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Abstract

Slot-filling models in task-driven dialog systems rely on carefully annotated training data. How-
ever, annotations by crowd workers are often inconsistent or contain errors. Simple solutions like
manually checking annotations or having multiple workers label each sample are expensive and
waste effort on samples that are correct. If we can identify inconsistencies, we can focus effort
where it is needed. Toward this end, we define six inconsistency types in slot-filling annotations.
Using three new noisy crowd-annotated datasets, we show that a wide range of inconsistencies
occur and can impact system performance if not addressed. We then introduce automatic meth-
ods of identifying inconsistencies. Experiments on our new datasets show that these methods
effectively reveal inconsistencies in data, though there is further scope for improvement.

1 Introduction

Slot-filling is a key component of task-driven dialog systems, providing a way for systems to extract key
properties from user queries. For example, a slot-filling model can extract the tokens “New York™ as a
TO_LOCATION slot in the query “book a flight to New York™. Standard slot-filling models train or finetune
on large datasets of carefully-annotated data that is domain specific. This means there is an ongoing need
for annotating new datasets for new domains.

Typically, data annotation is completed via small tasks with brief instructions completed by non-expert
crowd workers. Collecting high quality data in this setting is challenging, involving multiple rounds of
pilot annotations and analysis to develop suitable instructions (Alonso et al., 2015). Figure 1 shows
examples of inconsistencies in annotations performed by crowd workers. Training on data with these
issues will lead to lower quality models, which in turn decrease the effectiveness of the overall dialog
system. Most research on improving data quality has focused on mechanisms such as aggregation (Parde
and Nielsen, 2017), worker filtering (Li and Liu, 2015), and attention checks (Oppenheimer et al., 2009).
These all raise costs and primarily address clear inconsistencies (such as in examples 1, 4, 5, and 6) but
not more subtle cases like the inclusion of “dollar” in examples 2 and 3. Additionally, annotation-as-
a-service (e.g., scale.ai) is being widely used by developers but often cannot be customized by the
developer to add these kinds of mechanisms. If we could identify all of these inconsistencies then we
could fix them without expending effort on examples that were correctly annotated and we could improve
task instructions to reduce further inconsistencies.

In this paper, we catalog a typology of annotation inconsistencies that occur in slot-filling data and
present several automatic methods for identifying inconsistencies. To demonstrate our ideas, we intro-
duce and analyze three new crowd-annotated datasets.! By analyzing the data with our typology, we find
that the distribution of errors varies substantially depending on the domain. We also measure the impact
of these inconsistencies on trained models and examine the relative impact of each inconsistency type
through a controlled experiment where we artificially inject errors.

*Please direct correspondence to: stefan.dataset@gmail.com.

TWork conducted while author was employed by Clinc.

Datasets can be found at https://tinyurl.com/slot-inconsistencies.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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1. what is the difference in sterling exchange rates from yen ?

| S—— | S—
SOURCE TARGET

2. what ’s todays exchange rate from us dollar to rwandan franc ?
1 ] L ]
SOURCE TARGET

3. how many bwp do i get when i convert 700 australian dollar

convert my money from yen to usd please

how much canadian dollar is one mexican peso
L ] L ] L ]
AMOUNT AMOUNT — SOURCE

how much is the rate from american to canadian

—_ | N I | I | I | I
TARGET AMOUNT  SOURCE AMOUNT SOURCE TARGET

Figure 1: Examples of inconsistent annotations by crowd workers. In 1, the SOURCE and TARGET labels
are backwards. In 2 and 3, there is variation in whether “dollar” is included in the SOURCE span. In 4,
annotations for “yen” and “usd” are missing. In 5, the label for “canadian dollar” is incorrect. In 6,
“much” is annotated, but in 5 it is not.

We also propose several inconsistency identification methods that require no additional annotation,
using only the data already being collected. We evaluate by comparing to manually checking every ex-
ample, measuring effort required and the quality of models trained on the resulting data. The approaches
have different strengths and weaknesses. One reduces effort by 16-31% and produces models within 1.6
F1. Another reduces effort by 50-87%, but leads to weaker models. These results indicate that incon-
sistency identification is possible, but there is scope to further improve the tradeoff between effort and
data quality. This work provides the basis for a new direction in research for addressing inconsistencies
in crowdsourcing by defining a typology of inconsistency types, collecting new benchmark datasets, and
exploring directions for automatic identification of inconsistencies.

2 Related Work

2.1 Annotation Consistency

Inconsistencies have been studied across a wide range of tasks. Part-of-speech tagging has received
particular attention, with a range of methods based on model scores (Abney et al., 1999; Eskin, 2000;
Matsumoto and Yamashita, 2000; van Halteren, 2000; Ma et al., 2001; Nakagawa and Matsumoto,
2002). One particular method based on variation in POS tags of n-grams (Dickinson and Meurers, 2003)
has been extended to predicate-argument relations (Dickinson and Lee, 2008), and dependency parses
(Dickinson, 2010; Dickinson and Smith, 2011). More recent work has explored automatic identification
methods for word sense and multi-word-expression annotation (Dligach and Palmer, 2011; Hollenstein
et al., 2016).

2.2 Crowdsourcing Quality

A range of options have been developed for improving crowdsourcing quality. The most common ap-
proach is to collect multiple annotations and then aggregate them (Hovy et al., 2013; Passonneau and
Carpenter, 2014; Parde and Nielsen, 2017; Dumitrache et al., 2018). This can identify inconsistencies,
but at significant cost as each example must be annotated multiple times. Less expensive options include
using examples with known answers to test worker attention (Oppenheimer et al., 2009), or filtering
workers based on qualification tasks or preliminary annotation (Li and Liu, 2015; Roit et al., 2020).
However, these primarily address worker attentiveness, which does not cover all the inconsistency types
we consider. In particular, we also cover inconsistencies related to subtle cases without an obvious
correct answer.

2.3 Error Type Categorization

Another line of work has explored automatic identification of error types for tasks such as constituency
parsing (Kummerfeld et al., 2012; Kummerfeld et al., 2013), coreference resolution (Kummerfeld and
Klein, 2013), semantic role labeling (He et al., 2017), and slot-filling (Béchet and Raymond, 2018).
However, they focus on evaluating system outputs in comparison to a gold standard reference in order
to understand shortcomings of the systems. One notable exception (Niu and Penn, 2019) establishes
a taxonomy of annotation errors, although this is for a single corpus (ATIS (Hemphill et al., 1990)).
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Type Example Explanation

1. change twenty us dollars to the british pound These are cases where the boundaries of
o o Y—_— a slot are 11:1‘C0¥1:§1St’,61:1t. In these _
Slot Format 2. convert 1200 of new zealand dollars to the cad examples, “british” is part of TARGET in
 S— — | I— 1 but not 3, and “the” is part of TARGET
AMOUNT SOURCE TARGET . « 9 o
3. what is the exchange rate between pesos and british pounds in 2 but not 1, and “dollars” is part of
[— [E— SOURCE in 1 but not 2.
SOURCE TARGET
1. if i have pounds then how many japanese yen would that be When an unlabeled span should be
| E—— - e . £
Omission R ' . labeled as a slot. Here,“ japanese yen ;
2. please convert mexican pesos to canadian dollars should be TARGET and “mexican pesos
should be SOURCE.
TARGET
. 1. how many pesos is twelve dollars A span is labeled that should not be.
Addition —_ L 1L 1L 1 H « ” should not be labeled
AMOUNT ~ SOURCE AMOUNT TARGET €re, many shou not be labeled.
1. show exchange rate between the dollar and the yen When a token span is labeled as one
— L— slot type but should be labeled as
AMOUNT TARGET
Wrong Label 2. what is the rate of lari to chf another. Here “dollar” should be
L L SOURCE and “chf” should be TARGET.
SOURCE  SOURCE
1. please convert twenty british pounds into american dollars When a pair of annotated slots have
L L 1 L ! each other’s label and the labels form a
Swapped Labels AMOUNT TARGET SOURCE .
PP 2. what is the exchange rate to swiss franc from korean won natural pair. Here, SOURCE and TARGET
L 1 L 1 are flipped.
SOURCE TARGET
1. whatis 400 canadian dollars in euros . .
L L D L When sometimes one span is used and
. . AM%JNT SOURCE K SOURCE TARGET di | sometimes two spans are used. Here,
) 2. what is the conversion from south korean won to canadian dollars  «_,.-qi-1 dollar” is labeled as a SOURCE
Chop and Join L 1L | . .
SOURCE TARGET slot in two parts in the first case, but not
3. exchange new zealand dollar for hong kong dollars the others.
L L ]

1
SOURCE TARGET

Table 1: Examples of the inconsistency types we propose in Section 3.

Recent work has also explored error types for crowdsourced paraphrases (Yaghoub-Zadeh-Fard et al.,
2019), another important aspect of dialogue data collection.

3 Inconsistencies

In this section, we define six inconsistency types, measure their frequency in three new datasets, and eval-
uate their impact on model performance. We developed the set of inconsistencies by manually inspecting
crowd-annotated data and looking for patterns in the common mistakes.

3.1 Types of Inconsistencies

We identify six inconsistency types that arise in the crowdsourcing setting when multiple non-expert
human annotators work independently. Table 1 briefly describes the types through examples. Some
inconsistencies arise when there is ambiguity in an aspect of the conventions for labeling slots, with
different workers resolving the ambiguity differently. Other inconsistencies are mistakes that directly
violate the specified annotation request, arising due to either confusion or rushed effort.

3.1.1 Slot Format Inconsistency

In some cases, it is clear that a slot is present, but the precise boundaries of the slot may be unclear.
For example, consider labeling an ACCOUNT in the text “to my checking account please”. There are four
possible reasonable annotations:

1. “to my checking account please” 3. “to my checking account please”
L 1
ACCOUNT ACCOUNT
2.  “tomy checking account please” 4.  “tomy checking account please”
S — | IS
ACCOUNT ACCOUNT

Depending on how the extracted slots are used, which of these is right may differ. For example, the “my”
indicates that the checking account belongs to the user, which could be important for distinguishing
it from another context (e.g. “Sarah’s checking”). It is possible that any of these would work for some
downstream uses, but training with inconsistent labels will present a confusing training signal for models.

5037



3.1.2 Omission Inconsistency

This covers cases where a span is meant to be labeled with a certain slot label, but is not. Consider the
following examples:

5. “transfer 30 dollars to savings please” 7. “transfer over $200 now from checking”
L ] L ] | —) | I |
. AMOUNT ACCOUNT . AMOUNT ACCOUNT
6. “please withdraw 45 bucks from savings”

AMOUNT

The span “savings” should be labeled as ACCOUNT in example 6, but is not. This might occur if a worker
is moving quickly through examples and submits after assigning the first label.

3.1.3 Addition Inconsistency

These occur when a span is labeled with a slot label but should be unlabeled. Consider the following:

8. “doyou mind checking my savings please”
L 1 L 1

ACCOUNT ACCOUNT

“savings” is a valid ACCOUNT, but “checking” is not. This might occur if a worker is simply pattern
matching on key terms rather than carefully reading each example.

3.1.4 Wrong Label Inconsistency

This is when a span is correctly identified as a slot, but assigned an incorrect label. For example:

9.  “transfer 30 dollars please”

ACCOUNT

Here, “30 dollars” is marked as a slot, but with ACCOUNT instead of AMOUNT. These could be the result of
a typo or mis-click when using an annotation tool, or due to a misunderstanding of the slot.

3.1.5 Swapped Label Inconsistency

This is a special case of Wrong Label inconsistency. A Swapped Label inconsistency is when (a) two
spans in the same sample have the wrong label, but would be correct if they were swapped, and (b) the
two labels are for the same item type (e.g., a currency, or a location). For example, consider labels for
the SOURCE and TARGET currencies below:

10. “how muchis one usd in gbp” 11.  “show the exchange rate between dollars and yen ”
[ — [ —_
AMOUNT TARGET ~ SOURCE SOURCE TARGET

The first example clearly has the two labels reversed. The second example is ambiguous and so may be
annotated one way by some workers and the reverse by others.

3.1.6 Chop and Join Inconsistency

These occur when either a span is labeled as one slot where several annotations are appropriate (Join), or
when a span is labeled as several annotations where a single annotation is appropriate (Chop). Consider
the following two samples related to scheduling a flight departure date (DATE):

12.  “buy tickets for jan 14 in 2020 13. “schedule on the 20th of december 2016
[— [ [ S — ) —
DATE DATE DATE DATE

In the first sample, the DATE slot is applied to one continuous token span, but in the second sample the
DATE slot is applied to each individual attribute (i.e., day, month, and year).

3.1.7 Other

When annotating inconsistencies we also include an Other category. This covers annotations that do not
fit within the cases defined above, but do seem inconsistent with the rest of the annotations.
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Dataset # Slot Types Example

Forex 3 ifihave 23 chinese renminbi then how many korean won could i get
| -  — —]
AMOUNT SOURCE TARGET
Companies 7 whatis the top auto company with a p/e ratio above 224 billion dollars ?
L ] L ] L ]
SECTOR_NAME METRIC NUMERIC
Flights 6 need economy class flight to st. louis from la guardia
L ] L ] L ]
CLASS TO_LOCATION FROM_LOCATION

Table 2: Examples from each dataset used in our experiments.

Dataset Omission Addition Slot Wrong Swapped Chop- Other Any
Format Label Label Join

Forex 7.8 29 94 4.8 6.3 0.0 1.3 27.5

Companies 334 5.0 352 12.4 0.0 0.0 12.0 67.6

Flights 15.8 1.8 254 4.2 0.6 0.6 0.6 44.6

Table 3: The percentage of samples in each dataset with each inconsistency type.

3.2 Datasets

We crowdsourced slot annotations for datasets in three domains to analyze the frequency of each in-
consistency type and the effect inconsistencies have on slot-filling model performance. Table 2 shows
examples from each dataset and the number of different slot types. The sentences used for two (Forex
and Companies) were collected using the crowdsourcing approach described by Larson et al. (2019) and
sentences for the third (Flights) were sampled from prior work (Jaech et al., 2016).

Forex This dataset consists of short queries about currency exchange rates. Crowd workers were asked
to annotate spans with three slots: SOURCE, TARGET, and AMOUNT.

Companies This contains queries about metrics measuring properties of companies. There are seven slot
types: SECTOR_NAME, METRIC, NUMERIC, LOCATION_OUTSIDE_NAME, LOCATION_INSIDE_NAME, RANK,
and DATE_METRIC. Annotating this dataset is challenging because there are more slot types and the
setting is probably unfamiliar to most crowd workers due to the domain’s technical nature.

Flights These queries are about booking flights between US cities. The slots are: CLASS, TO_LOCATION,
FROM_LOCATION, DEPART_DATE, RETURN_DATE, and NUM_PASSENGERS.

The Flights and Companies datasets contain 500 samples each, and Forex contains 520. All samples
are in English. We crowdsourced slot label annotations using Amazon Mechanical Turk, paying workers
$0.10 per sample. Each sample was annotated by one worker, who was asked to annotate all slot types
present. Instructions contained (1) descriptions of each slot label type, and (2) examples of annotations.
The crowdsourcing task prompts contained basic annotated examples, and the instructions and examples
did not emphasize any particular policy regarding possible inconsistencies.

3.3 Manually Labeling Inconsistencies

Once annotated by the crowd, we manually checked each annotated sample for inconsistencies. Incon-
sistencies in the data were labelled independently by two of the authors of this paper, who then discussed
and reconciled any disagreements. We did not predefine an annotation policy for every slot, particularly
the Slot Format inconsistencies. Instead, we looked at the data and followed the dominant behavior of
workers over all similar annotations in a dataset, labeling annotations in the minority as inconsistencies.
We used a search tool (Larson et al., 2020) to help find all relevant samples to determine the majority
annotation scheme. For the Flights dataset we also used the original annotations to help identify incon-
sistencies (but again, followed the crowd majority conventions even when they deviated from the original
data).
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Dataset

Train Forex Companies Flights
Raw Crowd Annotations (Crowd) 0.83 0.51 0.77
Slot Format Inconsistencies Resolved (Formatted) 0.86 0.57 0.87
Consistent Annotations (Consistent) 0.95 0.90 0.94

Table 4: Slot-filling F scores when training on data with different levels of inconsistency. The evaluation
sets are composed of consistently annotated data.

3.4 Inconsistency Rates

Table 3 (previous page) shows the observed rates of each inconsistency type in each dataset. Rates
are calculated by dividing the number of samples containing the inconsistency type by the number of
samples in the dataset. (Note that Swapped Label cases are not included in the count of Wrong Label
cases.) The frequency of samples having any type of inconsistency is quite high, ranging from 27.5% to
65%. Datasets with more slot types have more inconsistencies. The Companies dataset has the highest
rate of inconsistencies, confirming our hypothesis that this is a challenging dataset for non-experts to
annotate. The Slot Format inconsistency is the most common type for all of the datasets and Omission
is the second most common type. This observation guided the focus of the next section of the paper,
where we develop automatic methods for finding inconsistencies. As expected, datasets with slot values
that can be one of two slot types (e.g., TO_.LOCATION and FROM_LOCATION) have a higher occurrence of
swapped labels.

3.5 Measuring the Impact on Model Performance

Given that annotated slot-filling data is used to train slot-filling models, we study the impact that the
noisy datasets have on slot-filling performance. We trained slot-filling models on three versions of each
dataset: the raw crowd-annotated dataset (Crowd), a version in which we fixed Slot Format inconsis-
tencies (Formatted), and a version in which we fixed all inconsistencies (Consistent). We include the
Formatted version in our analysis since Slot Format inconsistencies are the most common.

Each model was tested on a test set with consistent annotations. We used a Bi-LSTM architecture
similar to Finegan-Dollak et al. (2018)’s template-based approach with randomly-initialized word em-
beddings for the slot-filling model. We computed the slot F; score using 10-fold cross-validation.

Results Table 4 shows slot-filling F scores for each training set. The difference in model performance
when trained on noisy versus consistently annotated training samples is substantial, with the Companies
dataset seeing an absolute difference of roughly 40 percent. The differences for the Forex and Flights
datasets are also quite profound. We also note that fixing Slot Format inconsistencies (Formatted) yields
model improvements, but certainly not enough to reach Consistent performance, indicating that the other,
less frequent inconsistencies cause substantial model degradation.

Inconsistency Type Impact To investigate the relative impact of each inconsistency type, we per-
formed a second experiment in which we introduced artificial inconsistencies into the Consistent version
of the Flights dataset. Separately for each inconsistency type, we automatically modified a fraction of the
training samples to introduce that inconsistency. We trained models and measured performance. Figure 2
(next page) shows that an increase of any type of inconsistency negatively affects model performance.
Swap and Chop inconsistencies have the largest effect on model performance. Fortunately, they are rare
in our crowdsourced data (see Table 3). Addition inconsistencies had relatively little impact, but are also
relatively rare. The remaining types, which are the more common ones, all have similar impacts.

The results from these experiments demonstrate that model performance is degraded when training
on inconsistently-annotated data. This observation is the motivation of our next goal: automatically
detecting inconsistent annotations.

5040



95

Addition ——
Format —<—
90 Omission
% All
S 85 ¢ Wrong
=3 Chop —e—
%D 80 | Swap —e—
a9
:('J 75
17
70
65

0 2 4 8 16 32
Percentage of Samples with Noise Added
Figure 2: Slot-filling F} scores with various levels of artificial inconsistency injected into the Flights

dataset. The All case is an even distribution of the six inconsistency types. The legend is ordered to
match the order of lines.

4 Automatic Inconsistency Detection

Addressing the challenge of inconsistent annotations usually involves a combination of two approaches:
improving annotation instructions and manual post-processing. Developing better instructions is a chal-
lenge, as it requires either foreseeing all scenarios where there may be inconsistency in annotation con-
ventions, or looking at enough annotated data to identify inconsistencies across examples. Even if com-
prehensive instructions are developed, there is no guarantee that annotators will follow the conventions
perfectly. Manual post-processing can address these issues, but without any means of guiding effort to
potentially problematic examples it involves a substantial amount of effort. Collecting multiple anno-
tations of each sample can reduce these issues, but increases costs and will not resolve all cases as the
majority annotation for one example may be inconsistent with the majority for another example.

In this section, we explore methods of automatic inconsistency detection. These could be used either
to assist in refinement of instructions or to guide post-processing to focus effort. We propose a range of
automatic inconsistency detection algorithms that are a first step towards addressing this challenge.

The setting we consider is when a new dataset has been annotated by crowd workers with one anno-
tation per example. There is no in-domain gold standard annotated data available and no other data with
the same annotation scheme available. This matches the application described in Section 1: developing
a dialog system for a new domain with its own set of slots.

4.1 Format Checker

The Format Checker is specifically tailored to detect Slot Format inconsistencies. It has three steps: (1)
form sets of characteristic left and right n-grams for slots, (2) check when text adjacent to a span is in
an n-gram set, (3) use majority voting to suggest an n-gram should be part of a slot or not. We say a
sample has been “flagged” if it contains a token span that has a suggested change. Suggestions to flagged
samples can be applied automatically, or on a case-by-case basis. We explain these three steps in more
detail below.

N-gram sets The first step is to construct left- and right-n-gram sets. A left n-gram set is the set of all
token sequences in a span that do not include the last token. For example, for the text span “my premier
savings account”, the left-n-gram set is {“my”, “premier”, “savings”, “my premier”, “premier savings”,
“my premier savings”}. A right n-gram set is the same, except it excludes the first token of a span rather

than the last one. We build these sets over all text spans in the data for each slot.

Checking adjacent tokens Using the n-gram sets, we identify cases where a boundary may be incon-
sistent. For each slot in each example, we consider the text to the left of the slot and see if it is in the
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left-n-gram set. Similarly, we check if the text to the right of the slot is in the right-n-gram set. If there
is a match, then there may be an inconsistency, where the adjacent text should be part of the span. For
example, consider these three samples:

1. use primary savings account please 3. please show primary checking account
L 1 L 1

ACCOUNT ACCOUNT
2. from primary checking account last week
BT
All three samples contain an ACCOUNT slot. The left n-gram set for these samples is {“primary”, “pri-
mary savings”, “savings”, “checking”, “primary checking”}. When checking the second example, the
algorithm would identify “primary” as a word that is in the left n-gram set but not in the span, which

indicates that there may be a span inconsistency here.

Voting The previous step provides a set of possible inconsistencies. For each one, we then use a voting
process to give further information about what the dominant convention appears to be. This works by
identifying how frequently that n-gram is included in the span and how often it is adjacent to the span. If
it is included more often then the suggestion is to add it in the other cases, otherwise the suggestion is to
remove it from the cases it is used in. In the example above, including “primary” is more common than
excluding it, and so the suggestion would be to add it in the second sample.

4.2 Label Variation Detector

This approach is an adaptation of the variation n-gram method proposed by (Dickinson and Meurers,
2003) for detecting errors in part-of-speech annotations. The approach involves two steps: (1) extract
n-gram patterns, (2) use majority vote on annotations in the n-gram patterns to identify the most common
pattern. These suggestions can be applied automatically, or on a case-by-case basis.

N-gram patterns In this step, for each slot in each example we extract an n-gram consisting of the slot
and & tokens either side. Consider these four examples:

1. “..from my checking to her...” 3. “..withmy checking to provide ...”
| I | I—
SOURCE SOURCE
2. “..usemy checking to send...” 4. “.. out of my checking to my ...”

TARGET

If k is one, the n-gram extracted would be “my checking to”. In these examples, the n-gram receives a
SOURCE label in the first and third cases, TARGET label in the second, and no annotation in the fourth.

Identifying the most common annotation For each n-gram in the previous step, we count how many
times each annotation occurs. The most common annotation is suggested as the way to standardize and
all examples with the n-gram are presented. In the example above, this means that the suggestion would
be to add a label in the fourth case and change the label in the second case.

4.3 FCLVD: Combining Methods

The two methods discussed so far are designed to be complementary, with the Format Checker designed
to be used first to detect and fix Slot Format inconsistencies, and then the Label Variation Detector
designed to detect everything else. We can combine these methods together to detect a larger set of
potential inconsistencies.

4.4 CRF Agreement

In this method, we use cross-validation to train models on the data and also predict labels for the data.
Any disagreement between the prediction and the data is considered an inconsistency. We use a condi-
tional random field (CRF) (Lafferty et al., 2001) as it is very fast to train and is less likely to overfit the
data than a large neural model. The reasoning behind this approach is that if there is an inconsistency the
CRF will learn one of the conventions, leading to disagreements when the other convention is present.
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Dataset Method Precision Recall F, Score % Flagged

Forex CRF 0.38 0.96 0.54 69
(27.5%) FCLVD 0.74 0.36 0.49 13
Companies CRF 0.78 0.97 0.86 84
(67.6%) FCLVD 0.65 0.48 0.62 50
Flights CRF 0.56 0.89 0.69 71
(44.6%) FCLVD 0.86 0.70 0.78 36

Table 5: Performance comparison of inconsistency detection methods. Higher is better for Precision, Re-
call, and F, while lower is better for % Flagged. The percentage in parenthesis indicates what proportion
of the examples in the dataset contain an inconsistency (from Table 3).

Dataset
Method Forex Companies Flights
Format Checker 0.69 0.72 0.96
Label Variation Detector 0.12 0.31 0.13
Format Checker + Label Variation Detector (FCLVD)  0.71 0.77 0.98

Table 6: Recall scores for various inconsistency detection methods on Slot Format inconsistencies. The
Format Checker is tailored toward finding Slot Format inconsistencies, and hence has a much higher
recall than the Label Variation Detector. The FCLVD approach yields an even higher recall.

4.5 Model Discussion

One strength of the Format Checker and Label Variation Detector is that they produce very interpretable
results because they use pattern matching. Not only do the algorithms specify the token range of a
flagged inconsistency, they also inform the user of precisely which other samples are annotated in a
manner that is inconsistent with the flagged sample. In contrast, the CRF Agreement method provides
no cross-example feedback, only specifying that a given annotation does not match its predictions.

On the other hand, the CRF Agreement approach is more flexible, capable of identifying any error
type, including those in the Other category. It is possible that future work could develop specific detection
methods for more error types, but that remains an open question.

5 Evaluation

5.1 Experiments

We evaluated inconsistency detection performance on our three crowd-annotated datasets (§ 3.2). We
measured inconsistency detection recall, precision, F score, and % Flagged:

__ #inconsistent samples flagged P _
Recall = # inconsistent samples Precision = # samples flagged

Precision, recall, and F} are standard measures of performance. The % Flagged indicates the proportion
of the samples that were flagged as containing inconsistencies. In practice this means the proportion of
the data that might need to be verified by an expert. This metric is related to precision, but more directly
measures the effort required when using the method.

# inconsistent samples flagged q # samples flagged
b Flagged = —————==—
# samples

5.2 Results

Table 5 shows results for all three datasets with the CRF method and the FCLVD method that combines
the Format Checker and Label Variation Detector. The CRF has consistently higher recall, catching
almost all of the inconsistencies. However, that comes at the cost of creating more work, as the %
flagged is consistently higher, by a factor of five in the case of the Forex data. Table 5 presents a tradeoff
between the two approaches: the CRF has higher recall but flags more samples than the actual observed
inconsistency rates, while the FCLVD method flags fewer and has higher precision.
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Dataset

Method Forex Companies Flights
No corrections 0.83 0.51 0.77
FCLVD 0.87 0.63 0.91
CRF 0.95 0.89 0.92
Consistent 0.95 0.90 0.94

Table 7: Slot-filling F} scores when training on data fixed based on the output of each method. The
evaluation sets are composed of consistently annotated data.

Table 6 (previous page) highlights the difference in performance between the Format Checker and
Label Variation Detector methods on Slot Format inconsistencies. We analyze this inconsistency type in
particular since it is the most common type (see Table 3). The Format Checker has much higher recall
on this inconsistency type than Label Variation Detector, which is expected since the Format Checker is
specifically designed to detect Slot Format inconsistencies. When combined together, the two methods
have higher recall on Slot Format inconsistencies than both methods individually.

Finally, Table 7 shows slot-filling F; scores when training on datasets with corrections based on each
automatic inconsistency detection approach. For FCLVD, the improvement can be as large as 14 points,
coming within 3 points of consistent data with checking only applied to 36% of examples (from Table 5).
CREF does even better, reaching within 1.6 points of consistent data on all three datasets, but as shown in
Table 35, it requires checking for 69-84% of the examples.

6 Conclusion

Understanding the nature and frequency of different types of annotation inconsistencies in noisy slot-
filling corpora is important for the development of robust task-driven dialog systems. This paper presents
a typology of inconsistency types. Applying the typology to three new crowdsourced datasets, we find
the overall inconsistency rate is high, and the Slot Format and Omission types are the most common.

We show that correcting inconsistencies improves the quality of models and propose several methods
of automatically detecting inconsistencies. By evaluating our approaches we find no clearly dominant
choice, and that there is scope for further work to balance detection recall with the overall number of
samples flagged as inconsistent. By detecting inconsistencies we can fix issues in annotations, improve
task instructions, and better understand the challenges of slot-filling.
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