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Abstract

Pretrained language models (PLMs) learn stereotypes held by humans and reflected in text
from their training corpora, including gender bias. When PLMs are used for downstream tasks
such as picking candidates for a job, people’s lives can be negatively affected by these learned
stereotypes. Prior work usually identifies a linear gender subspace and removes gender information
by eliminating the subspace. Following this line of work, we propose to use DensRay, an analytical
method for obtaining interpretable dense subspaces. We show that DensRay performs on-par
with prior approaches, but provide arguments that it is more robust and provide indications that it
preserves language model performance better. By applying DensRay to attention heads and layers
of BERT we show that gender information is spread across all attention heads and most of the
layers. Also we show that DensRay can obtain gender bias scores on both token and sentence
levels. Finally, we demonstrate that we can remove bias multilingually, e.g., from Chinese, using
only English training data.

1 Introduction

Word embeddings, which represent the semantic meaning of
text data as vectors, are used as input in natural language pro-
cessing tasks. It has been found that word embeddings exhibit The professor asked the nurse .
biases such as gender bias, which are present in their training The child played with the car .
corpora (Bolukbasi et al., 2016; Caliskan et al., 2017; Garg The child played with the doll .

et al., 2018). Contextual word embedding models, such as ~ Table 1: Token level bias scores
BERT (Devlin et al., 2019), have become increasingly com-  (male/female bias depicted by blue/red)
mon and achieved new state-of-the-art results in many NLP  identified using DensRay. See Table 6
tasks. Researchers have also found gender bias in contextu- ~ for more details.

alized embeddings (Zhao et al., 2019; May et al., 2019). It

has been found that these biases have a big impact on downstream tasks (Vanmassenhove et al., 2018;
Moryossef et al., 2019; Rudinger et al., 2018; Zhao et al., 2018).

A common approach for removing gender information in static embeddings is to identify a linear
gender subspace (e.g., a gender direction) and subsequently setting all values on the gender direction to
zero. Successful approaches rely on simple principal component analysis (Bolukbasi et al., 2016; Mu
and Viswanath, 2018). Bolukbasi et al. (2016) require pairs of gendered words to compute a direction
(e.g., “man”-“woman”) and Mu and Viswanath (2018) rely on computing a PCA of a set of gender words
hoping that the main variation direction is the gender direction. We propose to use DensRay (Dufter
and Schiitze, 2019) which only requires two or multiple groups of gendered words. In summary, our
contributions are: i) We adjust DensRay to be usable to debias contextualized embeddings. We evaluate
the approach on two tasks — a set of templates we constructed and association tests — and show that
DensRay performs comparable to prior approaches. ii) We provide arguments why DensRay is more
robust and find that applying DensRay preserves language model performance on downstream tasks better.

[MASK] kissed [MASK] .

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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iii) We analyze how gender information is processed in BERT by applying DensRay to attention heads and
layers: we conclude that there is no single attention head responsible for processing gender information.
In addition, we show in a qualitative analysis that token-level gender scores can be obtained. iv) We apply
our debiasing method to the multilingual BERT (mBERT) model: we show that English training data can
be used to debias Chinese. The source code of our experiments is available.!

2 Methodology
2.1 Debiasing Conceptor

Karve et al. (2019) introduced conceptor debiasing. Given a set of gendered words V' := {v1,v2,...,v,}
and their embeddings E € R™*?, gender bias can be mitigated by multiplying the debiasing conceptor
matrix ~C = I — C'. C'is the conceptor matrix that minimizes the objective

|E - CE[|% + o ?|[C][F, (1)
where « is a parameter and || - || is the Frobenius norm. C has an analytical solution given by
L T A g
C= BB (CBE" +a7 D" )

Intuitively, C is a soft projection matrix on the linear subspace where embeddings have the maximum
bias, thus the boolean-liked operation —C' can debias on a combination of multiple bias dimensions.

2.2 Hard Debasing

We will also compare with the hard debiasing method proposed by Mu and Viswanath (2018), which is
originally a postprocessing technique for improving word representations. Karve et al. (2019) adopted it
as a method for debiasing. Hard debiasing relies upon the assumption that the first principal component of
the embedding vectors associated to gendered words is a meaningful gender direction. The first principal
component of F is the gender direction q.

2.3 DensRay

DensRay (Dufter and Schiitze, 2019) is an analytical method for identifying the embedding subspace
of certain linguistic features. It identifies the “gender subspace” using a set of gendered words V' :=
{v1,v2,...,v,} and their embeddings F € R™*“. In contrast to the above approaches, it uses a function
[ for the gender attribute: [ : V' — {—1, 1}; e.g. [(father) = 1, [(sister) = —1. The objective of DensRay
is to find an orthogonal matrix Q € R%*¢ such that in the rotated space EQ, the dimensions are ordered
by their degree of correlation with gender, e.g., the first dimension can then be interpreted as a gender
subspace.

Let L— := {(v,w) € V x V|i(v) = l[(w)} and define L analogously. The DensRay objective in
Eq. 3 is to maximize the distance of the word pairs from the same gender group (L-) and minimize the
distance of the word pairs from the different gender group (L.).

m;xx Z O‘#HQTdeH%_ Z O‘=Hquva% (3)
(v,w)EL4 (v,w)EL=

where d,,, := e, — €. The objective can be simplified to

max ¢'( > aglldwdl, i - D a=|\ded5w||§)q=:mquTAq 4)
(v,w)EL4 (vyw)eL=

As stated in (Dufter and Schiitze, 2019), ¢ is simply the eigenvector of A corresponding to the largest
eigenvalue. ax, a— € [0, 1] are hyperparameters to balance the different optimization terms.

"https://github.com/liangsheng02/densray-debiasing/
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2.4 Removing Gender Information

Hard debiasing and DensRay yield a gender dimension ¢ € R?. In a contextualized language model
like BERT each layer yields a contextualized embedding matrix X € R**? where ¢ is the length of the
sentence. To debias representations we simply zero out the projected values on g for each position, that is
we set pdebiased — 4, (z]q)q for each position i. To debias X with conceptor one simply performs a

matrix multiplication X dPiased — X'(J — (). Then we use X934 a5 input to the next layer.

2.5 Comparison of the Approaches

Figure 1 shows artificially created two dimensional embeddings. The lines show the gender directions
identified by hard debiasing and DensRay. In this example the first principal component does not correlate
with gender, while DensRay is able to handle this as it explicitly uses the labels.

As a soft projection, Conceptor debiasing does not compute a single gender direction, but always
debiases on a linear combination of all directions, it is not obvious how to depict the direction in the
figure. We argue that having a single gender direction as in DensRay is more interpretable and easier
to use than Conceptor; e.g., it allows to assign token level gender scores easily as shown in Table 6. In
addition DensRay affects language model performance less than Conceptor, as we show in Table 4.

—— Expected gender direction
1 Hard debiasing direction
—— DensRay direction

31 Masculine

Feminine

0 2 4 6 8

Figure 1: Gender direction for a set of gendered words computed for hard debiasing and DensRay.

2.6 Adapting DensRay to Contextualized Language Models

We now describe how we adapt DensRay to contextualized language models. Given a set of gendered
words V, we run a contextualized language model with M layers on a set of sentences that each contains
at least one of the gender words, i.e., t1,...,%;,...,t, (Where t; € V) to get their embeddings. For each
t; in each sentence we compute the contextualized representations ej*, 1 < m < M, one for each layer.

We then use the vectors e in Eq. 4. to compute a gender direction ¢y, for the m-th BERT layer.

3 Experiments

3.1 Setup and Data

In the experiments, we lowercase all text and use the BERT models “bert-base-uncased” and “bert-large-
uncased”. We implemented all experiments using the transformers library (Wolf et al., 2019).

To compute the rotation matrices with DensRay, we need a gendered word list and a corpus. For the
word list, we get 23 masculine words and 23 feminine words from the “family” category” of the Google
analogy test set (Mikolov et al., 2013). As the input corpus, we collect text data from Wikipedia that
contains 5,000 (resp. 10,000) occurrences of words in the gendered list for the BERT base (resp. large)
model. We balance the occurrences such that the number of male and female samples are equal, then
we set ax = a= = 0.5. We compare with hard debiasing (Mu and Viswanath, 2018) and debiasing
conceptor (Karve et al., 2019) to eliminate gender bias as adapted to contextualized embeddings. In the
experiments, we found that DensRay and hard debiasing applied to all BERT layers yield better results
than only applying to the last layer. In contrast, when applying debiasing conceptor to all layers, language

https://download.tensorflow.org/data/questions-words.txt
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modeling performance (as measured by perplexity) is extremely poor. We therefore apply DensRay and
hard debiasing to all BERT layers and debiasing conceptor only to the last layer.

3.2 Evaluation

We use two evaluation datasets to measure gender bias: Association tests (Section 3.2.2) and OCCTMP
(occupation templates). OCCTMP is a method to use existing occupation datasets for evaluation, based
on the templates that we created specifically to evaluate contextualized language models. It has the added
advantage that results are easier to interpret than those for Association tests.

3.21 OCCTMP

To construct OCCTMP, we start with 320 occupation names provided by Bolukbasi et al. (2016). Each
occupation name is converted into the format “[MASK] is an occupation.” We measure gender bias as the
mean of the differences between the log probability of BERT predicting [MASK] as “he” vs. “she”

i 1
dﬁ: m Z (logpmax - 10gpmln)7

TeT
where ppq; = max{p(he|T"), p(she|T")}; pmin = min{p(he|T"), p(she|T")}

where 7 is the set of 320 templates. We can also use the standard deviation of the differences std to
indicate the stability of debiasing. We will also report the standard deviation of the differences. We find
that for most experiments and templates, the probability of “he” is higher than “she”, which qualitatively
indicates that gender bias can be identified using the OCCTMP templates. We also find that in most cases
the sum of the two probabilities is higher than 0.7; thus, this evaluation task is a good fit for BERT because
it has learned that a pronoun is likely to occur in the masked position. The occpuation template can be
easily translated into other languages such as Chinese.

3.2.2 Association Tests

Association tests originated in sociological research. Greenwald et al. (1998) proposed the Implicit
Association Test (IAT) to quantify societal bias. In IAT, response times were recorded when subjects
were asked to match two concepts. For example, subjects were asked to match black and white names
with “pleasant” and “unpleasant” words. Subjects tended to have shorter response times for concepts they
thought associated.

Based on IAT, Caliskan et al. (2017) proposed the Word Embedding Association Test (WEAT). It uses
word similarities between targets and attributes instead of the response times to get rid of the requirement
for human subjects. Consider two sets of target words X, X5 with equal size | X1| = | X2/, and two sets
of attribute words A1, As. The null hypothesis in the WEAT statistical test is: there is no difference in the
similarity between X1, Xo and A1, As. In the prior literature, it has been argued that if the null hypothesis
cannot be rejected, there is no significant gender bias. The WEAT test statistic is defined as

8(X1,X2,A1,A2) = Z S(:L‘,Al,Ag) — Z 8(1’,A1,A2),
zeX1 r€Xo

where s(z, A1, A2) = meange 4, cos(Z, @) — meange 4,co8(Z, @),

Here, cos(Z, @) denotes the cosine similarity between embedding vector Z and a. Intuitively, s(z, A1, Ag)
measures the association of a word with the attributes, so the test statistic measures the differential
association of the two target sets with the attributes.

Let {(X1;, X2;) }i denote all the partitions of X; U Xo. The one-sided p-value of the permutation test
is defined as

p = Prls(X1;, Xo;, A1, Az) > s(X1, Xo, A1, Ag)].

The effect size d-value is a normalized measure of how separated the two distributions of associations
between the target and attribute are. It is defined as

_ S(X17X27A17A2)
StdIEXlqus(x7 A17 AQ) '
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To extend WEAT to contextualized embeddings, Karve et al. (2019) extracted contextualized em-
beddings from the template “[MASK] is word”. May et al. (2019) proposed the Sentence Embedding
Association Test (SEAT), for which they designed more complex templates to extract word embeddings.

In these association tests, we measure the effect size d-value and the one-sided p-value of the permuta-
tion test. A d-value closer to zero indicates less gender bias. We also prefer a high p-value (at least 0.05)
that aims to not reject the null hypothesis, i.e., we do not reject that there is no gender bias. We use the
three categories C6: career/family, C7: math/arts, C8: science/arts, following Karve et al. (2019)’s WEAT
setup and May et al. (2019)’s SEAT setup.

3.2.3 Model Performance

It is crucial that debiasing methods do not harm the downstream performance of BERT models. Thus
we test the perplexity of language modeling on Wikitext-2 (Merity et al., 2016), a subset of Wikipedia
with 2 million words. We also test on GLUE (Wang et al., 2018), using the same setup as Wolf et al.
(2019).3 Since the bias already exists in the data of these tasks (Babaeianjelodar et al., 2020), the overall
performance will decrease after debiasing. Our expectation here is to cause less damage to the model
performance after debiasing.

4 Results

4.1 Debiasing Results

Table 2 gives results on OCCTMP. We show that DensRay can mitigate gender bias in BERT as measured
by diff: bias between predicting he/she drops by a large margin (e.g., for bert-base from 1.98 to 0.36). The
table indicates that DensRay outperforms the other two methods on OCCTMP. Note that the prediction
probabilities of debiasing conceptor are quite low for both “he” and “she” indicating that conceptor
debiasing might affect language model performance. However, in relative terms, “he” is still strongly
favored compared to “she”. Table 3 shows the results on association tests. We observe that association
tests have a high variance depending on which category is used. Overall the debiasing performance of the
three methods is comparable, with DensRay and Conceptor having the best performance three times and
hard-debiasing having the best performance five times.

4.2 Model Performance

Table 4 shows that DensRay debiasing gets comparable results with the original models on Wikitext-2 and
GLUE tasks. In most tasks on bert-base and all tasks on bert-large, DensRay performs better than hard
debiasing, so DensRay affects model performance less. Similarly, in most tasks on bert-base and all tasks
but one on bert-large, DensRay performs better than debiasing conceptor. Overall we find that DensRay
affects model performance the least among the considered methods.

4.3 Examples

In Table 5 we show two OCCTMP examples. The sum of the probabilities of “he” and “she” on the
debiasing conceptor are around 0.5, indicating that the language model has lost part of its ability to predict
that a pronoun is likely to occur in the masked position.

4.4 Analysis
Debiasing on Attention Heads and Layers

We now apply DensRay to single attention heads in BERT and investigate the debiasing effect on OCCTMP.
The heatmap in Figure 2(a) shows that the debiasing effect of one single attention head is not apparent,
with diff scores all in (1.0,1.4). We conjecture that there is no single attention head that is responsible for
processing gender information. This conjecture is similar to the experiment from Bau et al. (2019), which
showed modifying some neuron activations in NMT did not help in controlling gender, and speculated
that the gender property is very distributed on neurons.

Shttps://huggingface.co/transformers/
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model debiasing  p(he) p(she) sum  diff  std

- 0.66 0.19 0.8 198 1.39
hard 0.35 042 077 042 0.09

bert-base conceptor 018  0.11 028 068 026
densray 0.48 0.37 0.86 0.36 0.07
- 063 019 08 182 130
hard 040 023 063 069 030
bert-large

conceptor  0.43 0.18 0.61 1.03 0.53
densray 0.47 0.31 0.77 049 0.13

Table 2: BERT debiasing results on OCCTMP, measure by diff and std described in 3.2.1. We also show
sum = p(he) + p(she) as an indication of language model performance.

bert-base bert-large
WEAT SEAT WEAT SEAT
category  debiasing d D d D d P d D

- 0.66 0.08 1.04 <107 | 157 <1072 050 <10~ %*
c6 hard 0.15 038 -0.08 0.67 0.80 0.06 0.07 0.35

conceptor | 0.07 046 077 <1072* | 133 <1072  0.06 0.37

densray 0.62 012 036  0.02* 0.76 0.07 0.13 0.22

B 0.60 0.11 0.17 0.15 -0.40 0.75 038 0017
o7 hard -0.07 056 -0.06 0.64 -0.51 0.83 038  0.01*

conceptor | 0.54 0.14 -0.25 0.93 -0.32 0.73 -0.60 0.99

densray 0.09 045 -047 0.99 0.06 0.05 -0.73 0.99

- 0.78 0.08 0.81 <107 | -0.60 0.87 -0.30 0.95
cs hard -029 0.68 -0.10 0.71 0.78 0.06 -0.03 0.56

conceptor | 0.62 0.14 050 <1072* | 0.12 0.39 0.30 0.94

densray 0.03 047 041 0.01* 0.20 0.33 -0.66 0.99

Table 3: BERT debiasing results on association tests. * shows significant gender bias. Only models
without significant gender bias (p > 0.05) can be accepted.

model | debiasing || Wikitext-2 | COLA SST-2 MRPC STS-B RTE  WNLI | GLUE avg

- 3.77 49.15  92.09  85.86 82.66 6282 5211 70.78
bert-base hard 3.95 4553  91.74  82.48 82.60 6354 56.34 70.37
conceptor 4.46 4831 9143  84.08 81.37 5957 56.34 70.18
densray 3.81 48.04 91.74 84.89 8243 6390 5352 70.75
- 3.29 4793 9490  89.30 87.60 70.10 65.10 75.82
bert-large hard 3.85 4745 9395 85.01 8233 67.12 63.02 73.15
conceptor 4.13 4944 9387  87.67 83.44 6245 56.34 72.20
densray 3.35 4891  94.02 88.84 85.63 67.78 64.48 74.94

Table 4: Language modeling perplexity and GLUE tasks performance.

So far we have always applied DensRay to all BERT layers simultaneously. Figure 2(b) illustrates the
effect of debiasing a single layer on OCCTMP and the three WEAT categories. In contrast to the attention
heads we observe a different debiasing effect across different layers. We see that the debiasing effect is
stronger in layers 7—10 than in the other layers in bert-base. This indicates that gender information is
processed mostly in the upper layers of BERT.

Quantifying Gender Bias with DensRay

DensRay can be used to quantify gender bias for sentences and tokens. We use the distance to the origin in
gender subspace as the measure. In BERT, we use the average bias score of tokens to quantify the whole
sentence. Table 6 compares DensRay with the log probability score (Kurita et al., 2019), which quantifies
gender bias based on the template “[TARGET] is a [ATTRIBUTE]”. We regard zero as a balance point
without bias. Contrary to the log probability score, a positive DensRay score represents the level of female
bias. These examples show that DensRay is more versatile, it can quantify bias both on the token and on
the sentence level* in contrast to the log-probability score. In the sentence “The professor asked the nurse
. one can immediately see that the model has a male bias on “professor” and a female bias on “nurse”.

4 Although token-level bias scores seem to work quite well for monolingual BERT, we were not able to extract high-quality
token-level bias scores from multilingual BERT. We leave this topic for future research.
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template 7' debiasing  p(he|T) p(she|T) sum diff
- 0.84 0.13 097 1.86
[MASK]isa hard 0.37 0.55 092 040
professor. conceptor 0.28 0.23 0.51 0.20
densray 0.53 0.37 090 0.36
- 0.22 0.72 094 1.19
[MASK]isa hard 0.27 0.64 091 0.86
dancer. conceptor 0.20 0.33 0.53 0.50
densray 0.42 0.52 0.94 0.21

Table 5: OCCTMP examples with prediction probabilities (model:bert-base).

1.35
IS S| occTmp
12 \ WEAT C6
1.30 WEAT C7
1.0 \ ~—— WEAT C8
1.25 ) 1
08 . .
/
1.20 8 06 \ /
04 \ /N /
-115 5 o g ;
024 — | T <l N—T
N ]
-1.10 0.0 NS
N /
-02
“105 0 1 2 3 4 5 6 7 8 9 10 11

0O 1 2 3 4 5 6 7 8 9 1011
layers

(a) attention heads

heads
01 2 3 456 7 8 91011
bias

layer

(b) layers

Figure 2: (a): DensRay debiasing on each single attention head in bert-base, measured by diff on OCCTMP.
(b): DensRay debiasing on each single layer, measured by diff on OCCTMP and d-value on WEAT.

Alternatives to Removing Gender Bias

In our experiments, we zero out the dimensions of the gender subspace to remove gender bias. We also
explored three alternatives to zeroing out. 1) Replace the first dimension of the gender subspace with the
mean value of the first dimension of the training samples. 2) Standardize the first dimension. 3) Replace
the first dimension with a small random variable sampled from a Gaussian distribution. All of them did
not perform well. Using higher dimensional gender subspaces (i.e., removing more than one gender
dimension) also did not improve the debiasing results while harming the model performance.

When debiasing is applied to all layers in our experiments, we compute all the rotation matrices from the
original model in advance and then successively apply them to the corresponding layer in the forward pass.
However, the gender direction on layer /;; is changed after debiasing ;. Our approach is a compromise
for faster training, by only focusing on the original gender direction. An alternative might be to compute a
new rotation matrix for /; after having already debiased [;.

4.5 Multilingual Debiasing

We now show that, in a multilingual contextualized language model like mBERT, we can use DensRay for
zero-shot debiasing. Specifically, we train a DensRay model on English and use it to debias Chinese.

In our opinion, multilingual debiasing involves two distinct problems. First, how can bias be removed
from the underlying model? Second, how does bias manifest in a particular language? The removal of
bias from the underlying model can be argued to be largely independent of the language whereas the
way bias manifests is highly language-dependent. For example, Chinese does not mark gender and most
German nouns describing people are gender-specific. So on the surface, Chinese is gender-neutral and
German cannot be gender-neutral (e.g., Studentinnen and Studenten). However, these particularities of
surface form of individual languages do not change the underlying problem of biased language models:
Chinese and German language models are still biased and should be debiased to avoid unfair and biased
impact caused by deployed NLP systems.

We use bert-base-multilingual-uncased from (Wolf et al., 2019) with the same setup as for bert-base-
uncased in our previous experiments. As before, we compute the rotation matrices using the English
gendered words from the “family” category of the Google analogy test set (Mikolov et al., 2013). Since
Chinese is a language that does not mark gender, we construct OCCTMP by directly translating from
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sentence avg. DensRay bias score || log probability score

[MASK] is a professor . -0.45 0.63

[MASK] is a nurse . 1.58 -5.44

[MASK] kissed [MASK] . -0.10 not applicable
The professor asked me . -0.19 not applicable
The professor asked the nurse . 0.43 not applicable
The child played with the car . 0.03 not applicable
The child played with the doll . 0.49 not applicable

Table 6: Examples for quantifying bias with the DensRay bias score. Red: female. Blue: male. Model:
bert-base. Note that the average DensRay bias score and the log probability score agree for these examples.
However, as shown in the left column the DensRay bias score can also be applied on a per-token basis,
supporting a more fine-grained analysis.

the English templates. We use the following form: “[MASK];%—/I\occupation - 7 We translate the
occupations using Tencent Translation’ and make some manual adjustments to the translation. After
removing duplicates (e.g., firefighter and fireman have the same translation in Chinese), 302 Chinese
templates remain.

Table 7 gives results for the Chinese templates. Two examples are given in Table 8. We see that
DensRay trained with English can mitigate gender bias in mBERT: the diff score drops from 1.39 to 1.22
on Chinese templates.

debiasing  p(he) p(she) sum diff  std

-en 0.51 0.14 065 1.66 0.90
densray-en  0.33 0.12 046 1.33 0.81
-zh 0.24 0.07 031 139 0.77

densray-zh  0.12 0.04 0.17 122 0.69

Table 7: Results of OCCTMP on mBERT after applying DensRay. -en denotes we test on English
templates, and -zk on Chinese templates.

template T’ debiasing  p(ftt|T) p|T) sum  diff
[MASK]& — P Ri#E - -zh 0.16 023 040 036
densray-zh 0.09 0.09 0.18 0.02
[MASK] is a performer . -en 0.48 0.19 0.67 0.93
densray-en 0.31 0.14 045 0.79
[MASK]2—MEHA - -zh 0.68 0.16 084 145
densray-zh 0.51 0.18 0.69 1.04
[MASK]is an administrator. -en 0.53 0.17 070 1.14
densray-en 0.35 0.13 048 0.99

Table 8: Sanity check on the Chinese templates, where 1l means he and il means she. Corresponding
English translations and their debiasing results are shown below the Chinese.

5 Related Work
5.1 Quantifying Gender Bias

Association tests are commonly used to measure gender bias. The original WEAT is used on static
embeddings. To extend WEAT to contextualized embeddings, some template-based processes (Karve et
al., 2019; Kurita et al., 2019; Tan and Celis, 2019) were constructed to obtain word embeddings from the
context. SEAT further improved the templates and computed the similarities between sentences instead
of words. Guo and Caliskan (2020) proposed CEAT (Contextual Embedding Association Test), which
samples the occurrences from corpus to get the embeddings, and measures bias by a random-effects
model. However, we find that it is difficult to obtain a stable result on CEAT, since there are too many

‘https://fanyi.qq.com/
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hyper-parameters to be controlled, thus in this paper we use WEAT and SEAT for our experiments. Kurita
et al. (2019) proposed a template-based log probability bias score to measure the association between
targets and attributes in BERT. Since it can only be applied on specific templates, we compare this
method with DensRay as a measure of gender bias in §4.4. Nadeem et al. (2020) proposed CAT (Context
Association Test) to measure language modeling ability as well as the stereotypical bias of pretrained
language models at sentence and discourse level.

An alternative way to measure gender bias is to evaluate on downstream tasks. For coreference
resolution, Zhao et al. (2018) designed Winobias and Rudinger et al. (2018) designed Winogender
schemas. Webster et al. (2018) released GAP, a balanced corpus of Gendered Ambiguous Pronouns,
which measures gender bias as the ratio of F1 score on masculine to F1 score on feminine. However, a
ratio close to 1.0 (Chada, 2019; Attree, 2019) makes it hard to compare debiasing systems. For sentiment
analysis, Equity Evaluation Corpus (EEC) (Kiritchenko and Mohammad, 2018) was designed to measure
gender bias by the difference in emotional intensity predictions between gender-swapped sentences. Since
the measures of gender bias in these datasets are not intuitive, we use association tests in this work.

5.2 Debiasing Methods

Many methods to remove gender bias have been proposed. Based on the hypothesis that gender bias
in stored in a linear subspace in the word embeddings, the most common way is to define a gender
direction (or, more generally, a subspace) by a set of gendered words and debias the word embeddings in
a post-processing projection. Bolukbasi et al. (2016) propose (i) hard debiasing: use the gendered words
to compute the difference embedding vector as the gender direction, and remove the gender subspace
component of the neutral words while preserving it for the gendered words; and (ii) soft debiasing, a
machine learning based method that combines the inner-products objective of word embedding and an
objective to project the word embedding into an orthogonal gender subspace. It has been found to work
better than soft debiasing. Prost et al. (2019) proposed a variant of the hard debiasing algorithm by simply
removing the gender subspace component of all words in the vocabulary, we also applied this strategy in
our approach. Dev and Phillips (2019) explored partial projection and some simple tricks to improve the
hard debiasing method. Wang et al. (2020) introduced Double-Hard Debias to ameliorate hard debiasing
by mitigating the negative impact of the word frequency in training corpora. Zhao et al. (2019) applied
the data augmentation and debiasing method of Bolukbasi et al. (2016) to mitigate gender bias on ELMo
(Peters et al., 2018). Karve et al. (2019) proposed the debiasing conceptor, which shrinks each principal
component of the covariance matrix of the embeddings to achieve a soft debiasing. They also introduced
a simple and intuitive hard debiasing method proposed by (Mu and Viswanath, 2018), which identified
the gender subspace by PCA and set the first principal component to zero. Recently research (Vargas
and Cotterell, 2020) showed that gender bias is well captured by a linear subspace, justifying the basic
hypothesis of the above methods.

The debiasing conceptor and Mu and Viswanath (2018)’s hard debiasing produce gender directions
using a gendered word list mixed with male and female words. In contrast, Bolukbasi et al. (2016)’s hard
debiasing used two groups of gendered words for definition and another two groups for alignment, to
identify the gender direction by male-female pairs. The method we use, DensRay, is similar to Bolukbasi
et al. (2016)’s hard debiasing in this aspect. However, DensRay uses only one male and one female
word list, and it can be solved efficiently in a closed form. So it would be more stable to be applied to
contextualized models than Bolukbasi et al. (2016)’s hard debiasing.

Gonen and Goldberg (2019) showed that beyond the gender direction, biases on static embeddings
also come from the association to other implicitly gendered terms. We assume that this phenomenon
will be weakened in contextualized embedding, so we only focus on the gender direction; this may be a
limitation. They also proposed some experiments to evaluate the remaining bias after debiasing, among
which the gender classifier shared the same idea with OCCTMP.
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6 Conclusion

We introduced DensRay debiasing on BERT. Our experiments showed that this method can effectively
mitigate gender bias on OCCTMP and the Association Tests, while maintaining the performance of BERT
on language modeling and GLUE tasks. We applied DensRay to BERT attention heads and showed that
gender information is processed in all attention heads: there is no single attention head responsible for
processing gender information. We also used DensRay to obtain interpretable gender bias scores, to
quantify bias on token and sentence levels for all representations. Finally, we demonstrated that we can
remove bias multilingually: we used only English training data to effectively debias Chinese.

In future work we plan to investigate multilingual transfer of debiasing techniques more closely. Further,
debiasing methods should not rely on the binary signals “male”-“female” but rather on multiple sets of
attributes. Thus we plan to investigate debiasing with non-binary approaches.
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