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Abstract

Recent years have seen big advances in the field of sentence-level quality estimation (QE), largely
as a result of using neural-based architectures. However, the majority of these methods work only
on the language pair they are trained on and need retraining for new language pairs. This process
can prove difficult from a technical point of view and is usually computationally expensive.
In this paper we propose a simple QE framework based on cross-lingual transformers, and we
use it to implement and evaluate two different neural architectures. Our evaluation shows that
the proposed methods achieve state-of-the-art results outperforming current open-source quality
estimation frameworks when trained on datasets from WMT. In addition, the framework proves
very useful in transfer learning settings, especially when dealing with low-resourced languages,
allowing us to obtain very competitive results.

1 Introduction

The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a
reference translation (Specia et al., 2018). High-accuracy QE that can be easily deployed for a number
of language pairs is the missing piece in many commercial translation workflows as they have numerous
potential uses. They can be employed to select the best translation when several translation engines are
available or can inform the end user about the reliability of automatically translated content. In addition,
QE systems can be used to decide whether a translation can be published as it is in a given context, or
whether it requires human post-editing before publishing or even translation from scratch by a human
(Kepler et al., 2019). The estimation of translation quality can be done at different levels: document
level, sentence level and word/phrase level (Ive et al., 2018). In this research we focus on sentence-level
quality estimation.

As we discuss in Section 2, at present neural-based QE methods constitute the state of the art in quality
estimation. However, these approaches are based on complex neural networks and require resource-
intensive training. This resource-intensive nature of these deep-learning-based frameworks makes it
expensive to have QE systems that work for several languages at the same time. Furthermore, these
architectures require a large number of annotated instances for training, making the quality estimation
task very difficult for low-resource language pairs.

In this paper we propose TransQuest, a framework for sentence-level machine translation quality
estimation which solves the aforementioned problems, whilst obtaining competitive results. The
motivation behind this research is to propose a simple architecture which can be easily trained with
different types of inputs (i.e. different language pairs or language from different domains) and can be
used for transfer learning in settings where there is not enough training data. We show that TransQuest
outperforms current open-source quality estimation frameworks and compares favourably to winning
solutions submitted to recent shared tasks on 15 different language pairs on different aspects of quality
estimation. In fact, a tuned version of TransQuest was declared the winner for all 8 tasks of the direct
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assessment sentence level QE shared task organised at WMT 2020 (for more details see (Ranasinghe et
al., 2020) and Section 5.1. The main contributions of this paper are the following:

1. We introduce TransQuest, an open-source framework, and use it to implement two neural network
architectures that outperform current state-of-the-art quality estimation methods in two different
aspects of sentence-level quality estimation.

2. To the best of our knowledge this is the first neural-based method which develops a model capable
of providing quality estimation for more than one language pair. In this way we address the problem
of high costs required to maintain a multi-language-pair QE environment.

3. We tackle the problem of quality estimation in low-resource language pairs by showing that
even with a small number of annotated training instances, TransQuest with transfer learning can
outperform current state-of-the-art quality estimation methods in low-resource language pairs.

4. We provide important resources to the community: the code as an open-source framework, as well
as the TransQuest model zoo – a collection of pre-trained quality estimation models which have
been trained on 15 different language pairs and different aspects of quality estimation – will be
freely available to the community1.

The remainder of the paper is structured as follows. We first present a brief overview of related work
in order to define the context of our work. In Section 3 we present the TransQuest framework and the
methodology employed to train it. The datasets used to train it are presented in Section 4, followed by the
evaluation and discussion in Section 5. The paper finishes with conclusions and ideas for future research
directions.

2 Related Work

During the past decade there has been tremendous progress in the field of quality estimation, largely as
a result of the QE shared tasks organised annually by the Workshops on Statistical Machine Translation
(WMT), more recently called the Conferences on Machine Translation, since 2012. The annotated
datasets these shared tasks released each year have led to the development of many open-source QE
systems like QuEst (Specia et al., 2013), QuEst++ (Specia et al., 2015), deepQuest (Ive et al., 2018), and
OpenKiwi (Kepler et al., 2019). Before the neural network era, most of the quality estimation systems
like QuEst (Specia et al., 2013) and QuEst++ (Specia et al., 2015) were heavily dependent on linguistic
processing and feature engineering to train traditional machine-learning algorithms like support vector
regression and randomised decision trees (Specia et al., 2013). Even though, they provided good results,
these traditional approaches are no longer the state of the art. In recent years, neural-based QE systems
have consistently topped the leader boards in WMT quality estimation shared tasks (Kepler et al., 2019).

For example, the best-performing system at the WMT 2017 shared task on QE was POSTECH, which
is purely neural and does not rely on feature engineering at all (Kim et al., 2017). POSTECH revolves
around an encoder-decoder Recurrent Neural Network (RNN) (referred to as the ’predictor’), stacked
with a bidirectional RNN (the ’estimator’) that produces quality estimates. In the predictor, an encoder-
decoder RNN model predicts words based on their context representations and in the estimator step there
is a bidirectional RNN model to produce quality estimates for words, phrases and sentences based on
representations from the predictor. To be effective, POSTECH requires extensive predictor pre-training,
which means it depends on large parallel data and is computationally intensive (Ive et al., 2018). The
POSTECH architecture was later re-implemented in deepQuest (Ive et al., 2018).

OpenKiwi (Kepler et al., 2019) is another open-source QE framework developed by Unbabel. It
implements four different neural network architectures QUETCH (Kreutzer et al., 2015), NUQE
(Martins et al., 2016), Predictor-Estimator (Kim et al., 2017) and a stacked model of those architectures.
Both the QUETCH and NUQE architectures have simple neural network models that do not rely on

1The public GitHub repository is available on https://github.com/tharindudr/transquest and the official
documentation is available on https://tharindudr.github.io/TransQuest.
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additional parallel data, but do not perform that well. The Predictor-Estimator model is similar to
the POSTECH architecture and relies on additional parallel data. In OpenKiwi, the best performance
for sentence-level quality estimation was given by the stacked model that used the Predictor-Estimator
model, meaning that the best model requires extensive predictor pre-training and relies on large parallel
data and computational resources.

In order to remove the dependency on large parallel data, which also entails the need for powerful
computational resources, we propose to use crosslingual embeddings that are already fine-tuned to reflect
properties between languages. We assume that by using them we will ease the burden of having complex
neural network architectures. Over the last few years there has been significant work done in the area of
crosslingual embeddings (Ruder et al., 2019).

Since the introduction of BERT (Devlin et al., 2019), transformer models have been used successfully
for various NLP tasks such as named entity recognition (Devlin et al., 2019), sentence classification (Sun
et al., 2019), and question answering (Devlin et al., 2019), in many cases improving the state of the
art. Most of the tasks were focused on English due to the fact that most of the pre-trained transformer
models were trained on English data. Although there are several multilingual models like multilingual
BERT (mBERT) (Devlin et al., 2019) and multilingual DistilBERT (mDistilBERT) (Sanh et al., 2019),
researchers expressed some reservations about their ability to represent all the languages (Pires et al.,
2019). In addition, although mBERT and mDistilBERT showed some crosslingual characteristics, they
do not perform well on crosslingual benchmarks (K et al., 2020).

XLM-RoBERTa (XML-R) was released in November 2019 (Conneau et al., 2020) as an update to the
XLM-100 model (Conneau and Lample, 2019). XLM-R takes a step back from XLM, eschewing XLM’s
Translation Language Modeling (TLM) objective since it requires a dataset of parallel sentences, which
can be difficult to acquire. Instead, XLM-R trains RoBERTa(Liu et al., 2019) on a huge, multilingual
dataset at an enormous scale: unlabelled text in 104 languages is extracted from CommonCrawl datasets,
totalling 2.5TB of text. It is trained using only RoBERTa’s (Liu et al., 2019) masked language modelling
(MLM) objective. Surprisingly, this strategy provided better results in crosslingual tasks. XLM-R
outperforms mBERT on a variety of crosslingual benchmarks such as crosslingual natural language
inference and crosslingual question answering (Conneau et al., 2020).

Both architectures proposed in TransQuest have been successfully applied in the monolingual
semantic textual similarity tasks (Devlin et al., 2019; Reimers and Gurevych, 2019). When applied
in monolingual experiments, both of them use monolingual transformer models like BERT (Devlin et
al., 2019), RoBERTa (Liu et al., 2019) as the input. This inspired us to change the input in such a
way that it can represent both the source and target sentences for which the quality of translation needs
to be estimated, with the hope that the same architectures would also provide good results in the QE
task. Our initial experiments showed that crosslingual embeddings like XLM-R provide better results
than multilingual embeddings like mBERT. Therefore, in this research we explore the performance
of crosslingual embeddings with simple neural network architectures for the sentence-level quality
estimation task. To the best of our knowledge, state-of-the-art crosslingual contextual embeddings such
as XLM-R have not been used in quality estimation before.

3 Methodology

This section presents the methodology used to develop our quality estimation methods. We first describe
the neural network architectures we proposed, followed by the method used to train these architectures.

3.1 Neural Network Architectures

The TransQuest framework that is used to implement the two architectures described here relies on the
XLM-R transformer model (Conneau et al., 2020) to derive the representations of the input sentences.
The XLM-R transformer model takes a sequence of no more than 512 tokens as input and outputs the
representation of the sequence. The first token of the sequence is always [CLS], which contains the
special embedding to represent the whole sequence, followed by embeddings acquired for each word in
the sequence. As shown below, our proposed neural network architectures can utilise both the embedding
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for the [CLS] token and the embeddings generated for each word. The output of the transformer (or
transformers for SiameseTransQuest described below), is fed into a simple output layer which is used
to estimate the quality of translation. We describe below the way the XLM-R transformer is used and
the output layer, as they are different in the two instantiations of the framework. The fact that we do not
rely on a complex output layer makes training our architectures much less computational intensive than
alternative solutions. The TransQuest framework is open-source, which means researchers can easily
propose alternative architectures to the ones we present in this paper.

Both neural network architectures presented below use the pre-trained XLM-R-large model released
by HuggingFace’s Transformers library (Wolf et al., 2019). The XLM-R-large model covers 104
languages (Conneau et al., 2020), making it potentially very useful to estimate the translation quality
for a large number of language pairs.

TransQuest implements two different neural network architectures to perform sentence-level
translation quality estimation which we describe below. The architectures are presented in Figure 1.

1. MonoTransQuest (MTransQuest): The first architecture proposed uses a single XLM-R
transformer model and is shown in Figure 1a. The input of this model is a concatenation of the
original sentence and its translation, separated by the [SEP] token. We experimented with three
pooling strategies for the output of the transformer model: using the output of the [CLS] token
(CLS-strategy); computing the mean of all output vectors of the input words (MEAN-strategy); and
computing a max-over-time of the output vectors of the input words (MAX-strategy). The output
of the pooling strategy is used as the input of a softmax layer that predicts the quality score of
the translation. We used mean-squared-error loss as the objective function. Early experiments we
carried out demonstrated that the CLS-strategy leads to better results than the other two strategies
for this architecture. Therefore, we used the embedding of the [CLS] token as the input of a softmax
layer.

2. SiameseTransQuest (STransQuest): The second approach proposed in this paper relies on the
Siamese architecture depicted in Figure 1b which has shown promising results in monolingual
semantic textual similarity tasks (Reimers and Gurevych, 2019; Ranasinghe et al., 2019). In this
case, we feed the original text and the translation into two separate XLM-R transformer models.
Similar to the previous architecture we used the same three pooling strategies for the outputs of
the transformer models. We then calculated the cosine similarity between the two outputs of the
pooling strategy. We used mean-squared-error loss as the objective function. In initial experiments
we carried out with this architecture, the MEAN-strategy showed better results than the other two
strategies. For this reason, we used the MEAN-strategy for our experiments. Therefore, cosine
similarity is calculated between the the mean of all output vectors of the input words produced by
each transformer.

3.2 Training Details

We used the same set of configurations for all the language pairs evaluated in this paper in order to ensure
consistency between all the languages. This also provides a good starting configuration for researchers
who intend to use TransQuest on a new language pair. In both architectures we used a batch-size of eight,
Adam optimiser with learning rate 2e−5, and a linear learning rate warm-up over 10% of the training
data. During the training process, the parameters of XLM-R model, as well as the parameters of the
subsequent layers, were updated. The models were trained using only training data. Furthermore, they
were evaluated while training using an evaluation set that had one fifth of the rows in training data. We
performed early stopping if the evaluation loss did not improve over ten evaluation steps. All the models
were trained for three epochs. For some of the experiments, we used an Nvidia Tesla K80 GPU, whilst
for others we used an Nvidia Tesla T4 GPU. This was purely based on the availability of the hardware
and it was not a methodological decision.
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(a) MTransQuest architecture (b) STransQuest Architecture

Figure 1: Two architectures of the TransQuest framework.

4 Dataset

We used the architectures described above to predict two standard measures that express the quality
of a translation: Human-mediated Translation Edit Rate (HTER) and Direct Assessment (DA). All the
datasets that we used are publicly available and were released in WMT quality estimation tasks in recent
years (Specia et al., 2018; Fonseca et al., 2019; Specia et al., 2020). This was done to ensure replicability
of our experiments and to allow us to compare our results with the state of the art. In the reminder of the
section we provide more details about the datasets used.

4.1 Predicting HTER

The performance of QE systems has typically been assessed using the semiautomatic HTER (Human-
mediated Translation Edit Rate). HTER is an edit-distance-based measure which captures the distance
between the automatic translation and a reference translation in terms of the number of modifications
required to transform one into another. In light of this, a QE system should be able to predict the
percentage of edits required in the translation. We used several language pairs for which HTER
information was available: English-Chinese (En-Zh), English-Czech (En-Cs), English-German (En-
De), English-Russian (En-Ru), English-Latvian (En-Lv) and German-English (De-En). The texts are
from a variety of domains and the translations were produced using both neural and statistical machine
translation systems. More details about these datasets can be found in Table 1 and in (Specia et al., 2018;
Fonseca et al., 2019).

4.2 Predicting DA

Even though HTER has been typically used to assess quality in machine translations, the reliability of this
metric for assessing the performance of quality estimation systems has been questioned by researchers
(Graham et al., 2016). The current practice in MT evaluation is the so-called Direct Assessment (DA) of
MT quality (Graham et al., 2017), where raters evaluate the machine translation on a continuous 1-100
scale. This method has been shown to improve the reproducibility of manual evaluation and to provide a
more reliable gold standard for automatic evaluation metrics (Graham et al., 2015).

We used a recently created dataset to predict DA in machine translations which was released for the
WMT 2020 quality estimation shared task 1 (Specia et al., 2020). The dataset is composed of data
extracted from Wikipedia for six language pairs, consisting of high-resource English-German (En-De)
and English-Chinese (En-Zh), medium-resource Romanian-English (Ro-En) and Estonian-English (Et-
En), and low-resource Sinhala-English (Si-En) and Nepalese-English (Ne-En), as well as a Russian-

2Language codes are available in ISO 639-1 Registration Authority Website Online - https://www.loc.gov/
standards/iso639-2/php/code_list.php

 https://www.loc.gov/standards/iso639-2/php/code_list.php
 https://www.loc.gov/standards/iso639-2/php/code_list.php


5075

Language Pair Source MT system Competition train, dev, test size
De-En Pharmaceutical Phrase-based SMT WMT 2018 25,963, 1,000, 1,000
En-Zh Wiki fairseq based NMT WMT 2020 7,000, 1,000, 1,000
En-Cs IT Phrase-based SMT WMT 2018 40,254, 1,000, 1,000
En-De IT fairseq based NMT WMT 2019 13,442, 1,000, 1,000
En-De IT Phrase-based SMT WMT 2018 26,273, 1,000, 1,000
En-Ru Tech Online NMT WMT 2019 15,089, 1,000, 1,000
En-Lv Pharmaceutical Attention-based NMT WMT 2018 12,936, 1,000, 1,000
En-Lv Pharmaceutical Phrase-based SMT WMT 2018 11,251, 1,000, 1,000

Table 1: Information about language pairs used to predict HTER. The Language Pair column shows
the language pairs we used in ISO 639-1 codes2. Source expresses the domain of the sentence and MT
system is the Machine Translation system used to translate the sentences. In that column NMT indicates
Neural Machine Translation and SMT indicates Statistical Machine Translation. Competition shows the
quality estimation competition in which the data was released and the last column indicates the number
of instances the train, development and test dataset had in each language pair respectively.

English (En-Ru) dataset which combines articles from Wikipedia and Reddit (Fomicheva et al., 2020).
These datasets have been collected by translating sentences sampled from source-language articles using
state-of-the-art NMT models built using the fairseq toolkit (Ott et al., 2019) and annotated with DA
scores by professional translators. Each translation was rated with a score from 0-100 according to
the perceived translation quality by at least three translators (Specia et al., 2020). The DA scores were
standardised using the z-score. The quality estimation systems evaluated on these datasets have to predict
the mean DA z-scores of test sentence pairs. Each language pair has 7,000 sentence pairs in the training
set, 1,000 sentence pairs in the development set and another 1,000 sentence pairs in the testing set.

5 Evaluation and discussion

This section presents the evaluation results of our architectures on the datasets described in the previous
section in a variety of settings. We first evaluate them in a single language pair setting (Section 5.1),
which is essentially the setting employed in the WMT shared tasks. We then evaluate in a setting where
we combine datasets in several languages for training (Section 5.2). We conclude the section with an
evaluation of a transfer learning setting (Section 5.3).

In order to better understand the performance of our approach, we compare our results with the
baselines reported by the WMT2018-2020 organisers. Two baselines were used: OpenKiwi (Kepler
et al., 2019) and QuEst++ (Specia et al., 2015). Row IV of Tables 2 and 3 present the results for these
baselines. For some language pairs in the 2018 WMT quality estimation shared task the organisers did
not report the scores obtained using OpenKiwi. These cases are marked with NR in Table 2. Row IV of
both tables also includes the results of the best system from WMT2018 to WMT2020 for each setting.
Additionally, Row IV of Table 3 shows the results of the TransQuest’s submission to WMT 2020 QE
Task 1, which was the winning solution is all the languages (Ranasinghe et al., 2020).

The evaluation metric used was the Pearson correlation (r) between the predictions and the gold
standard from the test set, which is the most commonly used evaluation metric in recent WMT quality
estimation shared tasks (Specia et al., 2018; Fonseca et al., 2019; Specia et al., 2020).

5.1 Supervised Single Language Pair Quality Estimation

The first evaluation we carried out was the supervised single language pair evaluation where we used the
training set of each language to build a quality estimation model and we evaluated it on a testing set from
the same language. This replicates the standard QE evaluation carried out in the WMT shared tasks. The
results for each language in supervised settings are shown in row I of Tables 2 and 3. The results indicate
that both architectures proposed in TransQuest outperform the baselines in all the language pairs of both
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Mid-resource High-resource

Method En-Cs
SMT

En-Ru
NMT

En-Lv
SMT

En-Lv
NMT

De-En
SMT

En-Zh
NMT

En-De
SMT

En-De
NMT

I MTransQuest 0.7207 0.7126 0.6592 0.7394 0.7939 0.6119 0.7137 0.5994
STransQuest 0.6853 0.6723 0.6320 0.7183 0.7524 0.5821 0.6992 0.5875

II MTransQuest *-En|En-* 0.7168 0.7046 0.7181 0.7482 0.7939 0.6101 0.7355 0.5992
STransQuest *-En|En-* 0.6663 0.6701 0.6533 0.7192 0.7524 0.5721 0.7000 0.5793

III MTransQuest-m 0.7111 0.7012 0.7141 0.7450 0.7878 0.6092 0.7300 0.5982
STransQuest-m 0.6561 0.6614 0.6621 0.7202 0.7369 0.5612 0.7015 0.5771

IV
Quest ++ 0.3943 0.2601 0.3528 0.4435 0.3323 NR 0.3653 NR
OpenKiwi NR 0.5923 NR NR NR 0.5058 0.7108 0.4001
Best system 0.6918 0.5923 0.6188 0.6819 0.7888 0.6641 0.7397 0.5718

V mBERT 0.6423 0.6354 0.5772 0.6531 0.7005 0.5483 0.6239 0.5002

Table 2: Pearson (r) correlation between TransQuest algorithm predictions and human post-editing
effort. Best results for each language by any method are marked in bold. Rows I, II and III indicate
the different evaluation settings, explained in Sections 5.1, 5.2 and 5.3. Row IV shows the results of the
state-of-the-art methods and the best system submitted for the language pair in that competition. NR
implies that a particular result was not reported by the organisers. Row V presents the results of the
multilingual BERT (mBERT) model in MonoTransQuest Architecture.

aspects in quality estimation, and also outperform the best systems from previous competitions. From
the two architectures, MTransQuest performs slightly better than STransQuest.

In the HTER aspect of quality estimation, as shown in Table 2, MTransQuest gains ≈ 0.1-0.2
Pearson correlation boost over OpenKiwi in most language pairs. However, OpenKiwi comes very
close to MTransQuest in En-De SMT. In the language pairs where OpenKiwi results are not available
MTransQuest gains ≈ 0.3-0.4 Pearson correlation boost over QuEst++ in all language pairs for both
NMT and SMT. Table 2 also gives the results of the best system submitted for a particular language pair.
It is worth noting that for the training setting described in this section, the TransQuest results surpass the
best system in all the language pairs with the exception of the En-De SMT and En-Zh NMT datasets.

As shown in Table 3, in the DA aspect of quality estimation, MTransQuest gained ≈ 0.2-0.3 Pearson
correlation boost over OpenKiwi in all the language pairs. Additionally, MTransQuest achieves ≈
0.4 Pearson correlation boost over OpenKiwi in the low-resource language pair Ne-En. Furthermore,
TransQuest participated in WMT 2020 quality estimation shared task 1 and it was the winning solution
in all the language pairs. To achieve this restult, TransQuest was fine-tuned with self-ensemble and data
augmentation to achieve the first place. We do not describe here the fine tuning approaches since they
are task specific, but more details can be found in (Ranasinghe et al., 2020).

Additionally, row V in both Tables 2 and 3 shows the results of multilingual BERT (mBERT) in
MonoTransQuest architecture. We used the same settings similar to XLM-R. The results show that XLM-
R model outperforms the mBERT model in all the language pairs of both aspects in quality estimation
and we can safely assume that the cross lingual nature of the XLM-R transformers had a clear impact to
the results.

5.2 Supervised Multi-Language Pair Quality Estimation

Most of the available open-source quality estimation frameworks require maintaining separate machine
learning models for each language. This can be very challenging in a practical environment where the
systems have to work with 10-20 language pairs. Furthermore, pre-trained neural quality estimation
models are large. In a commercial environment, where the quality estimation systems need to do
inference on several language pairs, loading all of the pre-trained models from all language pairs would
require a lot of Random Access Memory (RAM) space and result in a huge cost.
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Low-resource Mid-resource High-resource

Method Si-En Ne-En Et-En Ro-En Ru-En En-De En-Zh

I MTransQuest 0.6525 0.7914 0.7748 0.8982 0.7734 0.4669 0.4779
STransQuest 0.5957 0.7081 0.6804 0.8501 0.7126 0.3992 0.4067

II MTransQuest *-En|En-* 0.6528 0.7824 0.7827 0.8868 0.7821 0.4518 0.4334
STransQuest *-En|En-* 0.5968 0.6992 0.6921 0.8432 0.7152 0.3621 0.3812

III MTransQuest-m 0.6526 0.7581 0.7574 0.8856 0.7521 0.4420 0.4646
STransQuest-m 0.5970 0.6980 0.6934 0.8426 0.6945 0.3832 0.3900

IV OpenKiwi 0.3737 0.3860 0.4770 0.6845 0.5479 0.1455 0.1902
TransQuest @WMT2020 0.6849 0.8222 0.8240 0.9082 0.8082 0.5539 0.5373

V mBERT NS 0.6452 0.6231 0.8351 0.6661 0.3765 0.3982

Table 3: Pearson (r) correlation between TransQuest algorithm predictions and human DA judgments.
Best results for each language (any method) are marked in bold. Rows I, II and III indicate the different
settings of TransQuest, explained in Sections 5.1-5.3. OpenKiwi baseline results are in Row IV. Row IV
also shows the results for TransQuest’s submission to WMT 2020 QE Task 1 (Ranasinghe et al., 2020)
which was also the winning solution. Row V presents the results of the multilingual BERT (mBERT)
model in MonoTransQuest Architecture. NS implies that the non-English language in the language pair
is not supported by mBERT.

Therefore, with TransQuest we propose a single model that can perform quality estimation on several
language pairs. We propose two training strategies for supervised multi language pair settings:

1. We separate the language pairs into two groups. One group contains all the language pairs where
the source language is English and in the other group the target is always English. We represent the
former with En-∗, and the latter with ∗-En. We train both architectures by concatenating training sets
in all the language pairs in a particular group. To ease the comparison of the results, we evaluate the
model separately on each language pair. We do this process for both aspects in quality estimation.
The results are shown in row II in Tables 2 and 3.

2. We concatenate training data from all the language pairs, without considering the direction of
the translation, and build a single model for all language pairs. We refer to these models by
MTransQuest-m and STransQuest-m. Similarly to the first multi-language pair training strategy,
we evaluate the model separately on each language pair and for both aspects of quality estimation.
The results are shown in row III in Tables 2 and 3.

As depicted in Tables 2 and 3, the multi-language pair experiments yielded very competitive results.
In fact, for some language pairs the multi-language pair model performed better than the model that was
trained solely on that particular pair. When predicting HTER, the multi-language pair model performed
better in En-Lv for both SMT and NMT, and in En-De for SMT while performing on par in En-De for
NMT. In predicting DA, the multi-language pair model performed better in Et-En, Ru-En and Si-En. In
addition, with the exceptions of the En-De SMT and En-Zh NMT setting, the models that consider the
direction of the language pairs are better than the best systems submitted to previous editions of WMT.

Throughout our experiments we noted that the TransQuest models built with the direction of the
language pairs in mind performed slightly better than the TransQuest models trained without considering
the language pair direction. It should be noted that none of the multi-language pair models’ Pearson
correlation decreased by more than 0.03% in any language pair for either TransQuest architecture.
Similar to supervised single language pair experiments, MTransQuest architecture performed better than
STransQuest architecture in all the languages in both aspects of quality estimation.

The size of the pre-trained TransQuest models on a single language pair was ≈ 2GB. The pre-trained
models for multiple language pairs in this section did not exceed more than 2.1 GB. Therefore, we
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(a) Ne-En Results (b) Si-En Results

Figure 2: Transfer learning impact of TransQuest Architectures. MTransQuest Scratch and
STransQuest Scratch indicates that the model was trained from scratch while MTransQuest TL and
STransQuest TL indicates that models followed the transfer learning strategy.

present multi-language pair pre-trained models as a solution for environments that are on tight resources
and seek to conduct quality estimation on multiple language pairs.

5.3 Transfer Learning based Quality Estimation

The biggest challenge in building supervised quality estimation models is not having enough annotated
data (Fomicheva et al., 2020), especially for low-resourced languages. We explore the possibility of
performing transfer learning on low-resource languages using the models trained on better-resourced
languages. As the low-resource language pairs were only available in the DA aspect, we conducted this
experiment only in the DA aspect in quality estimation. All of the low-resource language pairs in the
DA aspect had English as the target language. Considering the positive impact that the direction of the
language pair had on Pearson correlation in the previous experiment, we decided to consider only the
language pairs with English as the target language. This left us only with mid-resource language pairs
for training. We were also aware that the TransQuest models had relatively low Pearson correlations with
high-resource language pairs in DA.

1. We build a single model for each architecture using all the training data available for mid-resource
language pairs: Et-En, Ro-En and Ru-En. We refer to this as TransQuest-Mid.

2. When we train a TransQuest model for a low-resource language pair, we initiate the model weights
from TransQuest-Mid and start training. To see whether it is possible to get compatible results even
with fewer training instances, we conduct the experiments for 0 (unsupervised), 100, 200, 300 and
up to 1,000 training sentence pairs. We do this for Si-En and Ne-En. Depending on the architecture
we use, we refer to this model as MTransQuest TL or STransQuest TL.

3. In order to evaluate the effect of transfer learning we conduct the same experiment in step 2, but
we train the model from scratch. Depending on the architecture we use, we refer to this model as
MTransQuest Scratch or STransQuest Scratch.

As shown in Figure 2, the transfer learning strategy significantly impacts the results. In Ne-En, with
only 100 training instances, training MTransQuest scratch achieves only 0.1242 Pearson correlation
between the predictions and gold labels of the test set. However, in Ne-En with only 100 training
instances, training MTransQuest using the transfer learning strategy achieves 0.7417 Pearson correlation,
which is close to the best result obtained with the MTransQuest architecture for Ne-En after training
with 7,000 instances (0.7914). When the number of training instances grows, the results from the
TransQuest models trained with the transfer learning strategy and the results from the TransQuest models
trained from scratch converge. A similar pattern, but with a lower Pearson correlation, can be seen
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with STransQuest. Similar results can also be observed for the other low-resource language pair, Si-
En. Therefore, it is safe to conclude that TransQuest with the transfer learning strategy can be hugely
beneficial to low-resource language pairs in quality estimation where annotated training instances are
scarce.

6 Conclusions

In this paper we introduced TransQuest, a new open source framework for quality estimation based on
cross-lingual transformers. TransQuest is implemented in PyTorch and supports training of sentence-
level quality estimation systems on new data. It outperforms other open-source tools on both aspects of
sentence-level quality estimation and yields new state-of-the-art quality estimation results. As far as we
know, it is the first time that an open-source QE framework has been tested on both aspects of quality
estimation. Furthermore, it is the first time that a QE system explores multi-language pair models and
transfer learning on low-resource language pairs. Unlike many other open-source neural QE frameworks,
TransQuest does not use parallel data and hence does not require similar computational resources.

We propose two architectures: MTransQuest and STransQuest, neither of which have been previously
explored in QE tasks. The two architectures have a trade-off between accuracy and efficiency. On
an Nvidia Tesla K80 GPU, MTransQuest takes 4,480s on average to train on 7,000 instances, while
STransQuest takes only 3,900s on average for the same experiment. On the same GPU, MTransQuest
takes 35s on average to perform inference on 1,000 instances which takes STransQuest only 16s to do so.
Therefore we recommend using MTransQuest where accuracy is valued over efficiency, and STransQuest
where efficiency is prioritised above accuracy. Since there is a growing interest3 in the NLP community
for energy efficient machine learning models, we decided to support both architectures in the TransQuest
Framework.

In the future, we plan to expand TransQuest with more neural network architectures and more models
for different levels of quality estimation such as word-level and document-level. In the sentence-level,
we plan to perform transfer learning on language pairs that do not include English at all. We also hope
to conduct unsupervised experiments on low-resource language pairs.
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