output labels prevents the model from reaching a good performance. Restricting the
number of training examples shows a consistent pattern: For very restricted numbers, up to 1,024 for the
labels and up to 512 for the pairs task, BERT-0 reaches a higher accuracy than BERT-6. More training
examples allow BERT-6 to outperform the uncontextualized baseline.

1This size was determined in preliminary experiments aimed at reducing training time and saving resources while at the same
time not losing much in accuracy.
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Figure 3: Restrictions on ELMo-based models for label prediction, trained with representations from the
uncontextualized layer ELMo-WE and the best performing layer BERT-1, as well as an “inflated” version
of ELMo-WE that has the same dimensionality as ELMo-1.

Our results suggest that it is little meaningful to restrict probes without setting the results into a richer
context. In very restricted setups, less expressive models fail to improve over non-contextualized baselines
in many cases and tend to have a high standard deviation, which makes the results less reliable and
significance testing a necessity when comparing models or data sets.

If the task has a better encoding in the representation, we would expect that it should be easier to
discover as well, i.e. the more we restrict the probe, the larger the difference in performance in favor of the
contextualized representation should be. However, this is not confirmed in our results: In both tasks, the
baseline even performs better in the most restricted training setups. We assume that the probe heavily
relies on simple clues at the earliest training stages. A brief informal analysis of the results on the labels
task revealed that the baseline models are faster at learning the simplest relations, e.g. the det relation
between nouns and their determiners. This may be the case because in the uncontextualized layers, the
words themselves have a clearer and better memorizable representation (e.g. of words like the article the),
which makes the memorization and learning of simple clues faster and easier.

4.4.2 Results: ELMo

The results with ELMo embeddings are shown in Figure 3. They show the same general trends as the BERT
results, with one interesting property: The ELMo character-based word embedding layer (ELMo-WE)
has lower performance than ELMo-1 in all evaluation steps. However, “inflating” the character-based
embeddings to the same dimensionality as ELMo-1 by simply concatenating them with themselves makes
the word embedding layer surpass the performance of ELMo-1 up to step 2,048, although the performance
after all training of inflated and non-inflated ELMo-WE is about the same (72.73% without vs. 72.91%
with inflation). The performance after all training for ELMo-1 is 85.74%, and for ELMo-2 it is 82.64%. It
appears to be crucial to control for the number of parameters, even if not trainable, when evaluating in a
limited training setup.

4.4.3 Summary of the Results

In summary, probes need a certain expressiveness or training regime to improve over non-contextualized
baselines. But if they need it to discover the representation of the task or to be able to learn the task with
the context included in the representations is, as we argue, not obvious at all. With the uncontextualized
layer as the baseline, we, in contrast to Hewitt and Liang (2019) using random targets, do not find that
restricting models leads to a larger difference in results in favor of the contextualized representations.
Instead, we observe the contrary or similar performance. We therefore propose that using one restricted
model does not lead to meaningful results. Plotting successively restricted models against the accuracy
can, however, help getting a picture of the probe’s behavior and approximate the ease of learning the
auxiliary probing task 7" with the word embeddings R(w;).

5143



4.5 The Pipeline Argument

There is a finding from probing studies that makes it appear reasonable to believe that neural sentence
encoders learn tasks in a similar way as humans do. More specifically, they exhibit a pipeline pattern
when probing, with lower layers having being the most relevant layers for low-level syntactic tasks, while
the middle layers contain more useful information for tasks that involve the detection of relations between
words in sentence-level syntax.

One of the most influential voices for this pipeline hypothesis is Tenney et al. (2019a). They probe on all
layers and discover that, on eight tasks including part-of-speech tagging, parsing, named entity recognition,
semantic role labeling and coreference, the importance of layers on the performance corresponds to a
classical NLP pipeline, with the lowest-level tasks having a better performance on the lowest layers. Peters
et al. (2018), who probe their ELMo model for part-of-speech tagging, also suggest that consistencies with
previous pipelined multi-task learning approaches support this finding: They find that part-of-speech tags
are best recovered from layer 1. Belinkov et al. (2017a) find that lower layers in neural machine translation
(NMT) systems better capture word structure, and suggest that higher layers have more information about
word meaning. Shi et al. (2016) suggest that representations from lower layers in NMT are better at
“learning” local syntax, while those from higher layers are better at more global syntax tasks. Belinkov et
al. (2017b) find that representations from lower layers in neural machine translation systems get better
results at part-of-speech tagging, while those from higher layers lead to a better performance on word-level
semantic tagging, especially for the tags that are most semantic, like discourse functions and noun concepts.

Looking at our results in Figure 1 and Table 1, it is tempting to offer an alternative interpretation of these
pipeline results: For local tasks like part-of-speech tagging, information about the word itself and about its
direct neighbors is most crucial; therefore the performance is highest that are best at memorizing these
neighboring words—the lower layers of BERT or ELMo’s layer 1. For more global tasks like syntactic
parsing and semantic tasks on the other hand, a broader context is important for good performance, so that
the middle layers, which contain the most concrete information about words that are more than one step
away, are the most successful point for prediction.

5 Conclusion

Being a very young field of research, probing and interpretation of language representations still lacks
a solid theoretical foundation of its methodology, and despite some progress, the inner workings of
models such as BERT and ELMo remain largely obscure. We have shown that a simple classifier
trained on these models’ representations can reconstruct the words in the context of single tokens with
surprisingly high accuracy. Based on this observation, we propose to evaluate probes with regard to the
context-only hypothesis: That the probing classifier learns the task based on linear context information
alone. With this hypothesis in mind, many attempts to discern “learning the probing task™ from “extracting
linguistic structure” are not reliable in theory and in practice. Looking at random, uncontextualized and
contextualized baselines, we have shown that none of them qualifies as a reliable ground for general
conclusions about the linguistic knowledge that may be used to solve any sentence-level syntactic task. For
the usage of probing model restrictions, we have argued that we are lacking too much knowledge about
the representations and about their interplay with the probe’s learning capabilities to reason about the
presence of some specific feature from the results. A closer look at the learning curves evaluated at small
numbers of training steps revealed that conclusions from probes with restricted training regimes have
to be handled and interpreted with extreme care. In the most restricted setups, many of the probes fail
to outperform even uncontextualized baselines in syntactic dependency pair and label prediction, and it
remains theoretically and empirically unclear what setup to choose for a meaningful and reliable probe.
In very recent work, Pimentel et al. (2020) take an information-theoretic perspective on probing,
concluding that the difference between learning a task and identifying linguistic structure is non-existent.
They argue against any restrictions on the expressiveness of the probe, stating that there is no information
gain induced by them. We argue, in line with them, that valid conclusions using restricted probing
classifiers can to this point only relate to the ease of learning with the features present in the representations.
We propose that, as probing classifiers’ simplicity is still appealing, future work should aim at providing
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theoretically well-motivated setups for this idea, as for example explored by Voita and Titov (2020) and
Yogatama et al. (2019).

We believe that approximating the ease of learning the task with the respective embeddings of the
baseline and the representations in question e.g. with plots can be insightful to get an impression of the
learning process, but interpretations remain difficult without an extensive error analysis, and comparisons
of embeddings or data sets are especially hard due to differences in dimensionalities, numbers and
distributions of labels.
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