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Abstract

Dialogue Act classification becomes a complex task when dealing with fine-grain labels. Many appli-
cations require such level of labelling, typically automatic dialogue systems. We present in this paper
a 2-level classification technique, distinguishing between generic and specific dialogue acts (DA). This
approach makes it possible to benefit from the very good accuracy of generic DA classification at the first
level and proposes an efficient approach for specific DA, based on high-level linguistic features. Our re-
sults show the interest of involving such features into the classifiers, outperforming all other feature sets,
in particular those classically used in DA classification.

1 Introduction
Task-oriented dialogue systems are specific in many respects. First, and this is the most important characteristic,
they focus on a limited semantic domain, rendering the comprehension operation closer to slot filling than deep
semantic understanding. Moreover, these applications correspond to very specific interactions, usually with one of
the speakers (the human or the machine) leading the dialogue. In such situations, recognizing dialogue acts (DA)
becomes extremely useful as a preliminary step of the understanding process: associating speaker’s utterances
to DAs makes it possible to identify very efficiently the type of information they bear and the knowledge to be
conveyed. Many works on dialogue act classification have been done for a long time (Stolcke et al., 2000). The
first question consists in defining the set of relevant dialogue acts for the system. Different generic DA annotation
schemes have been proposed, including an ISO standard (Bunt et al., 2012; Bunt et al., 2017). In addition, several
dialogue corpora have been annotated and made available, among which two are particularly used: Switchboard
Dialog Act Corpus, (SwDA) (Jurafsky et al., 1997) and Meeting Recorder Dialog Act (MRDA) (Shriberg et al.,
2004). These datasets have allowed to train different classifiers. In these works, two preliminary questions arise:
the identification of the dialogue acts to be classified and the features on which the classifier must be based. In
most cases, the classification task targets a limited set of classes (corresponding to very general DAs such as
statement, question etc.) and features remain at a low level (n-grams of words, characters, word embeddings, etc.).
The performance of these classifiers is generally very good. However, the proposed task (i.e. the targeted tagset)
remains often too general for an optimal use in a dialog system. Moreover, and this is a recurring problem in this
type of approach, it is sometimes difficult to interpret the results and understand precisely the relative impact of
the different features on the model.

In this paper, we address the question of DA classification for helping comprehension and dialogue supervision
in the context of task-oriented dialogue systems. Several works have shown the importance of DAs for guiding
dialogues, in particular in the context of adaptive and socially-aware systems used for training social skills (Zhao et
al., 2016). In such cases, the dialogue system plays the role of a person to whom information must be transmitted
(Ochs et al., 2018b). The targeted information, the semantic context, as well as the way the information should
be transmitted are known in advance by the system. We are then in the situation where the most difficult task for
the system is to generate an appropriate reaction to the way the human has delivered the information: appropriate
feedbacks, clarification questions, surprise, emotional reactions, etc. This is the reason why DA classification plays
an important role, more than a classical understanding or intent/slot-filling (Firdaus et al., 2019).

The identification of dialogue acts can therefore be an extremely efficient pre-processing for comprehension,
provided that DAs are specific enough to guide the system efficiently. DA identification comes to a classification
task which requires three preliminary steps: identifying an appropriate tagset, collecting an adequate corpus and
annotating it. The annotation stage is an important issue, this task being done mainly manually. As a conse-
quence, the corresponding datasets remain rather small, which can be problematic for applying machine learning
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techniques. Moreover, as described in this paper, an efficient DA classification makes use of a large number of
features. One way to address this question of high dimensionality is to study precisely the features to be involved
in the model, their characteristics and behavior.

Another characteristics of dialogue systems is that comprehension has to be done incrementally and in real
time. When modeling a dialogue based on natural dialogue corpora, the global set of speakers’ utterances are
taken into account, making it possible to analyze large sequences. However, for automatic dialogue systems, the
only utterances containing information to be processed are those already produced by the human speaker. This
has important consequences on the technique to be applied: it cannot take into account a dialogue in its entirety
and then cannot be bi-directional (no possible forward looking when calculating the system’s answer): the model
should mainly/only rely on the user’s utterances (utterances produced by the system being limited to speaker’s
reactions). We show in this study that DA classification for these specific dialogue situation can be based only on
user’s utterances, offering the possibility of an online and real time processing.

This paper proposes a general methodology to address the problem of classifying specific dialogue acts (in place
of generic DAs) based on a set of interpretable features, adapted to the characteristics of data available for this type
of task. We propose in a first part a summary of the existing techniques and current results in DA classification. In
the second section, we describe the specific data we are working on and the constitution of the dataset. The rest of
the article is devoted to the presentation and discussion of the results.

2 Dialog act classification
Dialogue acts (DAs) correspond to communicative functions describing the illocutionary force (speaker’s intention)
that can be associated with utterances in the discourse. DA classification consists in associating to each segment of
the discourse (that can be a turn, an inter-pausal unit or a segment returned by a speech recognition system) a label
corresponding to the communicative function. DA classification is a classical problem for which many propositions
have been done (Stolcke et al., 2000; Ang et al., 2005; Tavafi et al., 2013; Lee and Dernoncourt, 2016; Chen et al.,
2018; Kumar et al., 2017; Raheja and Tetreault, 2019). Two preliminary questions must be addressed in this task
before a classification technique can be applied: the choice of the tagset, and the identification of the features used
by the classifiers. We propose in this section to quickly address these issues before presenting the main results
available in the literature.

The DA tagset: The study of dialogue acts has led to several annotation schemes. Among these, the Dialogue
Act Markup in Several Layers (DAMSL) (Core and Allen, 1997), which served as a basis for the annotation of two
reference corpora, SwDA and MRDA, cited above. More recently, the DIT++ schema, which led to the establish-
ment of the ISO 24617-2 standard (Bunt et al., 2012; Bunt et al., 2017), proposed an organization based on different
dimensions (e.g. turn management, social obligations management, etc.) each containing different dialogue acts.
In total, DIT++ proposes to distinguish more than 100 dialogue acts. DAMSL, on the other hand, proposes 226
dialogue acts, which are generally clustered into 42 labels. From an automatic classification perspective, too many
classes do not lead to efficient results. Therefore, many studies propose to limit the number of classes by using
either generic metaclasses or the most frequently used. For example, several works are based on the DAMSL tagset
reduced to 5 classes (statements, questions, backchannels, fillers and disruptions) (Ang et al., 2005). Some other
works, such as the reference one (Stolcke et al., 2000) or the recent state of the art described in (Chen et al., 2018),
use a tagset reduced to the 5 most frequent tags (statement, backchannel, opinion, abandoned, agreement).

Reducing the tagset can also be done for adjusting the classification to the needs of a specific domain dialog
system. This is for example the case in (Anakina and Kruijff-Korbayova, 2019), describing communication in the
context of robot-assisted disaster response. In this work, a specific set of ISO metaclasses adapted to the needs
of the system is proposed, clustering the 20 most useful dialogue acts into 8 metaclasses (Contact, Inform,

Affirmative, Request, Question, Confirm, Disconfirm, Negative).

The features: The second question to be answered for DA classification is that of the features used by the
classifiers. Most works use low-level features, such as n-grams of characters and words, length of the utterance,
etc. (Stolcke et al., 2000; Kim et al., 2016; Sennrich et al., 2017). These features are usually complemented by
distributional information such as word embeddings (Chen et al., 2018; Kumar et al., 2017; Tran et al., 2017;
Chakravarty et al., 2019), which can be weighted with TF-IDF (Joulin et al., 2017; Raheja and Tetreault, 2019). In
several studies, this information is also complemented by linguistic features such as prosody or morpho-syntactic
information (Shriberg et al., 1998; Stolcke et al., 2000; Bothe et al., 2018; Tran et al., 2017).

Related works: Many different approaches have been tested for DA classification. The following table summa-
rizes the main results recently obtained in this task, indicating the type of classification technique, the dataset and
the accuracy. Two of these studies represent the state of the art for the MRDA an the SwDA datasets. In a recent pa-
per, (Chen et al., 2018) has proposed a new approach based on CRF-Attentive Structured Network. This technique
relies on a hierarchical representation distinguishing three levels (words, utterances, conversation), integrating a
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Authors Algorithm Corpus (and tagset) Accuracy
(Grau et al., 2004) Naı̈ve Bayes Switchboard corpus 66%
(Stolcke et al., 2000) HMM with a trigram language model Switchboard (5 most fre-

quent DAs)
71%

(Shen and Lee, 2016) Attentional RNN Switchboard 72.6%
(Kalchbrenner and Blunsom,
2013)

Recurrent Convolutional Neural Net-
work

Switchboard 73.9%

(Tavafi et al., 2013) SVM-HMM Switchboard (16 DAs) 74.32%
(Bothe et al., 2018) Context learning (3 preceding DAs) +

of RNNs
Switchboard 77.34%

(Chen et al., 2018) CRF-Attentive Structured Network Switchboard (5 DAs) 81.3%
(Raheja and Tetreault, 2019) CRF decoding, contextual attention Switchboard 82.9%
(Tavafi et al., 2013) SVM-HMM MRDA dataset (11 DAs) 80.5%
(Lendvai and Geertzen, 2007) Naı̈ve Bayes MRDA 82%
(Chen et al., 2018) CRF-Attentive Structured Network MRDA (5 DAs) 91.7%

Table 1: State of the art in DA classification

memory to take into account contextual dependencies. At the first layer, a fine-grained representation (integrating
in particular character and word-level embeddings, POS, named entity). Each utterance is encoded with a bi-
directional GRU (Gated Recurrent Unit), implementing the context influence (capturing long term dependencies
across the conversation). An attention mechanism (selecting the most relevant information) is integrated, introduc-
ing weights based on the similarity between the input memory (obtained from the word embedding layer) and the
current utterance. This technique has been evaluated for the classification of the 5 most frequent DAs in SwDA and
MRDA, obtaining respectively an accuracy of 81.3% and 91.7% (still the state-of-the-art for MRDA).

Finally, (Raheja and Tetreault, 2019) describes the state-of-the art DA classification evaluated against SwDA.
They propose a combination of techniques already presented above (CRF decoding, contextual attention, and
character-level word embeddings) complemented with self-attentive representation learning. They report an ac-
curacy of 82.9% in the identification of the 43 classes of SwDA, where the mean accuracy of other comparable
methods is 75% on the same dataset.

3 The dataset
The goal of this paper is to design a DA classification method providing inputs for the understanding module of a
dialogue system. We give first details about the dataset and the use case before describing the annotation process.

3.1 Use case: training doctors
We propose to focus on a specific application: using a dialogue system for training doctors to break bad news (Ochs
et al., 2018b). This work is part of the ACORFORMED project (http://www2.lpl-aix.fr/˜acorformed/)
which consists in asking trainees, following a given scenario, to announce the patient a problem that occurred
during a medical act. In such a context, the dialogue structure is very specific. First, the semantic domain is closed
and the system has the entire knowledge of the scenario. Moreover, the way the doctor announces the new has
to follow some recommendations (Schnebelen et al., 2011), in particular by structuring the discourse in different
phases in the announcement (greetings, presentation of the context, description of the problem and its solutions,
etc.). In such situations, the interlocutor roles are not balanced: the doctor (in our case the human trainee) is the
main speaker and the patient (played by the dialogue system) reacts to the doctor’s utterances, without taking the
lead of the conversation.

We collected a corpus of training sessions, in French, organized between doctors (the trainee) and patients
(played by human actors). The corpus is made of 7 sessions each lasting around 15mns. The audio input (repre-
senting 37,000 words) has been transcribed and manually corrected. The corpus has been automatically segmented
into inter-pausal units (with pauses higher than 250ms). Each inter-pausal unit forms an utterance, 1,822 such
utterances have been produced throughout the 7 dialogues by the doctors.

3.2 Annotation scheme
Several proposal have been done in terms of dialog acts annotation. In particular, based on DIT++ , ISO 24617-2
scheme (Bunt et al., 2012; Bunt et al., 2017) proposes a hierarchy of such acts. In our work, DA classification is
conceived as a pre-processing step before understanding. Our goal is therefore to try identifying as precise DA
classes as possible. As explained above, the dialogue in this type of discourse is precisely structured. Besides the
classical opening and closing phases, the main part of the dialogue consists in different stages in the information
transfer: the patient’s initial state (having justified the hospitalization), the bad new description (typically an inci-
dent during a surgery) and the patient’s current state. Moreover, the doctor also gives explications, asks questions,
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Anonymous name DAMSL ISO
Opening Conventional-opening Opening, Initial greeting

Init state Statement-non-opinion Inform
Init remediation Statement-non-opinion Inform
Bad new state Statement-non-opinion Inform

Bad new remediation Statement-non-opinion Inform
Current state Statement-non-opinion Inform

Current remediation Statement-non-opinion Inform
Reassurance Statement-non-opinion Social obligations management functions,

Empathy expression
Explication Summarize/reformulate Inform

Social interaction Apology, Offers, Options, Commits Social obligations management functions,
Empathy expression, Apologizing, Ex-
pressing gratitude

Discourse Uninterpretable, Affirmative non-
yes answers, Reject, Other

Feedback Functions; Dialogue structuring
functions

Question Info-Request Question
Closing Conventional-closing Dialogue closing

Table 2: DA tagset correspondence with DAMSL and ISO.

reassures the patient and have different types of social interactions.The following table lists the complete set of
dialogue acts used in the ACORFORMED project and their correspondence with DAMSL and ISO labels. Note that
the selected dialog acts are based on a linguistics analysis of the dialogs of the corpus described in (Ochs et al.,
2018a). In this sense, the tagset is specific to the needs of the project but remains generic to the class of task-
oriented systems in the context of dialogues aiming at transferring information from one speaker to the other. The
ACORFORMED dialogue acts are semantically fine-grained, which is of great help for the understanding process,
but represents a much harder problem for automatic classification: we have in this case more classes, with few
differences between them (compare for example the different classes describing the state of the patient). Note that
we do not integrates in this scheme a label Other, taking into account the specificity of the application domain.

3.3 Corpus annotation

The corpus has been manually annotated by 5 annotators among which two experts. The Fleiss kappa inter-rater
coefficient has been applied and shows a inter-annotator agreement of 0.518, which corresponds to a fair agreement
according to usual standards (Fleiss et al., 2003). The following table shows the agreement by class, which gives
an idea of the different levels of difficulty:

Kappa
Init remediation 0.479
Init state 0.349
Bad new state 0.440
Bad new remediation 0.313

Kappa
Current remediation 0.500
Current state 0.434
Discourse 0.750
Explication 0.274

Kappa
Opening 0.739
Reassurance 0.388
Social interaction 0.641
Closing 0.688

The high number of classes mechanically decreases the Fleiss kappa coefficient. However, we consider the
result to be acceptable. It also underlines the difficulty of the annotation task (as well as that of classification)
at this level of precision. Figure 1 illustrates the class distribution, showing its unbalanced nature: in the corpus,
the class current state represents 21% of the total number, whereas the class closing corresponds to 0.5%. This is
obviously one of the problems we will have to fix when using machine learning techniques.

4 Feature selection

We propose to explore different approaches for classifying DA in the context of our specific dataset. More pre-
cisely, we will work specifically on two aspects: the feature set (by adding high-level features on top of the classical
ones) and classification techniques (by comparing a classical multiclass approach with a specific case of hierar-
chical classification). As it is usually the case, a preliminary step of data cleaning is applied, suppressing special
characters, accents, stopwords and normalizing the font case. A separate pre-processing has been done, adding
lemmatisation to these operations. Moreover, we used MarsaTag (Rauzy et al., 2014), a lexical processing tool
integrating different functionalities (including POS tagging) in order to extract the lexical features.

Classical features : We first experiment classification with a set of features classically used for DA identification.
It consists in combining TF-IDF principles with word and character n-grams. Applying a principal component
analysis, we extracted 4 combinations to be tested:
Morpho-syntactic features : We propose to explore the role of low-level morpho-syntactic features, based on
POS categories:
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Figure 1: The 4 dominant classes discourse, current state, social interaction,

current remediation cover 78% of the corpus, 20% is made of the 5 intermediate classes reassurance,

init state, init remediation, bad new remediation and bad new. The remaining 2% of the corpus is
composed of the 2 low occurrence classes opening and closing.

f-TFIDF Classical TFIDF on word n-grams (from 1 to 3 words, keeping the 250 best) and character
n-grams (from 3 to 5 chars, keeping the 250 best), then a total of 500 features.

s-TFIDF The f-TFIDF features, filtered with a singular value decomposition in order to obtain a better
representation density

w-TFIDF TFIDF only based on the word n-grams, keeping the 500 best.
l-TFIDF TFIDF based on the lemmas n-grams, keeping the 500 best

Table 3: Classical features

Lexical features : We created a dictionary specific to our domain, containing medical words in which we distin-
guished pathological terms vs. others. Moreover, we annotated the data with a specific label tagging the medical
words depending on they appear for the first time in the dialogue or not (corresponding to the given/new distinction
used in discourse analysis). From this information, the following features are extracted:

Context features : As proposed in several works (Bothe et al., 2018; Raheja and Tetreault, 2019), context (i.e.
the labels of the preceding dialogue acts) is taken into account. We implemented three different context represen-
tations, in a 1 to 5 window: one hot encoding of the preceding DAs, bag-of-words (encoding the number of times
the DA appears in the context of the utterance), n-grams of words (up to 0.5% frequency). The following features
are used: Prec onehot1, Prec onehot2, Prec bow2, Prec bow5, Prec ngram3 and Prec ngram 1+3

(feature Prec concatenated with Prec ngram3).
Syntactic features : High-level syntactic information can play a role in the characterization of certain classes.
In particular, dialogue sequences corresponding to a description or an explanation are usually associated to more
complex structure, with more modifiers (adjectives and adverbs) and more complex clauses (subordinates, relatives,
prepositional phrases). We propose two features for a simple approximation of these characteristics:

5 Flat classification

Our choice of the classification techniques takes into account two aspects: the size of the dataset and our intention
to have interpretable models. These two goals can be contradictory. Having a rather small dataset increases the risk
of overfitting, which leads to chose the simplest models. On the other hand, in order to improve interpretability,
we want to integrate as many linguistic features as possible. We chose in this perspective to test different simple
machine learning models: Logistic Regression, Support Vector Machine, K-Nearest Neighbors, Decision tree,
Random Forest; some of them are known to be particularly adapted to learn on small dataset (Forman and Cohen,
2004). Different regularization techniques has been applied according to the model: L1, L2, Elasticnet, as well
as tuning the margin parameter for SVM or the tree depth for random forests. Feature selection is then applied
using an Anova to select the k-best features. The best classifier is retrained with this new feature set. Two classical
methods for hyperparameter tuning, RandomSearch and GridSearch, have been applied on the training set, with
k-cross validation. Considering the size of the dataset, a k-fold cross-validation has been applied, with k = 5, in
order to have a validation set large enough to be statistically significant (different values of k have been tested).
Moreover, as shown in the previous section, class distribution is imbalanced, some of them representing 0.3% of
the data, where others correspond to 20%. We used Synthetic Minority OverSampling Technique (SMOTE) which
consists in adding new points by combining the points of the minority class with the closest neighbors. We refined
this method by filtering the output with Tomek Link Removal, removing the points that are the closest neighbors
of each other. As a result, different tests have been done on imbalanced and balanced classes (with the same class
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DM Number of discourse markers in the utterance
FP Number of filled-pauses
TOK Number of tokens

Table 4: Morpho-syntactic features

MED Nb of medical terms
MED P Nb of pathological terms
MED O Nb of non-pathological terms
MED New Nb of new medical terms
MED Given Nb of given medical terms (i.e. that al-

ready occurred in the dialogue)

MED-P New Nb of new pathological terms
MED-P Given Nb of given pathological terms
MED-O New Nb of new non-pathological terms
MED-O Given Nb of given non-pathological terms

given

Table 5: Lexical features

proportion for the training and the test sets).
Evaluation metrics are accuracy and balanced accuracy, which gives an idea of the mean performance by class.

We chose to use accuracy (and not other metrics such as weighted accuracy) in order to compare our results with
the literature. Finally, the corpus contains 1,822 utterances, split in 80% for the training set, 20% for the test set.

In this first experiment, we classified directly, with a unique classifier, the 13 classes: init state,

init remediation, bad new, bad new remediation, current remediation, current state,

opening, closing, discourse, explication, question, reassurance, social interaction.
Several tests have been done with different feature combinations (note that Cliti stands for clitic 1st to 3rd person):

Table 8 shows the raw results, from which we can compare the different proposals we have. The best results
(73.8% accuracy, 63% balanced accuracy) are obtained with XGBoost applied to the complete set of features.
Note that Random Forest led to comparable accuracy. As it is the case with other works on DA classification,
using context (in our case a simple one-hot encoding of one preceding DA) always significantly improves the
results for all classifiers (improvement of 15 points in the case of SVM). What is new in this study is that involving
the all set of linguistic features also significantly improves accuracy: comparing the best classifier trained with the
classical features and the context (column C+CONT) with that trained with all features shows an improvement of
2 points, reaching 72% (keeping a good balanced accuracy of 59%). Linguistic features approximate high-level
syntactic information about discourse elaboration and the use of complex structures. DA classes are very different
from each others with this respect: explaining a difficult situation requires higher linguistic complexity than asking
a question or having a social interaction. This results is in line with our goal to go towards an interpretable model.

6 Two-level classification
Multiclass classification is always prone to several difficulties. Moreover, the identification of classes correspond-
ing to fine-grained knowledge (e.g. state, remediation, etc.) used in the perspective of dialogue understanding is
much more difficult than other types of classification. Addressing this issue can be done thanks to hierarchical
classification (Silla and Freitas, 2011). Chaining classifiers in particular when there is a lot of classes to consider
can be extremely helpful by breaking down the problem into small simpler problems, increasing the overall perfor-
mance. As explained above, at the difference with DA classification triggering meta-classes, we need in our task
a fine-grained classification, which is by definition (and also due to the specificity of our dialogue classes) harder
to obtain. In order to fit with our final application (utterance pre-processing for spoken language understanding in
a dialogue), we propose to take advantage both from the robustness of meta-class classification and the interest of
the fine-grained one. We are then in a specific top-down classification, limited to two levels (DA meta-classes and
leaf classes). This corresponds to a ”Local Classifier per Level” approach which consists of training a multi-class
classifier for each level (Freitas and de Carvalho, 2008). This method is known to have two main drawbacks. First,
as it is the case with other top-down class-prediction approaches, errors at the higher level are propagated down-
wards. Second, this method ignores parent-child class relationships. However, it presents in our case an important
advantage: information provided at each level will be used directly for utterance understanding in the dialogue
system.

We propose to keep as first-level classes the metaclasses specified in the ISO 24617-2 scheme (see sec-
tion 4): Opening, Discourse, Inform, Question, Closing. The second level details the Inform
metaclass in 8 subclasses: Init state, Init remediation, Bad new state, Bad new remediation,

Current state, Current remediation, Social interaction, Explication.

6.1 Level-1 classification
We tested different feature configurations. This section focuses on an overview of the best results we obtained. We
compare for that three different feature combinations: CLASS (f-TFIDF, to which an principal component analysis
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MODIFIERS The ratio of the number of adjectives and adverbs to the total number of tokens
in the utterance: nb adj+nb adv∑

tokens

CLAUSES The ratio of the number of conjunctions, pronouns and prepositions to the total
number of tokens: nb conj+nb prep+nb pro∑

tokens

Table 6: Syntactic features

CLASS Classical features (f-TFIDF)
C+MED CLASS plus lexical features + MED + MED New
C+MED+LING C+MED plus DM, FP, TOK, MODIFIERS, CLAUSES, nb N, nb V, nb aux, nb Cliti
C+CONT CLASS plus Prec onehot1
C+MED+LING+CONT C+MED+LING plus Prec onehot1
C+LING+CONT+MED PO C+LING+Prec onehot1 plus MED P, MED O, MED-P New, MED-O New

Table 7: Feature sets

has been applied in order to keep the 350 best features among the initial 500), C+MED (CLASS plus medical
lexical features MED and MED New) and C+MED+LING (the previous linguistic features). The following table
reports the results obtained for the different classifiers. The linear regression classifier with an Anova to select the
k-best features leads to the best results. As expected, the accuracy is very high, reaching 94% (89% of balanced
accuracy). Note that the 1st-level classes are relatively stable and easy to recognize, the context feature did not
bring any improvement there. It is out of the scope of this paper to compare these results with the state of the art in
similar DA annotations: datasets and language are totally different. However, remind that the higher performance
on the SwDA corpus is 81.3% and 91.7% on the MRDA.

Taking into account the size of the dataset, we have tried oversampling methods, as described in the previous
section. Table 10 reports the results obtained for the best classifiers, using the C+MED+LING feature set, showing
that oversampling does not improve the results obtained by the linear regression model.

6.2 Level-2 classification
The second step of the classification consists in applying a new classifier to the sequences labeled Inform in the
first step. The Inform sub-clases are: Init state, init remediation, bad new, bad new remediation,

current state, current remediation, explication, social interaction, reassurance.
We have tested different feature configurations and focus her on the following feature selection: CLASS (f-

TFIDF), C+MED+LING, C+CONT, C+MED+LING+CONT. We also tried a new feature combination, noted
C+MED+LING+CONT+MEDPO, adding to C+MED+LING+CONT the specific medical features distinguishing
pathological terms from others (MED-P New, MED-P Given, MED-O New, MED-O Given).

Note that, as for the flat classification technique, applying imbalanced classes pre-processing does not improves
the results, reason why they are not reported here.

7 Reducing the number of classes
As explained above, we have tried in our approach to use fine-grained classes, at a precise semantic level. This is
of course extremely interesting in the perspective of helping the understanding mechanisms of a dialogue system.
But of course, this introduce a new level of difficulty. We have tried to reduce this complexity by defining more
general classes, factorizing some of the dialogue acts used previously. In this experiment, we used the following
classes:
• State: this new class regroups the init state, bad new state and current state.
• Remediation: gathering init remediation, bad new remediation and current remediation
• Social interaction: gathering social interaction and reassurance
• Opening: gathering greeting, presentation and object
• Closing, Discourse, Question: same definition as in the previous typology
Several clustering experiments have been done, without leading to interesting results (typically clusters with the

same word, not really useful in our task) or even more problematically difficult to interpret (in the case of clustering
based on linguistic features). We applied the same techniques and feature sets as previously described and obtained
the following results:

Remind that this experiment concerns a classifier for 7 classes. It is therefore not possible to compare directly
these results with those of the 13 classes classifiers. The decision of the choice for the final classifier depends
then on the classes granularity level we consider optimal, taking into account the performance. The 13 classes
flat classifier accuracy is 73.7% (63% balanced accuracy). On its site, the level-2 classification (with the 8 finer-
grained classes) has an accuracy of 77.2% (71% balanced accuracy). This is to be compared, all things equal, with
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Eval. CLASS C+MED C+M+LING C+CONT C+M+L+CONT C+M+L+C+M PO

LR Acc. 0.5499 0.5227 0.5613 0.6838 0.6980 0.6980
Bal. 0.3367 0.3362 0.3486 0.5466 0.5811 0.5587

SVM Acc. 0.5299 0.5328 0.5328 0.7037 0.6838 0.7009
Bal. 0.3333 0.3396 0.3295 0.5932 0.5289 0.5939

KNN Acc. 0.4188 0.4330 0.4160 0.4160 0.4416 0.4387
Bal. 0.2713 0.2820 0.2849 0.2908 0.3222 0.3126

Decision Tree Acc. 0.3960 0.4046 0.5014 0.5726 0.6724 0.6752
Bal. 0.2513 0.2053 0.2940 0.4436 0.5046 0.5043

Random Forest Acc. 0.4758 0.5071 0.5442 0.6239 0.7293 0.7322
Bal. 0.2288 0.3088 0.3221 0.4406 0.5569 0.5613

K-best feat. Acc. 0.5499 0.5527 0.5613 0.7037 0.7293 0.7350
+ best classifier Bal. 0.3367 0.3362 0.3486 0.5932 0.5533 0.5647

XGBoost Acc. / / / / 0.7322 0.7379
Bal. / / / / 0.6250 0.6308

Table 8: Flat classification results

Eval. CLASS C+MED C+MED+LING

LR Acc. 0.8842 0.8875 0.9003
Bal. 0.8319 0.8329 0.8668

SVM Acc. 0.8875 0.8907 0.8842
Bal. 0.8410 0.8610 0.8616

KNN Acc. 0.7460 0.7781 0.7974
Bal. 0.7632 0.7735 0.7844

Decision Tree Acc. 0.8328 0.7974 0.8232
Bal. 0.6779 0.6220 0.5791

Random Forest Acc. 0.8553 0.8617 0.8714
Bal. 0.6358 0.6166 0.6248

K-best feat. Acc. 0.9035 0.9068 0.9421
+ best classifier Bal. 0.8478 0.8638 0.8900

Table 9: Level-1 classification results

this 7-classes flat classifier which has an accuracy of 78.3% (59.6% balanced accuracy). We obtain then rather
comparable results, the 7-classes having a slightly better accuracy (but lower balanced accuracy).

8 Discussion
Classifying DA is in itself a difficult task when trying to take into account a fine level of precision (therefore a
high number of classes). Most of the experiments reported in the literature focus on general dialog acts, typically
the 43 classes for SwDA that correspond to their general function played by the utterance in the dialogue (ques-
tion, assessment, backchannel, etc.). When using such general DAs, automatic classification reaches easily a good
accuracy. However, the task becomes difficult when entering into finer-grained DAs (required when using such
classification as a pre-processing step for dialogue systems). In this case, classes correspond to a specific infor-
mational content much more difficult to identify than classical functional dialogue acts (in particular because of
the natural variability of language). The complexity of this task is reflected in the medium level of inter-annotator
agreement we obtained.

The first strategy we explored consists in classifying directly our 13 classes. Our results are rather good, reaching
an accuracy of 73.8%, which is not so far from the average accuracy of the simpler functional classification (75%).
XGBoost with a feature set involving, on top of n-grams, higher level linguistic, lexical and syntactic features led
to the best performance in comparison with 6 other classifiers. These results confirm the importance of the context
(in our case the previous DA), which improves by 12 points other feature sets. They also show the interest of
taking into account linguistic features. Lexical features, which are domain-dependent (frequency of medical terms,
distinction between pathological terms from others), improve by 2 points the results obtained with contextual
features. But note that the MED feature set also contains discourse-level information by integrating the count
of new referents in the utterance. This feature plays an important role by distinguishing the phases describing
patient’s state from others: new terms are mainly introduced during the description of the initial state of the patient
as well as the description of the bad new. On their side, higher level linguistic features (richer lexical description
with the Modifiers feature, more complex syntactic constructions with Clauses feature) also improves by 2 more
points the results with the context and the terminological features. As explained above, these features play a
role by distinguishing sequences during which language is more elaborated than others. Typically, descriptive
or explicative utterances fall into this category. This is an interesting result not only because it improves the
performance, but also because we can interpret directly the role of such features in the model.
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Eval. Base Oversampling SMOTE

LR Acc. 0.9003 0.8617 0.8489
Bal. 0.8668 0.8595 0.8530

K-best feat. Acc. 0.9421 0.9325 0.9325
+ best classifier Bal. 0.8900 0.8869 0.8869

Table 10: Level-1 oversampling

Eval. CLASS C+MED+LING C+CONT C+MED+LING+CONT C+M+L+C+MEDPO

LR Acc. 0.4054 0.4363 0.6911 0.7066 0.7143
Bal. 0.2626 0.3151 0.6431 0.6317 0.6317

SVM Acc. 0.4131 0.4517 0.7413 0.7336 0.7336
Bal. 0.2827 0.3151 0.6431 0.6317 0.6317

KNN Acc. 0.3629 0.3398 0.5869 0.5830 0.5946
Bal. 0.2978 0.2760 0.4507 0.4544 0.4689

Decision Tree Acc. 0.3205 0.3475 0.7104 0.7104 0.7104
Bal. 0.1813 0.1902 0.6569 0.6373 0.6400

Random Forest Acc. 0.3745 0.3900 0.7413 0.7606 0.7722
Bal. 0.2439 0.2607 0.6496 0.6782 0.7101

K-best feat. Acc. 0.4093 0.4979 0.7452 0.7606 0.7568
+ best classifier Bal. 0.2635 0.2833 0.6579 0.6782 0.6951

Table 11: Level-2 classification results

The second strategy we explored in this paper, relying on a hierarchical classification in two steps, shows the
interest of mixing generic and specific classes. The results obtained in the first step, classifying 5 generic DAs,
outperform the state-of-the art with an accuracy at 94.2% (obtained by the linear regression model with k-best
feature selection) and a balanced accuracy at 89%. In this task, the context feature cannot be used directly, taking
into account the class factorization. We can see that linguistic features, as for flat classification, play a primordial
role, outperforming in all cases the other feature sets. This is due to the fact that the majority class, Inform, gathers
all classes possibly impacted by lexical richness and syntactic complexity. Let’s note moreover that these very good
results are very interesting in the perspective of dialogue control: 3 of the 5 classes (Opening, Discourse,

Closing) can be directly used in order to generate a response of the dialogue system without entering into a
specific processing.

The second step of the classification consists in refining the Inform class, identifying classes corresponding at
the same time to dialogue acts and semantic information (states, remediation, social interaction and explication).
In this case again, Random forest gives the best classifier. As with all other types of classification, involving
linguistic features leads to the best results, which confirms the interest of such feature set whatever the type of
dialogue act classification. The final accuracy reaches 77.2% (balanced accuracy 71%) improving the average
level of fine-grained DA classification.

9 Conclusion

DA classification usually relies on low-level features. We have shown in this paper that bringing high level linguis-
tic features in the model improves all types of classification (flat or hierarchical). In particular, we have shown that
this approach outperforms the state-of-the-art for generic DA classification (corresponding to the level-1 classifi-
cation in our experiment). Even more interestingly, we have shown that this feature set also leads to a very good
accuracy for the more complex task of fine-grain DA classification. These results open the way to new solutions
for language understanding in the context of task-oriented dialogue systems: classifying fine-grained DAs offers
the possibility to precisely identify the semantic frames to be used in the semantic representation of the dialogue.
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