
Proceedings of the 28th International Conference on Computational Linguistics, pages 4825–4834
Barcelona, Spain (Online), December 8-13, 2020

4825

Hierarchical Trivia Fact Extraction from Wikipedia Articles

Jingun Kwon1, Hidetaka Kamigaito1, Young-In Song2 and Manabu Okumura1

1Tokyo Institute of Technology
2Naver Corporation

kwon.j.ad@m.titech.ac.jp
{kamigaito,oku}@lr.pi.titech.ac.jp

song.youngin@navercorp.com

Abstract

Recently, automatic trivia fact extraction has attracted much research interest. Modern search en-
gines have begun to provide trivia facts as the information for entities because they can motivate
more user engagement. In this paper, we propose a new unsupervised algorithm that automati-
cally mines trivia facts for a given entity. Unlike previous studies, the proposed algorithm targets
at a single Wikipedia article and leverages its hierarchical structure via top-down processing.
Thus, the proposed algorithm offers two distinctive advantages: it does not incur high compu-
tation time, and it provides a domain-independent approach for extracting trivia facts. Experi-
mental results demonstrate that the proposed algorithm is over 100 times faster than the existing
method which considers Wikipedia categories. Human evaluation demonstrates that the proposed
algorithm can mine better trivia facts regardless of the target entity domain and outperforms the
existing methods.

1 Introduction

Modern search engines offer a rich knowledge panel that appears on the right side of a user screen as a
search result for a given entity to improve user engagement; See an example in Figure 1. One piece of
information presented in the knowledge panel can be a trivia fact about the given entity, which contributes
to the effective user engagement (Tsurel et al., 2017). For example, the Google search engine provides a
trivia fact for a given entity to attract users’ attention (Korn et al., 2019). Successfully attracting users’
attention can facilitate the users to revisit the search engine (O’Brien and Toms, 2008). In contrast, poor
user engagement would result in the users’ switching to a competing search engine (White and Dumais,
2009). Trivia facts are, therefore, intended to improve the search quality to increase user engagement by
making the search process more interesting.

In contrast to common, expected, or normal information, a trivia fact is an interesting fact that is
unusual, unexpected, or unique (Prakash et al., 2015). Tsurel et al. (2017) demonstrated that trivia facts
are usually little-known facts, thus, well-known facts (e.g., basic background information) about a given
entity cannot be considered as trivia. For example, taking Confucius as an example, the following fact
in the Wikipedia article can be considered as trivia: “There is a grand-scale memorial ceremony, called
Seokjeon Daeje, twice a year in South Korea for Confucius.” It is unusual and unexpected for such
a memorial ceremony to be held in South Korea because Confucius is a popular Chinese philosopher
and politician. In addition, surprising facts can be also considered as trivia because surprise and trivia
worthiness are strongly correlated (Tsurel et al., 2017). For example, the sentence in the Wikipedia
article for the film ‘The Dark Knight Rises’ states: “On July 20, 2012, during a midnight showing of The
Dark Knight Rises at the Century 16 cinema in Aurora, Colorado, a gunman wearing a gas mask opened
fire inside the theater, killing 12 people and injuring 58 others.” Such information is surprising and can
be considered as trivia. Those little-known and surprising facts from Wikipedia articles can be used to
attract users’ attention when searching these entities.

This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/.

4826

Figure 1: An example Google knowledge panel for the Chinese philosopher Confucius.

Early efforts to mine trivia facts took advantage of relational databases for relational expressions us-
ing several functions such as relational algebra, in order to generate trivia questions (Merzbacher, 2002).
However, this approach requires human experts to generate a natural trivia question from obtained rela-
tional expressions. Rather than using a relational database, Lin and Chalupsky (2003) used the notion of
“rarity” to measure interestingness to discover interesting facts and hidden connections such as relation-
ships between people. Recently, Prakash et al. (2015) demonstrated that a Wikipedia article for a given
entity can be a good source to mine trivia facts. In response to this report, there have been several at-
tempts to develop automatic trivia fact extraction algorithms for various Wikipedia article domains such
as movies (Prakash et al., 2015), TV shows (Niina and Shimada, 2018), and people (Tsurel et al., 2017).
In addition, DBpedia, which provides structured data for Wikipedia contents, can be used to mine trivia
facts for the domains of artists and actors (Fatma et al., 2017). Despite the success of the previous stud-
ies, however, the existing trivia fact mining algorithms face the following two issues: they are strongly
dependent on the target domains and incur high computational cost. To address these issues, we aim
to develop a new automatic trivia fact extraction algorithm that focuses on the Wikipedia’s hierarchical
structure.

Figure 2: The hierarchical structure of the Confu-
cius’s Wikipedia article.

The structure in a Wikipedia article has not
been necessarily considered, even though each
article shares a standard format for the hierar-
chical structure including its article summary.
Each Wikipedia article begins with its summary,
which allows users to capture information about
the given entity at a glance. Essentially, the sum-
mary presents the principal subjects by omitting
less important content in the article. Then, the
Wikipedia article is divided by content, follow-
ing the summary. Figure 2 shows an example
hierarchical structure of the Confucius’s article.
The text in his Wikipedia article is hierarchically
divided, starting from a section, a subsection, a
paragraph to a sentence. While the second sec-
tion “Life” contains four subsections, the first
section “Name” does not contain subsections.

Therefore, in this paper, we exploit the
Wikipedia’s shared format, the article summary

4827

and the hierarchical structure. We propose the
“Hierarchical Trivia Miner (HTM)” algorithm, which extracts trivia facts in a top-down manner with a
surprise score in a given article. The HTM algorithm uses a single Wikipedia article for a target entity
and adopts a top-down approach; thus, it can mine trivia facts regardless of target domains and does not
need high computation time because it gradually narrows down its search space for extracting trivia facts.

Human evaluation shows that our HTM algorithm can extract trivia facts from Wikipedia articles
regardless of target domains. We also compare its performance of extracting trivia facts and the compu-
tation time with the previous method that makes use of Wikipedia’s category information.

2 Related Work

Recently, significant progresses have been made for mining trivia facts, and Wikipedia is currently widely
used as a source to mine trivia facts. Existing approaches can be divided into two types, extracting trivia
sentences and generating trivia sentences.

To extract trivia facts, Prakash et al. (2015) employed the ranking support vector machine (SVM).
They utilized user-generated trivia from the Internet Movie Database (IMDb) as the training dataset and
applied the trained model to a sentence in an entity’s Wikipedia article as a trivia candidate. Thus, it
selects trivia sentences from the target Wikipedia article. However, the IMDb dataset handles only the
movie domain, and it would be very costly to create datasets for other domains. Fatma et al. (2017)
focused on the domains of Hollywood actors and music artists to harvest trivia facts. They classified
trivia facts from the DBpedia dataset using fusion-based convolutional neural networks by incorporating
hand-crafted features of a given fact triple, such as an entity, a relation/predicate, and an object.

Trivia facts can also be generated using Wikipedia articles. Tsurel et al. (2017) used the Wikipedia’s
category information located at the bottom of articles. Their unsupervised algorithm ranks each category
name based on “Surprise” and “Cohesiveness” scores and generates trivia facts using a template, “A is
a member of C”, where “A” is a given entity and “C” is the selected category name. They used many
articles from all categories of the target entity; thus, their algorithm incurs high computational cost. In
addition, their algorithm only targets at the people domain because other domains do not necessarily
contain trivia categories. Korn et al. (2019) focused on Wikipedia’s superlative tables as a natural source
of interesting facts. The rows in the tables are sorted as the ranking of entities, based on the corresponding
value such as the building’s height. Given the ranked list in the table, they tracked an interesting value
and paired it with a candidate template to generate trivia facts.

Unlike previous methods, the proposed HTM algorithm extracts trivia facts for a given entity, using
a single Wikipedia article based on its hierarchical structure and summary. Using hierarchical informa-
tion is currently widely applied in various tasks as a good indicator to improve the task performance,
such as text classification (Yang et al., 2016), text summarization (Christensen et al., 2014), language
modeling (Gulordava et al., 2018), and neural machine translation (Shi et al., 2016). To the best of
our knowledge, the proposed HTM algorithm represents the first approach that exploits the hierarchical
information in a Wikipedia article.

3 Hierarchical Trivia Miner

In this section, we describe the proposed HTM algorithm. Algorithm 1 shows the architecture of the
HTM algorithm.

3.1 Top-down Processing

HTM receives a single Wikipedia article for the target entity and extracts trivia facts. It performs top-
down processing using a surprise score (in Section 3.2) to extract trivia sentences, starting from a section
to a sentence. Thus, HTM first ranks each section compared to the summary. The top-ranked section
with the highest surprise score is the section that is considered to contain appropriate trivia facts, because
the summary tends to contain well-known facts, and the dissimilarity from the summary can indicate the
trivia-worthiness. Then, if the selected section includes subsections, HTM then ranks each subsection
based on the summary. Otherwise, if the selected section does not contain subsections, the algorithm

4828

Algorithm 1 Hierarchical Trivia Miner

1: function TOP-DOWN(ARTICLE, ENTITY)
2: B ← Summary in ARTICLE
3: S ← Contents in ARTICLE
4: N ← EntityName in ARTICLE
5: TriSec← SURPRISE(B,S)
6: TriSen← None
7: while TriSen 6= None do
8: if Subsec in TriSec then
9: TriSubSec← SURPRISE(B, TriSec)

10: if Sub2sec in TriSubSec then
11: TriSub2Sec ←

SURPRISE(B, TriSubSec)
12: if Sub3sec in TriSub2Sec then
13: TriSub3Sec ←

SURPRISE(B, TriSub2Sec)
14: else
15: TriPara ←

SURPRISE(B, TriSub2Sec)

16: else
17: TriPara ←

SURPRISE(B, TriSubSec)

18: else
19: TriPara← SURPRISE(B, TriSec)

20: TriSen← SURPRISE(B, TriPara)
21: if ENTITY = True then
22: TriSen← FILTERING(TriSen,N)

return TriSen
23: function SURPRISE(SUMMARY, CONTENTS)
24: B ← Summary
25: S ← Contents
26: for Si in S do
27: Sim← SIMILARITY (B,Si)
28: Surprise← 1

Sim
29: TriviaScore.Surprise
30: TriContent← argmax

i
[TriviaScore]

return TriContent
31: function SIMILARITY(SUMMARY, CONTENT)
32: K ← 5
33: T1 ← TopTFIDF (Summary,K)
34: if CONTENT = TriPara then
35: T2 ← AllWordsInSentence
36: else
37: T2 ← TopTFIDF (TEXT,K)
38: Similarity← σ(T1, T2)

return Similarity
39: function FILTERING(SENTENCE, ENTITY)
40: if Entity in Sentence then
41: Trivia← Sentence
42: else
43: Trivia← None

return Trivia

proceeds downward to rank each paragraph in the selected section. Finally, the top-ranked sentence is
extracted as a trivia fact from the selected paragraph.

To extract multiple trivia facts, HTM is performed recursively to extract additional trivia sentences
after pruning the previously obtained ones.

3.2 Surprise Score
To perform the top-down processing from sections to sentences, we need a metric to obtain the top-
ranked textual unit, a section, a subsection, a paragraph, and a sentence. Tsurel et al. (2017) showed that
their surprise score can identify an unusual article among others based on the given article. Therefore,
we also employ their surprise score to estimate how unusual the textual unit is compared to the summary.

We track an unusual textual unit from a section to a sentence using the surprise score. Here, we
illustrate the process at the section level. We compute surprise scores between an article summary and
each section in the given article. The surprise score of the section is defined as follows:

Surp(B,S) =
1

σ(B,S)
, (1)

where B denotes the summary and S denotes the section. σ is used to estimate the similarity between
the summary and each section (in Section 3.3). Because the surprise score is the inverse of the similarity
between the summary and the section, the section with the highest surprise score is the unusual and
surprising section among sections, in that the summary consists of well-known and usual facts. The
algorithm then proceeds recursively until the sentence level. The sections are ranked with the surprise
score for the Confucius Wikipedia article in the following order: “Legacy”, “Life”, “Philosophy”, and
“Name”. Here, the most surprising section, “Legacy”, contains subsections; thus, the HTM algorithm
proceeds to compare surprise scores for the subsections to obtain a surprising subsection.

3.3 Similarity Metric
Term frequency-inverse document frequency (TF-IDF) reflects how important a word is in documents.
Tsurel et al. (2017) used top-k TF-IDF words to compute article-article similarities and demonstrated

4829

that they can successfully compute the similarities for the surprise scores. Thus, we also employ high
TF-IDF words to compute the similarity, σ(B,S), in Equation (1), from a section to a sentence based
on the summary. We first normalize a text in an article by removing stopwords (Tsurel et al., 2017)
including the article name in calculating TF-IDF for words.

To capture semantic similarities, we employ word2vec embeddings, which are vector representations
for words. We utilize pre-trained word embeddings based on the skip-gram model (Mikolov et al., 2013a)
with the negative sampling method (Mikolov et al., 2013b). The word embeddings for approximately
100 billion word tokens mapped into 300-dimension vectors were learned using a part of the Google
News corpus.

The obtained top-k TF-IDF words with their word embeddings are then used to compute the similarity
for each section, subsection, paragraph, and sentence. Here, we weigh the obtained top-k words depend-
ing on their TF-IDF scores (Tsurel et al., 2017). For example, let T1 and T2 be a set of the top-k TF-IDF
words for the summary and the section, respectively. We first search for the most similar term in T2 for
each high TF-IDF term in T1. Similarly, we start from T2 to search for the most similar term in T1. Then,
we sum these two similarities as follows:

σ(B,S) =
1

N

k∑
i=1

w(i) · (max
1≤j≤k

c(t1[i], t2[j]) + max
1≤j≤k

c(t2[i], t1[j])), (2)

whereB and S denote the article summary and the textual unit from a section to a paragraph, respectively.
k is a hyperparameter for how many words we should use as the top-k TF-IDF words. t1 and t2 are the
top-k TF-IDF words for the summary and the textual unit, respectively. w(i) assigns linear weights to
the top-k words, defined as (k − i+ 1), and N normalizes the summed similarities, defined as (k + 1) !.
c(w1, w2) indicates the cosine similarity between two words, based on their word2vec embeddings.

Applying Equation (2) at the sentence level can result in unfair comparison if some sentences are
very short because, in this case, a sufficient number of high TF-IDF words cannot be obtained from the
sentence. Therefore, rather than using the top-k TF-IDF words for the sentence, we employ all words in
it. Because we use all words, we remove w(i) that assigns linear weights to the top-k words as follows:

σ(B,S) =
1

N

k∑
i=1

max
1≤j≤L

c(t1[i], w2[j]) +
1

Q

L∑
i=1

max
1≤j≤k

c(w2[i], t1[j]), (3)

where B and S denote the article summary and each sentence in the surprising paragraph, respectively.
L is the number of words in the sentence, andQ normalizes the summed similarities, defined as (L+1) !.
w2 is words in the sentence.

Calculating surprise scores based on high TF-IDF words might be inadequate if some named entities
are included. Wikipedia articles tend to be collaboratively written about named entities, and so a large
proportion of Wikipedia articles contain named entities (Nothman, 2008). Those named entities can
be too abstract to calculate surprise scores due to their less informative embeddings, that may result
in noises. To circumvent this issue, we consider another method for calculating similarities with top-
k inverse document frequency (IDF) terms. Unlike TF-IDF scores that consider frequent words, IDF
scores do not consider named entities that tend to appear frequently in each Wikipedia article. For
example, Table 1 lists the top five TF-IDF and IDF words from the Stephen Hawking Wikipedia article.
While words from the selected surprising section by TF-IDF scores include named entities, “Jane” and
“Mason”, those from the selected surprising section by IDF scores does not contain named entities.

3.4 Trivia Candidate
The proposed HTM algorithm considers only the textual content in a Wikipedia article for a given entity.
Therefore, sections “References” and “External links” were discarded in Figure 2. Furthermore, we omit
the text written in other elements such as infoboxes, tables, images, categories, references, links, and
itemized lists.

A trivia sentence mined by the proposed HTM algorithm may not always include a given entity token,
that can reduce readability. Therefore, we adopt a filtering step here. If the mined trivia sentence does

4830

Top 5 TF-IDF words Top 5 IDF words

Summary
(T1)

Surprising section
(T2)

Summary
(T1)

Surprising section
(T2)

cosmology Jane achieved accused
achieved Mason breaking acid
breaking disabilities cosmologist action

cosmologist drive discusses additional
discusses family English afraid

Table 1: Top 5 TF-IDF and IDF words from the “Stephen Hawking” article. Words from the selected sur-
prising section based on high TF-IDF words contain named entities (“Jane” is his first wife and “Mason”
is his second wife.).

not contain an entity token, we remove the extracted sentence and recursively extract other trivia sen-
tences until the entity token is found. It can improve the readability of extracted trivia facts with better
understanding.

4 Experimental Settings

In this section, we describe our datasets for extracting trivia facts. We evaluate trivia facts mined from
Wikipedia articles by using a crowdsourcing platform, Amazon Mechanical Turk.

4.1 Datasets and Parameters
For the test dataset, we prepared the most viewed Wikipedia articles from December 1, 2007 to January
1, 2019. This dataset included eight domains: countries, cities, people, music bands, sport teams, film
and TV series, albums, and books. We randomly collected 100 articles in total, that were the similar size
as the previous study (Tsurel et al., 2017).

To tune the hyperparameter k for high TF-IDF and IDF words in the proposed HTM algorithm, we
used 10 random articles as the development dataset that were not present in the test dataset. Here, it was
set to 5, based on human evaluation on the development dataset, from the range of 5 to 10.

4.2 Human Evaluation
We used Amazon Mechanical Turk to obtain the evaluation of extracted trivia facts. Each fact was
presented to five human annotators, that are the same setting with the previous work (Tsurel et al.,
2017; Prakash et al., 2015; Korn et al., 2019). The workers were given a target entity name, basic
background, and an extracted trivia fact. For example, for Stephen Hawking, we provided the following
background sentence: “Stephen William Hawking CH CBE FRS FRSA (8 January 1942 – 14 March
2018) was an English theoretical physicist, cosmologist, and author who was director of research at
the Centre for Theoretical Cosmology at the University of Cambridge at the time of his death”. Note
that the background is the first sentence in the Wikipedia article for the entity. Then, we provided the
following extracted trivia fact: “In August 2014, Hawking accepted the Ice Bucket Challenge to promote
ALS/MND awareness and raise contributions for research.”. The workers were then asked with the
following questions: “Is this statement a trivia fact to a user who is querying for the entity?” and “If the
statement is a trivia fact, is it s good trivia fact?”. The workers responded in the three-point rating scale
(“Good Trivia fact”, “Trivia Fact”, “Not Trivia Fact”).

Some sentences in Wikipedia articles are not understandable independently. Those sentences contain
a pronoun that refers to a word in surrounding contexts. To deal with this issue, we manually changed
such pronouns to proper words in the surrounding context to improve readability.

5 Experiments

In this section, we summarize the results of human evaluation for mined trivia facts. Then, we demon-
strate that the proposed HTM algorithm can extract trivia facts regardless of target entity domains and
does not incur high computational cost.

4831

5.1 Comparison with Existing Methods
We compare the trivia facts mined by the proposed algorithm and the following existing methods:

• Category (Baseline) (Tsurel et al., 2017): Template-based trivia fact generation using the
Wikipedia categories located at the bottom of articles.

• Top-down using TF-IDF: Trivia sentences are extracted using high TF-IDF words.

• Top-down using TF-IDF + Filtering: Trivia sentences are extracted using high TF-IDF words and
then are filtered in cases without the target entity.

• Top-down using IDF: Trivia sentences are extracted using high IDF words.

• Top-down using IDF + Filtering: Trivia sentences are extracted using high IDF words and then
are filtered in cases without the target entity.

• Google algorithm (Korn et al., 2019): Template-based trivia fact generation using Wikipedia’s
superlative tables. We manually searched each entity at the Google search engine to obtain the
corresponding trivia facts.1

Table 2 summarizes the results of the human evaluation. The numbers shown in the table are how
many facts are evaluated by the majority of human workers as the rating of “Good Trivia”, “Trivia”, and
“Not Trivia”, as well as the number of facts for “NoMaj”, that indicates no majority among the workers.
“Total” describes the number of available trivia facts from the test dataset. “Pronoun” describes the
number of extracted trivia facts that are not understandable independently because of the existence of
pronouns. “Cost” indicates the total elapsed time (in seconds) to mine 100 trivia facts in the test dataset.

For the comparison, we merge “Good Trivia” and “Trivia” together. The baseline method, Cate-
gory, was proposed to target only at the people domain because articles from other domains generally
do not include trivia categories. Thus, the variants of the proposed HTM algorithm, which consider
Wikipedia’s hierarchical structure, outperformed the baseline. Our best HTM algorithm using high IDF
words recorded 42% better at mining trivia facts than the baseline method. In addition, our best HTM
algorithm reduced the total elapsed time more than 110 times compared with the baseline. While HTM
using high IDF words costed 118 seconds, the baseline required 12,956 seconds to extract trivia facts in
the test dataset.

As we expected, using high IDF words to extract trivia facts showed better performance than using
high TF-IDF words because high TF-IDF words can sometimes contain named entities, which can result
in noises in top-down processing. While using high IDF words achieved the accuracy of 81%, using high
TF-IDF words recorded the accuracy of only 71%.

Applying the filtering step does not guarantee improved performance of mining trivia facts. While the
filtering step improved the performance of the proposed HTM algorithm in cases of using high TF-IDF
words, it did not when using high IDF words. While 81% of facts from the HTM algorithm using high
IDF words without the filtering step were considered as trivia by human evaluators, the HTM algorithm
using high IDF words with the filtering step yielded only 76%.

Although trivia facts generated by the superlative tables from Google yielded high performance with
the accuracy of 82.3%, the domain was quite limited. Trivia facts were available only for 17 out of 100
articles in the test dataset at the Google search engine. The coverage of the Google method seems rather
small.

5.2 Analysis
We analyzed the evaluated trivia facts based on the individual domains of Wikipedia articles to demon-
strate that the proposed HTM algorithm is domain-independent when extracting trivia facts. Figure 3
shows percentages of trivia facts for eight domains, extracted by HTM using high IDF words. They

1Google currently stops providing such trivia facts through knowledge panels, that are information boxes appearing as
Google’s search results.

4832

Method Good Trivia Trivia Not trivia NoMaj Total Pronoun Cost

Category 5 34 46 15 100 - 12,956

TF-IDF 25 46 13 16 100 8 117

TF-IDF
+ Filtering 25 50 9 16 100 2 469

IDF 38† 43† 8 11 100 9 118

IDF
+ Filtering 28 48 8 16 100 4 506

Google 12 2 1 2 17 - -

Table 2: Human evaluation of trivia facts extracted by each algorithm. The best scores in all the proposed
algorithms are shown in bold. † indicates that the improvement (in terms of the sum of “Good Trivia”
and “Trivia facts”) from the Baseline (Category) is statistically significant by using the paired bootstrap
resampling method (Koehn, 2004) (p < 0.001).

Figure 3: Percentages of trivia facts in eight domains from the test dataset.

consist of albums, music bands, books, cities, countries, film and TV series, people, and sport teams. As
expected, the proposed HTM algorithm successfully mined trivia facts regardless of domains because
the algorithm searches trivia facts through a single Wikipedia article of the given entity. The proposed
HTM algorithm achieved nearly 80% accuracy (the sum of “Good Trivia” and “Trivia facts”) of mining
trivia facts for each of the eight domains.

Table 3 shows examples of good trivia facts extracted by the HTM algorithm using high IDF words.
As shown, the extracted trivia fact for Billie Eilish is interesting. However, if we apply the filtering step,
the example is no more trivia because it does not contain an entity token. Thus, recursively removing
extracted trivia facts if they do not contain entity tokens might reduce the performance of extracting trivia
facts.

6 Conclusion and Future work

In this paper, we showed that Wikipedia’s hierarchical information can be applied for extracting trivia
facts. We proposed Hierarchical Trivia Miner, which is domain-independent and does not incur high
computational cost. Experimental results on eight domains demonstrated that the proposed HTM algo-
rithm can extract “trivia facts” regardless of the target domains because it considers a single Wikipedia
article for the target entity. In addition, the proposed algorithm employs top-down processing using hi-
erarchical information, which can gradually narrow down its search space and reduce the total elapsed
time to extract trivia facts.

The current filtering method discards mined trivia facts from the HTM algorithm if they contain no
entity tokens. For the future work, we are planning to extend the filtering method by taking coreference
resolution into account to address the problem of the current filtering method.

4833

Domain Entity Good Trivia

Album The Slim Shady LP
In the album’s first week of release, The Slim Shady LP sold 283,000 copies,
debuting at number two on the Billboard 200 chart behind TLC’s FanMail
and Britney Spears’ debut ...Baby One More Time.

Band Muse (band)
Most earlier Muse songs lyrically dealt with introspective themes, including
relationships, social alienation, and difficulties they had encountered while
trying to establish themselves in their hometown.

Book The Lord of the Rings

The Lord of the Rings developed as a personal exploration by Tolkien of his
interests in philology, religion (particularly Catholicism), fairy tales, Norse
and general Germanic mythology, and also Celtic, Slavic, Persian, Greek,
and Finnish mythology.

City San Francisco
Geographically, Oakland Airport is approximately the same distance from
downtown San Francisco as SFO, but due to its location across San Fran-
cisco Bay, it is greater driving distance from San Francisco.

Country Indonesia

Indonesia has 8 UNESCO World Heritage Sites, including the Borobudur
Temple Compounds and the Komodo National Park; and a further 19 in a
tentative list that includes the Jakarta Old Town, Bunaken National Park,
and Raja Ampat Islands.

Film & TV The Dark Knight Rises
On July 20, 2012, during a midnight showing of The Dark Knight Rises at
the Century 16 cinema in Aurora, Colorado, a gunman wearing a gas mask
opened fire inside the theater, killing 12 people and injuring 58 others.

People Billie Eilish She was raised vegetarian and regularly advocates for veganism on social
media.

Sports team Inter Milan
The captain and coach of the first championship winning team was Virgilio
Fossati, who was later killed in battle while serving in the Italian army dur-
ing World War I.

Table 3: Examples of good trivia facts mined by the proposed HTM algorithm using high IDF words.

References
Janara Christensen, Stephen Soderland, Gagan Bansal, and Mausam. 2014. Hierarchical summarization: Scaling

up multi-document summarization. In Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 902–912. Association for Computational Linguistics.

Nausheen Fatma, Manoj K. Chinnakotla, and Manish Shrivastava. 2017. The unusual suspects: Deep learn-
ing based mining of interesting entity trivia from knowledge graphs. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, page 1107–1113. AAAI Press.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 1195–1205. Association for Computational Linguistics.

Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. In Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.

Flip Korn, Xuezhi Wang, You Wu, and Cong Yu. 2019. Automatically generating interesting facts from wikipedia
tables. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD ’19, pages
349–361. ACM.

Shou-de Lin and Hans Chalupsky. 2003. Using unsupervised link discovery methods to find interesting facts and
connections in a bibliography dataset. SIGKDD Explor. Newsl., 5(2):173–178.

Matthew Merzbacher. 2002. Automatic generation of trivia questions. In Mohand-Saı̈d Hacid, Zbigniew W. Raś,
Djamel A. Zighed, and Yves Kodratoff, editors, Foundations of Intelligent Systems, pages 123–130, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations
in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b. Distributed representations of
words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2, pages 3111–3119. Curran Associates Inc.

4834

Kazuya Niina and Kazutaka Shimada. 2018. Trivia score and ranking estimation using support vector regression
and RankNet. In Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation.
Association for Computational Linguistics.

Joel Nothman. 2008. Learning named entity recognition from wikipedia. Ph.D. thesis, The University of Sydney
Australia 7.

Heather L. O’Brien and Elaine G. Toms. 2008. What is user engagement? a conceptual framework for defining
user engagement with technology. Journal of the American Society for Information Science and Technology,
59(6):938–955.

Abhay Prakash, Manoj Kumar Chinnakotla, Dhaval Patel, and Puneet Garg. 2015. Did you know? - mining in-
teresting trivia for entities from wikipedia. In Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI, pages 3164–3170.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does string-based neural MT learn source syntax? In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1526–1534. Association
for Computational Linguistics.

David Tsurel, Dan Pelleg, Ido Guy, and Dafna Shahaf. 2017. Fun facts: Automatic trivia fact extraction from
wikipedia. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM
’17, pages 345–354. ACM.

Ryen W. White and Susan T. Dumais. 2009. Characterizing and predicting search engine switching behavior.
In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM ’09, pages
87–96. ACM.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention
networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 1480–1489. Association
for Computational Linguistics.

