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Abstract

We present a large-scale corpus of e-mail conversations with domain-agnostic and two-level di-
alogue act (DA) annotations towards the goal of a better understanding of asynchronous conver-
sations. We annotate over 6,000 messages and 35,000 sentences from more than 2,000 threads.
For a domain-independent and application-independent DA annotations, we choose ISO stan-
dard 24617-2 as the annotation scheme. To assess the difficulty of DA recognition on our cor-
pus, we evaluate several models, including a pre-trained contextual representation model, as our
baselines. The experimental results show that BERT outperforms other neural network mod-
els, including previous state-of-the-art models, but falls short of a human performance. We also
demonstrate that DA tags of two-level granularity enable a DA recognition model to learn effi-
ciently by using multi-task learning. An evaluation of a model trained on our corpus against other
domains of asynchronous conversation reveals the domain independence of our DA annotations.

1 Introduction

The recent growth of textual communication media such as e-mails and online forums has led to the
great demand for techniques enabling the automatic analysis of conversational structures from texts for
information retrieval and intelligent assistance. Dialogue acts (DAs), which are also known as “speech
acts” in some studies, are one of such conversational structures. The DAs of text in conversations are
defined as having communicative functions, such as asking questions, requesting some information,
and offering suggestions. Analyzing the DAs in conversations helps many downstream applications,
including summarization (Bhatia et al., 2014; Oya and Carenini, 2014), question answering (Hong and
Davison, 2009), and conversational agents (Peskov et al., 2019).

Conversations fall into synchronous conversations (e.g., phone calls and meetings) and asynchronous
conversations (e.g., e-mails and online forums). In a synchronous conversation all participants engage at
the same time with all participants, whereas in an asynchronous conversation participants interact with
each other at different times. As is well known, the asynchronous properties make the conversational
flow of asynchronous conversations different from those of synchronous conversations (Joty et al., 2013;
Louis and Cohen, 2015). Topics in asynchronous conversations are often interleaved and not contiguous
sequence. This complexity in a conversational flow makes DA recognition in asynchronous conversations
a challenging task compared to synchronous conversations, particularly when the thread structure (reply
relations) is missing.

The existing corpora for DA recognition in asynchronous conversations have some of the shortcom-
ings: (i) Scale: Whereas large-scale corpora such as the Meeting Recorder Dialog Act (MRDA) (Shriberg
et al., 2004) and the Switchboard Discourse Annotation and Markup System of Labeling (SWBD) (Juraf-
sky et al., 1997) are available in synchronous conversation, most of the available corpora in asynchronous
conversations are limited to a few thousands messages or sentences, and are insufficient to train more
expressive models of DA recognition. (ii) Annotating scheme: Annotation schemes used in the ex-
isting corpora are designed for a particular purpose or a particular application domain. For instance,
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Kim et al. (2010) focuses on technical help forums and defines domain-specific DA tags such as RES-
OLUTION, which represents a post confirming that an answer operates based on its implementtation.
(iii) Annotation granularity: Many of the existing corpora in asynchronous conversations are anno-
tated with DA tags at only either sentence-level or message-level (comment-level). However, the level
of DA tags required for a conversational analysis depends on its applications. For instance, sentence-
level DAs can help with a summarization of a message, and message-level DAs are beneficial for mining
question-answer pairs from a community question-answering site. Therefore, multi-level annotations of
DAs allow for wider range of applications. Moreover, multi-level annotations can provide a model of
DA recognition to learn efficiently by multi task learning.

To fulfil all the requirements, we present a large-scale corpus of e-mail conversations with domain-
agnostic and two-level DA annotations. As our source of asynchronous conversations, we use the Enron
e-mail dataset (Klimt and Yang, 2004) because e-mail is one of the most used communication media
and the number of publicly available raw texts from e-mails is larger than that of other datasets. Our
corpus consists of over 2,000 threads, 6,000 messages, and 35,000 sentences. To conduct domain- and
application-independent annotations, we adopt the ISO standard 24617-2 (Bunt et al., 2012) as our DA
annotation scheme. The standard is designed for application- and domain-agnostic tags of DAs. As a
segment unit of a DA, we adopt both a sentence and a message.

To assess the difficulty of DA recognition on our corpus, we evaluate several models, including a pre-
trained contextual representation model, as our baselines. We also evaluate a human performance on our
corpus for a model comparison. In addition, we demonstrate that DA tags of two-level granularity enable
a DA recognition model to learn efficiently by applying multi-task learning. To evaluate the domain
independence of our DA annotations, we investigate the domain adaptation, wherein a model is trained
on our corpus as a source domain and is applied to other corpora as the target domains.

The contributions of this paper are as follows:

• We develop a large-scale corpus of e-mail conversations with domain-agnostic and two-level DA
annotations that satisfy all the requirements of scale, annotation scheme, and annotation granularity.

• To evaluate the difficulty of DA recognition on our corpus, we demonstrate that BERT outperforms
earlier approaches with neural sequence learning but falls short of a human performance of DA
recognition on our corpus .

• Empirical results show that a model trained on our corpus can be easily applied to other domains in
asynchronous conversations.

2 Related studies

2.1 Discourse Act Corpus

There are several large corpora of synchronous conversations annotated with speech acts. SWBD (Juraf-
sky et al., 1997) comprises 205,000 utterances of one-on-one phone conversations from the Switchboard
corpus (Godfrey et al., 1992). This corpus is annotated with a discourse tag-set extended from the Dis-
course Annotation and Markup System of Labeling (DAMSL) (Core and Allen, 1997). In addition,
MRDA (Shriberg et al., 2004) contains over 180,000 in face-to-face meetings with DA tags defined in
Dhillon et al. (2004).

There have also been several studies on annotated corpora with DA tags in asynchronous conversa-
tions. Cohen et al. (2004) developed a corpus that contains 1,357 e-mails and annotated DA tags accord-
ing to an ontology of verbs and nouns. Ravi and Kim (2007) annotated 1834 messages (475 threads)
of an online discussion site with speech act tags. Kim et al. (2010) collected 320 threads containing a
total of 1,332 posts from newsgroup data to annotate with DAs. Bhatia et al. (2012) also annotated 556
posts of 100 threads in Ubuntu forum with speech act tags. Jeong et al. (2009) created two corpora for
sentence-level speech act recognition. The corpora consist of 40 e-mail threads and 100 threads selected
from an online travel forum. Feng et al. (2006) annotated 2214 messages in 640 threads of an online
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forum with speech act tags. Joty and Hoque (2016) tagged 1565 sentences in 50 threads in a commu-
nity question answering site with DA tags. BC3 (Ulrich et al., 2008) consists of 40 e-mail threads and
3222 sentences from mailing lists of the World Wide Web Consortium. The sentences is annotated with
five speech act tags for summarization. All of the above corpora contains a few thousands of labeled
messages or sentences at most and are smaller than our corpus. One exception that is larger than ours is
the corpus of Zhang et al. (2017). It consists of 9, 483 threads with 115, 827 comments from a social
news site. While the size of their corpus is large, the annotation scheme is specific for online forums and
annotated at only comment-level.

2.2 Dialogue Act Recognition in Asynchronous Conversations

Cohen et al. (2004) built a supervised classifier with textual features for predicting message-level DA.
Carvalho and Cohen (2005) extended the model to capture the sequential correlation among messages
in the same thread by using a dependency-network based collective classification method. Kim et al.
(2010) introduce structural learners including Conditional Random Fields (CRF) (Lafferty et al., 2001)
to be optimized as a sequential labeling problem.

More recently, Joty and Hoque (2016) firstly introduced a neural network approach base on a combi-
nation of a long short term memory (LSTM) and a CRF layers. In their approach, the LSTM and CRF
layers are trained separately. Joty and Mohiuddin (2018) demonstrated that the word embeddings that
are pre-trained on conversations boosts the performance of a neural network based model for speech
act recognition. The work of Joty and Hoque (2016) was extended to train the model in an end-to-end
fashion and introduce hierarchical LSTM of sentence and conversation level (Mohiuddin et al., 2019).
To the best of our knowledge, these model are the state of the art, hence we adapt these models as our
baselines to analyze the characteristics of our corpus.

3 Dialogue Act Annotation

3.1 Dialogue Acts

We adopt the ISO standard 24617-2 (Bunt et al., 2012) as our DA annotation scheme. This standard has
been developed owing to the need for a domain- and application-independent DA annotation scheme.
Although a DA of the standard has several ingredients, we focus on communicative functions in this
paper. Communicative functions are defined as a hierarchical taxonomy for general use. We restricted
the taxonomy according to the frequency of the DA tags in a trial annotation of small data. The restricted
version of the ISO annotation scheme is shown in Figure 1. We added None and Others to the tag set of
the restricted taxonomy because of the noisy nature in the messages of the Enron dataset. As a segment
unit of a DA, we adapt both a sentence and a message. Although a segment (message or sentence) could
have multiple DA tags, we annotate the only tag that represents its main communicative function.

The definitions of each DA tag are as follows. Request: A segment of text that asks the recipient
to perform a certain activity. Suggestion: A segment of text that contains an idea or plan mentioned
by the sender. Commissive: A segment of text that commits the sender to certain actions in the future.
Question: A segment of text that asks a question. Answer: A segment of text that answers a question.
Inform: A segment of text that provides information to the recipient. None: A segment of text that is
provided with less informative communication, such as a greeting or joke. Others: A segment of text
that is provided as a part of a list, table, or signature.

3.2 Data Collection

We used the Enron email dataset (Klimt and Yang, 2004) as the source of our corpus. The Enron e-mail
dataset is a collection of e-mails released for an investigation into the Enron corporation, and contains
over six million messages belonging to 158 users.

The thread structure is missing in the Enron e-mail dataset. Hence, we create a thread by splitting a
single original message by markers of reply or forward templates (e.g. “—–original message—–” and
“—–forwarded by John Doe 01/23/2000 04:56 PM—–”). Duplicated threads containing the same mes-
sages were filtered out. We discarded the threads contains only one message or more than 20 messages
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Figure 1: Communicative functions from ISO 24617-2 general purpose dimension. The grayed-out
nodes of the taxonomy are not used, and bold nodes are applied as a tag set of DAs in our corpus.

MID SID Text S-tag M-tag

1

1 To: All Enron Employees Transferring to X Corp. (or its affiliates) Inform

Request

2 Under the terms of the various agreements among certain Enron entities and X certain Enron data and documents may be
provided to X.

Inform

3 To ensure compliance with those agreements, Enron’s document retention policy, as well as directives of various investiga-
tive agencies, the attached protocol regarding the process for migration of any information or data to X has been developed.

Inform

4 Please review the protocol carefully. Request
5 Then, complete the attached Certification and return it, with attachments, to Bob no later than January 21, 2001. Request

(Omitted)
14 Thank you for your assistance in making the transition to X a success. Others

2

1 OK Answer

Question
2 Who is the individual responsible for making sure that 600 plus people will read the 9 pages of protocol and will also verify

and collect a signed certification from every new X Crop. employee by this Friday?
Question

3 Who will collect Enron’s copy of these and hold them and is someone coordinating with X Corp. directly? Question
4 Dave None

3

1 Carol, Correct me on this one if I am wrong... Question

Answer
2 In the body of the email distributed yesterday afternoon it says that the form should be sent to Bob. Inform
3 I believe she is in the legal department for Enron. Inform
4 So I would assume she is the person who will track and report on who has and has not submitted their certification letter. Answer
5 Isaac None

4 1 Yes, you are correct. Answer Answer2 Carol None

Table 1: Example e-mail conversation and our DA annotations. MID and SID represent a message and
sentence ID, respectively. S-tag and M-tag correspond to the sentence- and message-level tags.

due to the annotation efficiency. We used Sentencizer in spaCy 1 to split a message into sentences.
We found that the distribution of DA tags in the e-mail dataset is imbalanced. Owing to the imbalance,

a random sample of threads does not contain a sufficient number of some tags. To improve the annotation
efficiency, we collected threads by identifying messages containing cue phrases that indicate tags of low
frequency. The cue phrases (e.g., those ending with “?” for Question and “let me know” for Request) are
created manually based on careful observations. Eventually, we provided annotators with 2,672 threads
sampled randomly from the collected threads.

3.3 Annotation
One of the practical approaches to create a large-scale corpus is to use crowdsourcing. However, crowd
workers often provide noisy annotations. Hence, in addition to crowd workers, we employed experts as
annotators to evaluate the annotation quality of the crowd workers and establish a human performance
in terms of DA recognition. The expert annotators are well-trained for linguistic annotations. We held
out 98 of the sampled threads to evaluate the annotation quality of crowd workers. Each thread of the
held-out set was assigned to three crowd workers and three experts. By contrast, each of the remaining
threads was annotated by a single crowd worker to improve the annotation scalability. The annotators
were asked to assign a DA tag to each sentence and message of the thread, respectively. Table 1 shows
an example of an e-mail conversation and our annotation of DA tags.

We use Fleiss’s kappa κ (Fleiss, 1971) as a measure of inter-annotator agreement. The sentence-level
1https://spacy.io/
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κ between the crowd workers is 0.56, and the message-level κ is 0.50, indicating moderate agreement.
The sentence-level κ between the experts is 0.85, and the message-level κ is 0.71, indicating substantial
agreement. Although the annotation quality of the crowd workers is not as high as that of the experts, the
larger number of annotation data significantly improves the DA recognition models (see Section 6.4).

4 Dataset Analysis

4.1 Textual Statistics
Table 2 summarizes the statistics of our corpus and the existing corpora of asynchronous conversations
BC3 and QC3. We use these existing corpora for comparison because they are publicly available and
the annotation schemes are relatively similar to ours. BC3 (Ulrich et al., 2008) is also an e-mail corpus
derived from mailing list threads. QC3 (Joty and Hoque, 2016) is made up of conversations of an online
forum. Compared to the existing corpora, the number of threads in our corpus is larger by two orders
of magnitude. Messages in our corpus are comparable in length to those in BC3 and longer than those
in QC3 in terms of the average number of sentences in a message (5.17 vs. 5.24 and 2.50 sentences per
message). If we arrange the sentences in the messages of a thread in chronological order, the distance of
the adjacency pairs (such as a question and answer) (Schegloff and Sacks, 1973) across the message may
be long in our corpus. Therefore, it is important for the modeling of the DA recognition in our corpus to
capture such a long dependency of the DA tags.

Ours BC3 QC3
# of threads 2,574 39 47
# of messages 6,636 254 626
# of sentences 34,323 1,332 1,565
# of words/sentence 10.5 11.5 20.6

Table 2: Text statistics of corpora in
asynchronous conversation.

Tag Message Sentence
Request 15.2 10.0
Suggestion 4.2 4.7
Commissive 3.0 2.8
Question 11.3 6.1
Answer 11.9 3.5
Inform 41.7 31.4
None 7.5 29.8
Others 5.3 11.6

Table 3: Distribution of DA tag (in percentage) at
message-level and sentence-levels in our corpus.

4.2 Distribution of Dialogue Act Tag
Table 3 shows the distribution of DA tags in our corpus. Inform is the most frequent tag at either a
sentence or message level, which agrees with our intuition. The second-most frequent tags are a Request
at the message level and None at the sentence level. A None sentence occurs frequently, which is likely
due to the fact that Enron Co. is an energy company and that their e-mails often contain a list or table of
their products. The top two tags account for over 55% of the total. This suggests that the tag distribution
in our corpus is imbalanced.

For a comparison with BC3 and QC3, we converted our DA scheme into their scheme of speech acts
by using the mapping shown in Table 4. Because BC3 and QC3 are available only at the sentence-level
speech act tags, we conducted a comparison at the sentence level. Figure 2 shows a comparison of the
tag distributions among our corpus, BC3, and QC3. The entropy of the tag distribution in our corpus
is higher than that of BC3 and QC3 (0.61 vs. 0.40 and 0.52). Therefore, we can regard our corpus as
having more balanced distributions.

4.3 Dependencies Between Dialogue Act Tags
The importance of a sequential relationship between adjacent DAs (such as a question and answer) for
analysis is well known from earlier studies (Carvalho and Cohen, 2005; Joty and Hoque, 2016; Mohi-
uddin et al., 2019). We analyzed our corpus to reveal the sequential relationship. Figure 3a shows the
dependencies between adjacent messages and the entropy of a subsequent tag in our corpus. START rep-
resents a beginning message of a thread. Note that the dependency matrix is a right stochastic matrix and
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Speesh acts (BC3/QC3) Dialogue acts (ours)
Suggestion Suggestion, Request
Response Commissive, Answer
Question Question
Polite Others
Statement Inform

Table 4: Mapping from our tag set of DAs to
speech acts in BC3 and QC3. Figure 2: Comparison of tag distributions be-

tween our corpus and BC and QC3.

thus each row sums to 1. The lower entropy values of START and Question indicate a higher correlation
between the tag of one message and the tag of a subsequent message. From the dependency matrix of
Figure 3a, we can observe that an initial message of a thread is usually a Question or Request except an
Inform, and that a Question message is most likely to be followed by an Answer message. The results
agree with our original expectation.

Figure 3b shows the dependencies between a message and a sentence in the message. Note that their
probabilities do not sum to 1 in column-wise because a message usually consists of multiple sentences.
The higher value of diagonal elements of the matrix indicates that a DA tag of a message corresponds
to the same dialogue tag of any one of the sentences in the message. In fact, we found that 90.3% of
the messages were annotated with the same dialogue tags as the tags of the sentences in the message.
Now, let us consider a scenario in which we can know the ground truth of the sentence-level tags. Under
this scenario, we can build a Bernoulli naive Bayes model with sentence-level tags for message-level
recognition. The performance of this simple model reaches 70.8% in terms of accuracy. These results
indicate a strong correlation between the tag of a message and the tags of sentences in the message.

On the other hand, some of non-diagonal elements of the matrix are moderate. This means that some of
sentences in a sentence could have different tags from tag of the message. For example, a Inform message
contains a Request sentence with probability of 0.40. In such cases, annotators (recognition models)
need consolidate the sentence-level tags to the message-level tag from the perspective of importance of
the communicative functions.

(a) (b)

Figure 3: Dependency (Transition) matrices between DA tags of two segments. An element in a matrix
represents the probability P (tagcolumn|tagrow). (a) The dependency matrix between messages. A row
represents a DA tag of a message and a column represents a DA tag of the subsequent message. The
last column Entropy represents the entropy of the subsequent tag. (b) The dependency matrix between a
message and a sentence in the message. A row represents a DA tag of a message and a column represents
a DA tag of a sentence in the message.
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5 Dialogue Act Recognition

5.1 Models
To assess the difficulty of DA recognition with our corpus, we built several models including hand-
crafted feature models, existing neural models, and a pre-trained contextual representation model as our
baselines. We prepared separate models for sentence- and message-level DA tags.

SVM: We implemented a support vector machine-based model with uni-gram and bi-gram features of
a segment. We tuned a soft margin parameter and the number of iterations using the development sets.

LR: We implemented a logistic regression model with uni-gram and bi-gram features of a segment.
We tuned a constant of L2 regularization and the number of iterations using the development sets.

CRF: As a classical sequential prediction model, we prepared a linear-chain CRF model with uni-
gram and bi-gram features of a segment. A CRF can consider the dependencies of the DA tags in a
sequence of segments. We tuned the constants of L1 and L2 regularization, and the number of iterations
using the development sets.

LSTM: We prepared bidirectional LSTM model of Joty and Hoque (2016) as a simple neural baseline.
The LSTM model encodes a segment to segment representation from the words of the segment.

H-LSTM, H-LSTM-CRF: In Mohiuddin et al. (2019), the authors introduce a neural network model
based on a combination of hierarchical LSTMs of two layers and a CRF layer for predicting sentence-
level DA tags. In this model, a thread is considered as a sequence of sentences. The first layer of
hierarchical LSTMs encodes the sentence representations from word embeddings. The second layer
of hierarchical LSTMs updates the sentence representations by considering the surrounding sentences.
We also prepared only hierarchical LSTMs of two layers as an H-LSTM. We extended these models to
predict message-level DA tags by assuming that a thread is a sequence of messages.

BERT: We fine-tuned the pre-trained contextual representation model BERT (Devlin et al., 2019),
which achieved improvements on various natural language processing tasks, using the classification set-
tings. Specifically, we use the uncased BERT-based model2 as the pre-trained model.

5.2 Experimental Settings
We used the public implementation of Mohiuddin et al. (2019) 3 as the LSTM, H-LSTM, H-LSTM-CRF,
and the same hyperparameters as them. In their implementation, the word embedding is pre-trained from
the existing corpora of asynchronous conversations by using Glove (Pennington et al., 2014).

We evaluated with a ten-fold cross-validation. We used the annotation data of the crowd workers
because of the large amount of data. In each fold, we partitioned the data randomly into a training set
(80%), a development set (10%), and a test set (10%). Note that the data is split at the thread level
to avoid overlapping threads in different sets. As the evaluation metric, we use a macro-averaged F1
due to the imbalance of the DA tags and report the average values in the ten folds. We choose optimal
hyperparamters of models in terms of a macro F1 value in the development set.

5.3 Evaluation Results
Performance at Sentence-Level

The upper half of Table 5 presents sentence-level F1 scores of the baseline models. BERT significantly
outperforms the previous best approaches by a margin of 8.5 points. The performance of the handcrafted
feature models is comparable. A comparison between the existing neural models shows that there is no
difference between LSTM and H-LSTM and that the two models surpass H-LSTM-CRF. These results
show that the sequential dependencies of the contexts and tags are not effective in our corpus. The
existing neural models have a strong performance compared to the handcrafted feature models, as in
previous studies described in Mohiuddin et al. (2019).
Performance at Message-Level

Message-level F1 scores of the baseline models are shown in the lower half of Table 5. Compared with
the performance at sentence-level, the performance at message-level is relatively lower. This is because a

2https://github.com/huggingface/transformers
3https://ntunlpsg.github.io/project/speech-act/
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level split SVM LR CRF LSTM H-LSTM H-LSTM-CRF BERT

sentence
dev 0.546 0.545 0.552 0.575 0.575 0.569 0.647
test 0.542 0.538 0.541 0.565 0.565 0.554 0.650

message
dev 0.407 0.402 0.400 0.437 0.428 0.428 0.534
test 0.407 0.382 0.366 0.400 0.380 0.368 0.533

Table 5: Message-level and sentence-level F1 scores of each models on our corpus. The best scores
in each row of the table is highlighted in bold. The best scores in each model category of models
(handcrafted feature models and previous neural models) are underlined.

message is more likely to have inherently multiple tags and much harder to find its main communicative
function. Similar to the sentence-level, BERT achieves a 13.3 point improvement against the previous
best approaches. SVM performs the best among the handcrafted features models. Sequence learning
models (CRF, H-LSTM, and H-LSTM-CRF) perform poorly compared to sentence-level predictions. We
conjecture that the sequential context information does not contribute effectively because the sequence
length of the messages in a thread is shorter than the sequence length of the sentences (2.6 messages
vs. 13.3 sentences per thread). The existing neural models slightly underperform the handcrafted feature
models unlike the sentence-level predictions. The word length of a message is longer than the word
length of a sentence (54.5 vs. 10.5 words), and thus the LSTM layers of the models cannot properly
handle the long sequences.

(a) F1 score of BERT at message-level (b) F1 score of BERT at sentence-level

Figure 4: F1 score of each tags at sentence-level and message-level with the number of tags in our corpus.

6 Discussions

In this section, we further analyze a DA recognition model to provide insight into our corpus. As a target
model of the analysis, we choose the BERT model owing to its performance. We use only one of the
ten-fold data for the following analysis owing to the computational efficiency.

6.1 Performance of Each Dialogue Act Tags
To further analyze the BERT model, we evaluated the performances of each DA tag. Figure 4 shows the
detailed F1 scores of each tag and the frequency of each tag in our corpus. The analysis shows that the
performances of less-frequent tags tend to decrease. Specifically, tags of fewer than 500 in number at the
message-level are inaccurately predicted.

6.2 Human Performance
We assess the human performance for a comparison with BERT. We used the data of three expert annota-
tors of the held-out set to establish the human performance. More specifically, we treated the data of one
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sentence message
BERT 0.644 (0.017) 0.544 (0.035)
Experts 0.834 (0.019) 0.728 (0.015)

Table 6: Mean (standard devia-
tion) F1 score of BERT and expert
annotators at sentence-levels and
message-level on the held-out set.

setup source target BC3 QC3
SELF X 0.498 0.387

ZERO-SHOT X 0.565 0.599
ZERO-SHOT (REDUCED) X 0.226 0.248

TRANSFER X X 0.686 0.708

Table 7: F1 score on BC3 and QC3. SELF refers to training
on the target domain only, ZERO-SHOT refers to training on
the source domain only, and TRANSFER refers to training
on the source domain and fine-tuning on the target domain.

expert annotator (for instance, Expert 1) as the ground truth and the data of the other expert annotators
(Expert 2 and Expert 3) as predictions. This process was followed for each expert annotator. The BERT
model was also evaluated on the data of the three expert annotators.

The evaluation results are shown in Table 6. The results show that the expert annotators achieve a
significantly higher performance and outperform BERT. This indicates that the DA recognition in our
corpus is still a challenge. There are no obvious differences between the BERT performances on the
crowd worker data (Table 5) and the expert data (Table 6). Although the annotation quality of the crowd
workers is not high, we can regard the performance on the crowd worker data to be a valid evaluation.

6.3 Domain Independence

Our annotation scheme was designed for domain-agnostic tags of the DA. To estimate the domain inde-
pendence of our annotations, we investigated the performance under three evaluation scenarios. First,
a model is trained and evaluated on a target domain (SELF). This scenario is used as a baseline for the
other scenarios. Second, a model is trained on a source domain and not trained on the target domain and
is evaluated on the target domain (ZERO-SHOT). Finally, a model is trained on the source domain and
fine-tuned on the target domain and evaluated on the target domain (TRANSFER).

We used our corpus as a source domain, BC3 or QC3 as the target domain. BC3 and QC3 are con-
versations of e-mail and online forum, respectively. The DA tags of our corpus are aligned with the five
speech tags of BC3 and QC3 using the mapping described in Table 4. Following the previous research
of Mohiuddin et al. (2019), the threads of BC3 and QC3 are split randomly into a training set (40%), a
development set (20%), and a test set (40%).

Table 7 shows the F1 score on the three scenarios. Surprisingly, the ZERO-SHOT setup surpasses the
SELF setup by 8.7 points in BC3 and 11.2 points in QC3. To analyze the reason for this, we reduced the
size of our corpus to the same size as BC3 or QC3 (ZERO-SHOT (REDUCED)). The performance in
the ZERO-SHOT (REDUCED) setup decreased significantly and was lower than that of the SELF setup.
Therefore, we can suppose that the large size of our corpus clearly contributes to the performance of the
target domains. Furthermore, fine-tuning the target domain boosts the performance by 12.1 points for
BC3 and 10.9 points for QC3. These results imply that a model trained on our corpus can be generalized
for use in other corpora on asynchronous conversations.

6.4 Multi-Task Learning with Sentence-Level and Message-Level Dialogue Acts

One advantage of our corpus is the two-level annotations of the DA tags. To leverage the annotations
for the learning models, we introduce multi-task learning for predicting the sentence- and message-level
tags. To estimate the effect of multi-task learning, we conducted experiments on the following three
models. First, we train separate BERT models for predicting sentence- and message-level tags, respec-
tively (SEPARATE). These models correspond to the models described in Section 5.3. Second, BERT
models are trained by sharing the Transformer encoder layers but the output layers for classification
(MTL-ENCODER). Finally, a single BERT model is trained for predicting both sentence- and message-
level tags (MTL-FULL). We use a summation of the sentence-level and message-level cross-entropy
losses as an objective function of MTL-ENCODER and MTL-FULL.

Figure 5 shows the F1 score for each setting when we increase the number of messages used as
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training data. We can see that the performance of all models improves with an increase in the data size.
The MTL-ENCODER and MTL-FULL models achieve significant gains over the SEPARATE model
when extremely limited training data are available. In particular, the MTL-FULL model achieves a 24.9
point increase in the score F1 at the sentence-level and a 16.6 point increase at the message level as
compared with the SEPARATE model when the size of the training data is 500. Comparing the MTL-
FULL model with the MTL-ENCODER model, the MTL-FULL model performs the best with a small
number of training data. However, the difference between the two models gradually reaches zero as the
size of the training data increases. These results show that, although the sentences and messages have
different lengths, the MTL-FULL model can accurately classify the sentences and messages in the same
manner.

(a) F1 score at message-level DA tags (b) F1 score at sentence-level DA tags

Figure 5: F1 score of each setup on the development dataset of our corpus. With the SEPARATE setup,
the sentence and message classification models are trained separately. With the MTL-ENCODER setup,
the encoder of the sentence classification model is shared with the message classification model in train-
ing. With the MTL-FULL setup, a single model is trained for both sentence and message classification.

7 Conclusion

Aiming to facilitate the development of DA recognition systems for asynchronous conversations, we
developed a large-scale corpus of e-mail conversations with domain-agnostic and two-level DA annota-
tions. A comparison with human and sophisticated neural models demonstrated that there is still plenty
of room for advancement in modeling of recognition DA. An evaluation on the domain adaptation shows
that training on our corpus contributes to a generalization of the models. We also showed that multi-task
learning with two-level tags substantially boosts the performance.

Because an e-mail conversation has a hierarchical structure where words form a sentence, sentences
form a message, and messages form a thread, we are planning to explore an efficient end-to-end model
that leverages the hierarchical structure. In this paper, we focused annotating communicative functions
of DAs. We will extend annotations to other important components of DAs such as rhetorical relations.
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