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Abstract

In this paper, we introduce a state-of-the-art pseudo-labeling technique for few-shot intent de-
tection. We devise a folding/unfolding hierarchical clustering algorithm which assigns weighted
pseudo-labels to unlabeled user utterances. We show that our two-step method yields significant
improvement over existing solutions. This performance is achieved on multiple intent detec-
tion datasets, even in more challenging situations where the number of classes is large or when
the dataset is highly imbalanced. Moreover, we confirm these results on the more general text
classification task. We also demonstrate that our approach nicely complements existing solu-
tions, thereby providing an even stronger state-of-the-art ensemble method. We make our code
publicly available1 for future research.

1 Introduction

Labeling user utterances as intents is of paramount importance for chatbots. Intent classes are usually
engineered by a linguistic team, and these classes are likely to evolve with time. The most frequent
situations include new unanticipated intents found by dialogue traces analysis, the need to introduce new
intents that were previously handled using web forms, or the urge to split existing intents into several new
ones for fine-grained user interactions. Regardless the rationale, each time the intent referential evolves,
a significant amount of new labeled data is required to train a decent intent detection model. This calls
for a time-consuming and error-prone labeling process – it is therefore expensive.

Consequently, intent detection systems need robust models in few-shot settings in order to avoid to
repeatedly suffer from labeling user utterances into intents. A solution to this problem is to generate
pseudo-labels for unlabeled utterances. A pseudo-label is a label (intent class) automatically assigned
to an unlabeled utterance using the knowledge found in the set of labeled data. The resulting dataset
composed of both labeled and pseudo-labeled utterances is then used to train a supervised intent detection
model. Most pseudo-labeling methods combine advances in word representations (Peters et al., 2018;
Bojanowski et al., 2017; Tissier et al., 2017) and then consider unsupervised clustering algorithms (von
Luxburg, 2007) in order to propagate known labels to unlabeled data (see Section 2). Nonetheless, there
are major drawbacks to existing pseudo-labeling algorithms. First, since clustering algorithms are used
to partition user utterances representations, it leads to provide a pseudo-label to all unlabeled data. This
is error-prone since cluster shapes for the entire dataset are unknown and hardly predictable in a few shot
setting. Consequently, it is much harder to learn a discriminate hyperplane when training the downstream
intent detection models since some data are incorrectly labeled. Worse still, this grows exponentially as
the number of intents (classes) increases in practice since it is harder to predict correct pseudo-labels, and
the hyperplane is more difficult to learn since it requires more discriminative power. A corollary is also
that confidence values in pseudo-labels is hard to produce: since cluster shapes are unknown in advance,
distances to centroids cannot reliably be used as a factor a confidence in a pseudo-label. In Computer
Vision, the same issues exist for the image classification task and therefore end-to-end systems have been

1https://github.com/tdopierre/FewShotPseudoLabeling
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proposed – Prototypical networks (Snell et al., 2017). Applied to intent detection, there are also part of
related work and baselines in this work.

As contribution, we first present a new folding/unfolding hierarchical clustering algorithm for pseudo-
labeling, which can be considered as a dynamic hierarchical clustering algorithm (Section 3). This
original algorithm, by nature, is able to predict a pseudo-label only when it has sufficient clues (thereby
reducing labeling noise) and to provide a pseudo-label normalized confidence score based on a tempera-
ture weighting mechanism – when training the downstream intent detection model using both labeled and
pseudo-labeled utterances, those weights are used by penalizing the loss (Section 3.3). In order to vali-
date our pseudo-label approach, we evaluate its impact on the downstream task of intent detection using
four datasets and fine-tuned BERT-based language models (Section 4). Overall, in few-shot configura-
tions and even when the number of classes is large, our proposed method is able to positively impact the
intent or text classification tasks accuracies (Section 5), beyond the state-of-the-art. The experiments also
exhibits a robustness of our methods to imbalance bias, which is common in practice. Finally, Section 6
concludes.

2 Related works

A growing amount of work has been done on the Conversational AI domain (Gao et al., 2018) over the
recent years. There are different types of conversational agents: Question-Answering systems (Ren et al.,
2018a), End-to-end Conversational Models (Vinyals and Le, 2015; Ren et al., 2018a), or Task-Oriented
bots (Martin and Jurafsky, 2009). In the latter case, a central part of the process is the understanding of
user utterances, a special case of text classification. Convincing approaches to this problem rely on neural
networks (Lee and Dernoncourt, 2016), thus requiring large labeled datasets, which are costly to obtain.
In practice, as more users interact with the conversational agent, it is easy to collect a large amount of raw
data. Having access to a small labeled dataset along with a large unlabeled one calls for semi-supervised
learning solutions (Chapelle et al., 2009; Zhu et al., 2005) for which label propagation is of paramount
importance. One approach to this problem is self-training (Yarowsky, 1995; Mihalcea, 2004), where the
model trains itself for multiple iterations, each time adding its most confident prediction to the training
data. This approach has multiple weaknesses, the main one being the fact that the model cannot correct
its own mistakes. One way of dealing with such a problem is to use tri-training (Zhi-Hua Zhou and Ming
Li, 2005), a framework where three models are trained iteratively. At each step, common predictions of
two models are added to the training set of a third. This continues until all models reach a stationary
state. A substantial body of works focus on the few-shot classification problem, that is handling labeled
data scarcity in the downstream training phase exclusively (Finn et al., 2017; Snell et al., 2017).

In our work, we tackle the problem differently: we propagate the knowledge we have on this small
amount of data to unlabeled data points, before feeding both truly labeled and pseudo-labeled data to
the intent detection system. This intermediate step is of the utmost practical interest: firstly, propagating
knowledge on unlabeled points helps us understand how the data is structured. Secondly, in a labeling
framework, it allows us to select interesting samples for our in-house linguists to label or correct given
low pseudo-label confidence2 as a human-in-the-loop approach, instead of selecting samples randomly.
The more accurate the pseudo-labels, the more efficient it is for linguists.

From a broader perspective, it is worth noticing that semi-supervised learning (learning using both
labeled and unlabeled data) has also received a lot of attention in computer vision (Vinyals et al., 2016),
where annotations are time-consuming and error-prone as well. To overcome this problem, image-
specific features – like coloration, pixel-level values – are used (Liu et al., 2018). Given a distance
matrix between data points, labels from known samples are propagated to previously unlabeled data.
Unfortunately this is hardly applicable in NLP as complex features are hardly intrinsic to words but
rather based on distributional semantics. Indeed, in NLP we usually rely on pre-trained word embed-
dings (Mikolov et al., 2013) and build sentence representations by averaging word vectors (Joulin et al.,
2017) or contextualized word embeddings (Peters et al., 2018; Conneau et al., 2017). From these sen-
tence representations, labels from known utterances can be propagated mainly using clustering strategies.

2The pseudo-label confidence value is the alpha value calculated in section 3.3.
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The first and most simple available method is the naive nearest neighbor algorithm – henceforth nKNN
– that is for each unlabeled data point and each class, we compute its average similarity to the labeled
samples of this class. Then, we assign to this point the label for which this average similarity is maximal,
mapping all unlabeled data points to a pseudo-label.

The methods described so far are two-fold: unsupervised pseudo-labeling is followed by classification
semi-supervised learning. Conversely, it is possible to learn end-to-end few shot classifiers, that are
classifiers learning to classify using only few shots, without pseudo-labels. The state-of-the-art for end-
to-end few-shot classification (Ren et al., 2018b) is an extension of Prototypical Networks (Snell et al.,
2017). While originally designed for computer vision (Fort, 2017), such networks have recently gained
traction in the field of few-shot setups in Natural Language Processing (Gao et al., 2019). Even though
these methods are not meant to produce pseudo-labels directly, they excel at classifying utterances using
only a few labeled samples. In this method, for each label, a prototype is built as the average embedding
of support samples. Then, during training, query samples are classified using their distance to prototypes
of each label. The optimizer’s goal is to make this distance the lowest possible. It is therefore interesting
to consider as related and as a later baseline, a system that is based on Prototypical Networks (Fort,
2017) where the input is the BERT (Devlin et al., 2018) sentence encoder. This approach will hereafter
be referred to as Proto.

In our experiments (Section 5), we also include the state-of-the-art result for end-to-end few shot
classification introduced by Ren (2018b). In this variant, unlabeled samples are used during an additional
step, where the prototypes are refined using a soft K-Means technique. In our experiments, this baseline
will be denoted as Proto++.

3 Two-fold Pseudo-Labeling

In this section, we will describe our folding/unfolding pseudo-labeling method (Section 3.1), as well as
the aggregated approach (Section 3.2). We also introduce a loss weighting scheme (Section 3.3), which
will be able to mitigate the impact of incorrect pseudo-labels on the intent detection downstream task.
We advocate that this solution is state-of-the-art (Section 5) yet simple, therefore very valuable.

3.1 Folding/unfolding algorithm
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Figure 1: The two-fold Pseudo-Labeling process taking as an input embedded user utterances (Sec-
tion 4.3). First, a hierarchical clustering method is applied from bottom to top, leading to a tree structure
((a) – folding). Second, from top to bottom, nodes are expanded iff they contain multiple labeled sen-
tences with different labels ((b) – unfolding). Finally, retrieved pseudo-labels are used to train an intent
detection model (Section 4.4).

Our pseudo-labeling method, illustrated in Figure 1, is a folding/unfolding algorithm, using hierarchi-
cal clustering. We decompose our approach in two main steps.

Step (a) – folding We start with all data points X = Xl∪Xu, mixing together both labeled data points
Xl as well as unlabeled data points Xu. At the beginning, each of those data points is considered as an
individual cluster. Iteratively, we construct a tree in a hierarchical way: at each iteration, we select the
two closest clusters, and bind them together into a new cluster. To choose which clusters to merge, we
use Ward’s method (Ward Jr, 1963). If we have N data points at the beginning, this process will take
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N − 1 steps. In the end, this step produces a tree structure, where each non-leaf node has exactly two
children, representing a merge between two nodes at some iteration.

Step (b) – unfolding After doing this bottom-to-top process, we now do the opposite. The step (a)
yielded one tree structure containing all data points. Each node of this tree represents a merge of two
clusters. Iteratively, we unfold the whole structure, by splitting clusters given a specific condition. More
precisely, each cluster will be split into its two sub-clusters (which were merged at some point in step
(a)) until all generated clusters contain either no labeled data points (in this case all its data points, which
are unlabeled, are discarded), or some labeled data points with a unique label. In the latter case, we
assign this unique label to all the unlabeled data points also belonging to the same cluster. This step is
quite intuitive: if a cluster contains labeled data points with different labels, then it is not easy to choose
which of those label will be assigned to unlabeled data points in this cluster. On the opposite, splitting
clusters until only one label is represented in each cluster improves the confidence when assigning the
pseudo-label to previously unlabeled data points.

There are several underlying motivations for this method. First, unlike most techniques, this approach
does not require any hyper-parameter tuning, making it more robust to different datasets. In practice,
when there is not much data to validate methods – this is the case in few-shot learning –, this is very
important. Secondly, thanks to its iterative process, it is able to model unusual cluster shapes, which
makes it more robust to sentence representations. Thirdly, the tree structure obtained via hierarchical
clustering is richer than a more traditional cluster output. Indeed, it helps to understand the clustering
process and how data points are linked to each other better. Lastly, unlike the nKNN or Prototypical-based
approaches, this method does not give pseudo-labels for all the unlabeled data points. In a real-world
scenario, this is very important, as we cannot ensure that all unlabeled data points – representing raw
user utterances – belong to a known class. It is also better to consider not labeling a data point that is
very hard to pseudo-label to avoid noise in the training data.

3.2 Aggregated pseudo-labeling approach

In our experiments, we also use an aggregated method using common pseudo-labels obtained from each
of our single methods. Indeed, all pseudo-labeling schemes introduced earlier have a unique way to
represent data and assign pseudo-labels. Following the unanimity vote for each given data point, we
introduce an aggregated pseudo-labeling approach. To do so, after retrieving pseudo-labels from the
various methods, we retain data points where all methods have assigned the same pseudo-label, and
discard the rest. In order to measure the impact of each single method in the aggregation step, we will
conduct additional ablation experiments, where we aggregate common predictions of all methods except
one. By doing so for all methods, we will be able to measure the contribution of each method to the
aggregation (Section 5.1).

3.3 Loss weighting mechanism

We will later demonstrate empirically that pseudo-labeling methods are able to recover most labels in
one/few-shot configurations when the number of classes is relatively small (Section 5). When the num-
ber of labels is of one order of magnitude higher, generating correct pseudo-labels while refraining to
introduce incorrect pseudo-labels alongside becomes harder. As the number of intent classes grows, the
effect of providing correct labels issued by semi supervision is vastly reduced by incorrect pseudo-labels
– even if they are provided in a lower amount than correct ones as it confuses the intent detection model
and make the optimization task at hand unnecessarily harder/incorrect. In order to overcome this issue,
we introduce a confidence score in our algorithms so that the loss function used to train the intent detec-
tion model penalizes mispredictions on pseudo-labels w.r.t. the confidence in the generated pseudo-label.
More formally, given the similarity matrix S, an unlabeled data point xu ∈ Xu with pseudo-label ŷ, for
each class c, we compute its logits zu,c as follows:

zu,c =
1

nl,c

nl∑
i=1

1(yi = 1)Si,u (1)
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Then, using a softmax, we turn this z vector into a probability vector P (z) (that is P (z) = σ(z),
where σ(·) is the softmax function). From here, the last steps are inspired from (Liu et al., 2018). We
apply a final transformation in order to increase the differences between logits. The reason behind this
is that all logits, being an average of similarity scores, are bounded between 0 and 1. Hence, if we just
apply the softmax on those raw logits, the differences between classes will not be very significant. As a
consequence, to increase sparsity and enforce extreme weights, we define the pseudo-label weight α as
follows (we set the variable τ = 10 in the experiments as in (Liu et al., 2018), and ŷ still denotes the
pseudo-label):

α =
exp (τzu,ŷ)∑
j 6=ŷ exp (τzu,j)

(2)

We will further discuss the impacts of this weighting technique in Section 5.2.

4 Experimental setup

Alongside with our contribution, the systems under evaluation are nKNN, Proto/Proto++, as intro-
duced in Section 2. We implemented the nKNN baseline, and for the Prototypical-based approaches, we
use the code associated to the seminal Prototypical Network paper3, using BERT (Devlin et al., 2018)
as our sentence encoder. For the Proto++ baseline, to refine prototypes, we use 20 unlabeled samples
per class both at training and testing time, as Ren (2018b) showed that it yielded better performances.
As suggested by Chen (2019), we do not fine-tune Prototypical Networks at test time, as it is reported
to decrease performances. Moreover, since Prototypical Networks are an end-to-end approach, it is first
impossible to fine-tune such networks using a single shot for each class, and second, the embeddings of
utterances for all labels are fine-tuned in the networks themselves.

The evaluation of the different systems is two-fold: we first assess the relevance of pseudo-labels
retrieved from these methods in different few-shot situations, and then we evaluate the performances of
the intent detection model (see Section 4.4) trained using those pseudo-labels alongside with the few
labeled data. In order to measure the various performances, we use the weighted F1-score in all our
experiments.

4.1 Few-shot and Cross-validation setup

In Few-Shot Learning, datasets are split into training and testing sets (Sung et al., 2017), where there
are no overlapping classes between the two sets. Since few-shot regimes are highly dependent on the
random initialisation of given shots, it is standard to repeat this process many times to create as many
training/evaluation tasks and report average accuracy values. More formally, for each training task, we
sample C classes from the training classes Ctrain. For each class c ∈ C, we sample K support samples
Sc = {(xi, yi = c)}Ki=1, as well as L query samples Qc = {(xi, yi = c)}Li=1. Those samples will be
used to train the model for this task. This setup is often named C-way K-shot settings. Test tasks are
constructed in the same way, using the test set. At test time, we will evaluate the quality of our utterance
encoder on those new classes Ctest, disjoint from classes the model trained on. In our experiments, for
each dataset, we use a third of classes for each training, validation, and testing stages. We also vary the
number of shots K, ranging from 1 to 20, in order to assess the robustness of the different systems.

In order to get a sense of consistency in the results, each reported metric is averaged over 10 different
cross-validation runs. For each run, the whole training set is used to train the pseudo-labeling model.
Only 90% of the test set is selected to assign pseudo-labels to query samples using support samples. The
remaining 10% of the test set is used to evaluate the performance of the text classification system which
is trained on top of those pseudo-labels.

4.2 Datasets

To validate the effectiveness of our method, we explore 3 intent detection datasets. Additionally, because
our method is not specific to intent detection, we also consider a text classification dataset. We summarize

3https://github.com/renmengye/few-shot-ssl-public
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#sentences #classes
(train/valid/test) #sentences/class #tokens/sentence

Snips 14, 484 2/2/3 2, 069± 21 9.0± 3.2
OOS 23, 700 53/52/46 157± 85 8.5± 3.3
Liu 25, 478 19/18/17 472± 823 7.5± 3.4
R8 7, 685 3/2/3 961± 1303 102± 117

Table 1: Datasets main statistics. The last two columns are the mean values and their standard deviation.

40 20 0 20 40

40

20

0

20

40

snips

40 20 0 20 40

40

20

0

20

40

OOS

40 20 0 20 40

40

20

0

20

40

Liu

40 20 0 20 40

40

20

0

20

40

R8

Figure 2: T-SNE visualization of Snips, OOS, Liu, and R8 datasets. Each color/marker pair correspond to a given label.
Utterance representations are derived from a BERT model, fine-tuned on the Masked Language Modeling task for each dataset.

the main statistics of the different datasets in Table 1. In order to visualize the data, after fine-tuning
BERT models on each domain, we compute T-SNE embedding of utterances in Figure 2.

Snips This intent detection dataset is composed of 7 evenly distributed intent classes (Coucke et al.,
2018). Class labels represent different voice commands, such as BookRestaurant, or PlayMusic.
This dataset is the biggest one: it contains more than 2,000 sentences for each label, which is not often
the case in practice.

OOS The OOS dataset, introduced by Larson (2019), was created to assess both intent detection and
out-of-scope prediction models. In our experiments, the out-of-scope class – which has way more
utterances as the others – is considered as any other. The dataset is recent, and the high number of classes
makes the task challenging.

Liu Introduced by Liu (2019), this dataset is composed of user utterances collected on Amazon Me-
chanical Turk. It is used to assess the quality of various Natural Language Understanding Services, on
both intent detection as well as entity recognition tasks. In our experiments, this dataset is one of the
most unbalanced, ranging from 24 to 5, 920 samples per class.

R8 This dataset, mainly used for the more general case of text classification, contains Reuters
Newswire articles. Following the work of authors who previously worked on this dataset (Zhao et al.,
2018), we used the 8 most frequent classes. This process ensures that we have enough samples per class,
and still yields a very imbalanced dataset. Unlike in the intent detection datasets, utterances in this text
classification dataset are quite long – more than 10 times longer than the others, on average.

4.3 Sentence Encoder
For each dataset, we fine-tune the bert-base model (Wolf et al., 2019) on its former task, masked
language modeling. Because this is an unsupervised task, we are able to use both labeled and unlabeled
utterances during training. As shown by Sun (2019), this additional fine-tuning greatly increases the
quality of embeddings. This fine-tuned model is then used as a checkpoint upon which prototypical-
based approaches are built. Additionally, because prototypical networks benefit from a classification
training step, it would be unfair to prevent the other approaches – nKNN, Fold/Unfold – from
benefiting from such a fine-tuning. To account for this difference, we further fine-tune the BERT model
obtained earlier on the classification task, using only few shots – BERT-Fit. The encoding part of this
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model is then used as input for both nKNN and Fold/Unfold methods. This ensures that all methods
benefit from a classification fine-tuning, only using the few shots which they are given.

4.4 Intent Detection model
Given the recent advances in NLP using transfer learning, we tried several methods for the intent de-
tection model. We used pre-trained ELMo (Peters et al., 2018), InferSent (Conneau et al., 2017), Fast-
Text (Bojanowski et al., 2017) and BERT (Devlin et al., 2018) models. For ELMo (resp. BERT), we use
the last hidden vector of the last (resp. first) token as the sentence embedding. All language models are
fine-tuned with a last classification layer. We compare those methods on the intent detection task using
a 10-fold validation, but do not report the results here due to space limitations. As in (Sun et al., 2019),
we tried several variants for the BERT model – fine-tuning the model in the Masked Language Modeling
(MLM) task as well as freezing or not freezing the transformer part. We find similar results as this paper:
the variant which works best is obtained when fine-tuning on the MLM task, then further fine-tuning on
the classification task, without freezing any layer. Hence, we chose this version as our intent detection
model, in all our experiments.

5 Results and analysis

In Table 2, we report all results from pseudo-labeling as well as intent detection performance score. In
order to measure the quality of pseudo-labels, we compute their F1-score. For the intent detection part,
we report the F1-score on the held-out 10% of the dataset. Intuitively, aggregating pseudo-labels from
different methods will discard a lot of pseudo-labels. Using 5 shots, aggregating pseudo-labels yields
a discard rate of 10.2%, 25.1%, 47.8%, 45.5% for snips, OOS, Liu and R8 datasets respectively. To
measure this trade-off between recall and precision of pseudo-labels, we will further discuss the impacts
on the intent detection performances for each dataset.

Snips On the Snips dataset, even though our Folding/Unfolding approach outperforms all competi-
tors, those results must be taken lightly. As we can see, with only 5 shots, we are able to recover pseudo-
labels and build an intent detection model with a 0.988 F1-score. Those huge performances clearly hint
that this dataset is not challenging at all: the t-SNE projection for this dataset in Figure 2 supports this
claim. This means that we can hardly make concluding remarks on how the systems relatively perform
on more realistic datasets. Overall, the massive usage of SNIPS to evaluate intent detection techniques
in the literature (Xia et al., 2018; Goo et al., 2018) becomes open to question.

OOS On the OOS dataset, our method largely comes out on top, both on pseudo-label and intent de-
tection results. On the intent detection part, our method is better than the aggregated ones, showing that
other methods penalize the aggregation. This finding is very important, as it proves that using an ensem-
ble of various methods do not always lead to better performances. Concerning the prototypical baselines,
this is the dataset where the Proto++ is the further away from its former version, Proto. This comes from
the fact that this dataset has the highest number of classes: when doing a soft-KMeans step, if the number
of classes is high, then it is as much noise for the prototype refinement. Results on this dataset prove that
our method is not handicapped when using a large number of classes, making it more robust to real-life
scenarios. Additionally, we see that removing the BERT-Fit+nKNN from the aggregation yields better
results. This poor performance was not to be seen in the pseudo-label results, as this baseline was per-
forming second behind our approach. This raises the importance of using this double experiment, and
confirms that better pseudo-labels do not directly imply a better model in the downstream task of intent
detection.

Liu As explained in Section 4.2, this dataset is very imbalanced. Still, we get the same results as the two
previous datasets, which were more balanced: our method is able to come out on top on both pseudo-
labeling as well as intent detection results. Additionally, the ablation study where we withdraw our
method from the aggregation yields the worst results in almost every situation, hinting that we contribute
the most to this aggregation. This shows that our method is robust to various situations, including the
case of imbalanced datasets.
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Pseudo-label F1 Intent Detection F1

shots 1 2 5 1 2 5

Sn
ip

s
Proto 0.914 0.915 0.948 0.913 0.921 0.947
Proto++ 0.862 0.898 0.920 0.863 0.899 0.920
BERT-Fit+nKNN 0.943 0.958 0.985 0.945 0.957 0.985
BERT-Fit+Fold/Unfold 0.986 0.982 0.992 0.988* 0.983 0.992
BERT-Fit+Fold/Unfold+weights - - - 0.987 0.983 0.992

aggregated 0.994 0.996 0.997 0.983 0.983 0.992
agg−BERT-Fit+nKNN 0.994 0.996 0.997 0.985 0.986 0.992
agg−Proto 0.993 0.988 0.996 0.984 0.980 0.991
agg−Proto++ 0.991 0.995 0.995 0.984 0.982 0.991
agg−BERT-Fit+Fold/Unfold 0.988 0.993 0.995 0.973 0.978 0.988

shots-only - - - 0.948 0.965 0.987

O
O

S

Proto 0.644 0.738 0.807 0.648 0.749 0.829
Proto++ 0.415 0.512 0.622 0.416 0.520 0.640
BERT-Fit+nKNN 0.723 0.831 0.895 0.725 0.837 0.902
BERT-Fit+Fold/Unfold 0.883 0.930* 0.939 0.878 0.932 0.945*
BERT-Fit+Fold/Unfold+weights - - - 0.880* 0.932* 0.944

aggregated 0.890 0.921 0.940 0.839 0.890 0.927
agg−BERT-Fit+nKNN 0.880 0.912 0.933 0.851 0.908 0.940
agg−Proto 0.856 0.899 0.925 0.848 0.890 0.929
agg−Proto++ 0.856 0.903 0.928 0.849 0.887 0.928
agg−BERT-Fit+Fold/Unfold 0.844 0.896 0.931 0.784 0.859 0.913

shots-only - - - 0.714 0.830 0.901

L
iu

Proto 0.513 0.618 0.697 0.515 0.624 0.694
Proto++ 0.467 0.534 0.605 0.472 0.535 0.605
BERT-Fit+nKNN 0.500 0.601 0.642 0.505 0.608 0.645
BERT-Fit+Fold/Unfold 0.587 0.668 0.763 0.537 0.636 0.728
BERT-Fit+Fold/Unfold+weights - - - 0.539 0.637 0.726

aggregated 0.852 0.895 0.902 0.585 0.686 0.747
agg−BERT-Fit+nKNN 0.829 0.887 0.905 0.590 0.702 0.778
agg−Proto 0.828 0.874 0.894 0.584 0.679 0.749
agg−Proto++ 0.824 0.864 0.874 0.572 0.678 0.740
agg−BERT-Fit+Fold/Unfold 0.722 0.819 0.840 0.576 0.665 0.715

shots-only - - - 0.443 0.620 0.756

R
8

Proto 0.575 0.629 0.709 0.598 0.650 0.725
Proto++ 0.556 0.620 0.647 0.566 0.607 0.628
BERT-Fit+nKNN 0.737 0.789 0.890 0.758 0.799 0.885
BERT-Fit+Fold/Unfold 0.816 0.837 0.901 0.817 0.834* 0.901
BERT-Fit+Fold/Unfold+weights - - - 0.817 0.831 0.902*

aggregated 0.890 0.921 0.940 0.813 0.824 0.894
agg−BERT-Fit+nKNN 0.880 0.912 0.933 0.806 0.815 0.900
agg−Proto 0.856 0.899 0.925 0.817 0.822 0.900
agg−Proto++ 0.856 0.903 0.928 0.808 0.822 0.893
agg−BERT-Fit+Fold/Unfold 0.844 0.896 0.931 0.767 0.790 0.895

shots-only - - - 0.738 0.780 0.892

Table 2: Evaluation of pseudo-labels for the label recovery and intent detection tasks. We separate
results from single and aggregated methods, highlighting in bold the best method in each category. If a
single method is better than the best aggregated one, it is highlighted with a wildcard (*). The agg−λ line
represents the aggregation between all single methods except method λ. For the different aggregations,
we underline the worst (i.e. stressing the method contributing the most to the aggregation).
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R8 On the R8 dataset, even though we now deal with text classification and much longer sentences,
we have similar results as on others intent detection datasets. Our method comes out on top, even
achieving better performances than aggregated methods during the classification step. This shows that
our Folding/Unfolding method is robust, and not only suited for intent detection tasks, but also for the
more general subject of text classification.

5.1 Aggregated approach

On all datasets, aggregating pseudo-labels obtained from single methods always improves the pseudo-
label quality, at the cost of retrieving less pseudo-labels. However, this increment is not fully reflected in
the intent detection performance results: most of times, there is a single method which, when discarded
from the aggregation, yields better text classification results. This is important to consider in practice,
and to have in mind that better pseudo-labels does not necessarily imply better results for the intent
detection downstream task.

Overall, in the ablation study where we withdraw each single method from the aggregation, the ag-
gregation without our method is very often the worst. This additional study shows that our method
contributes the most to the aggregation, as removing it is often the worst case.

5.2 Weighting mechanism

When training the intent detection model with pseudo-labels recovered by our method, we can use or
ignore the confidence weights. The goal of those weights is to penalize pseudo-labels which might have
been incorrectly assigned (i.e. with small confidence). We show that the weighting mechanism has a
limited impact on the classification task. Remember that our method does not assign a pseudo-label to
every unlabeled utterance: in step (b) 3.1, it can discard clusters which are far from one another. Through
this, our method intrinsically already discards hard-to-predict utterances – we show that our framework
is already optimal in this regard and therefore does not require a weighting hyperparameter, which makes
it simpler to train.

5.3 Proto and Proto++

We discuss here the performances of prototypical baselines. In our experiments, we showed that the
Proto++ variant performs less than its former version, Proto. On each dataset, we also found that fine-
tuning BERT for the classification task tremendously improves the dataset separability – not reported
here, due to space limitations. Using a BERT model only fine-tuned on the masked language modeling
task directly for the Proto++ also introduces a lot of noise: because embeddings are not well separated,
adding 20 unlabeled samples per class adds to much noise for the model to separate classes. This effect
is amplified on OOS dataset, as the number of classes is high.

6 Conclusion

In this paper we introduced a new state-of-the-art, hierarchical clustering inspired method for pseudo-
labeling intent detection datasets. This is of the utmost practical interest in order to help linguists
to faster provide new intent detection model as the intent classes repository evolve with time. Our
method, being hyper-parameter-free, is robust to various situations, even when the number of classes is
high. Overall, it is straightforward to implement and still the best option available for pseudo-labeling
user utterances in few-shot classification. Through an ablation study, we also show that our method
is complementary to other baselines so that it contributes to aggregated approaches significantly.
Moreover, we demonstrate that while Proto++ approach is known to out-perform its former version
Proto on image classification, this does not apply for learning few-shot intent detection models. Finally,
we showed that if we continue to evaluate intent detection using very easy – yet popular – datasets like
Snips, we are ultimately not solving the actual downstream task in practice, so we encourage any intent
detection researchers and practitioners to use it with caution.
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