Morphological disambiguation from stemming data

Antoine Nzeyimana*
University of Massachusetts, Amherst, MA 01003, USA
anthonzeyi@gmail.com

Abstract

Morphological analysis and disambiguation is an important task and a crucial preprocessing step
in natural language processing of morphologically rich languages. Kinyarwanda, a morpholog-
ically rich language, currently lacks tools for automated morphological analysis. While linguis-
tically curated finite state tools can be easily developed for morphological analysis, the mor-
phological richness of the language allows many ambiguous analyses to be produced, requiring
effective disambiguation. In this paper, we propose learning to morphologically disambiguate
Kinyarwanda verbal forms from a new stemming dataset collected through crowd-sourcing. Us-
ing feature engineering and a feed-forward neural network based classifier, we achieve about 89%
non-contextualized disambiguation accuracy. Our experiments reveal that inflectional properties
of stems and morpheme association rules are the most discriminative features for disambiguation.

1 Introduction

For morphologically rich languages, morphological analysis and disambiguation plays a critical role in
most natural language processing (NLP) tasks. When inflections are generated by piecing together mul-
tiple morphemes, a large and sparse vocabulary is produced, requiring tools to unpack the individual
morphemes for downstream NLP tasks such information extraction and machine translation. A key char-
acteristic of these languages is that morphemes often have specific meanings (often relating to properties
of the words they form or referring to contextual entities) and their combination into words is mostly
regular. Figure 1 shows typical morphological units contained in the word 'ntuzamwibeshyeho’ (Never
underestimate him/her).

While several morphologically rich languages such as Turkish, Arabic and Modern Hebrew already
have mature tools for morphological segmentation (Coltekin, 2010) (Coltekin, 2014) (Itai and Segal,
2003) (Habash and Rambow, 2006), Kinyarwanda still lacks appropriate tools for the task. A key limita-
tion in the effort is the need to have high quality datasets manually annotated by language experts. With
limited funding opportunities, research on NLP for low resource languages lags behind recent advance-
ments made for NLP on high resource languages. In this work, we leverage an easy to collect stemming
dataset and transform it into a resource for morphological disambiguation. While the focus here is on
Kinyarwanda verbal forms, the method can be applied to other morphologically rich languages. Collect-
ing stemming data is much faster and less prone to errors than full morphological segmentations which
require subtle linguistic knowledge.

Through a maximum entropy model, we are able to combine morphological properties of stems with
inflectional similarity information from word embeddings to accurately disambiguate candidate segmen-
tations from a rule-based morphological analyzer. Our work here pertains to non-contextual verb-phrase
disambiguation but is a key step towards contextual disambiguation. We believe that this work will allow
rich morphology to be incorporated in new models for Kinyarwanda and improve downstream NLP tasks
on the language.

* Part of this work was done while the author was a graduate student at the University of Oregon, Eugene, OR 97403, USA

This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/.

4649

Proceedings of the 28th International Conference on Computational Linguistics, pages 4649—4660
Barcelona, Spain (Online), December 8-13, 2020

ntuzamwibeshyeho
nti- -u- -za- -mu- -ii- -beshy- -e- -ho
Negation Subject Tense Direct Object Reflexive Stem Aspect Prep.
(2nd pers/sing.) | (future) | (1st class/human/sing.) | (wrt. subj) (imperative)
not you will him/her self lie (imperative) about

Figure 1: Morphological segmentation of the word 'ntuzamwibeshyeho’. Each morpheme unit has a
specific meaning or function in order to get the meaning of the whole word. The word is an inflection
of the lemma ’kwibeshya’ (fo err) which a derivation from "kubeshya’ (o lie) by adding a reflexive -ii-
. Therefore, a literal morpheme-by-morpheme translation of the word would be ’Never lie to yourself
about him/her’ while the real meaning is *Never underestimate him/her’.

Morphological segmentation Probability
-ntiu/l -za---mu-ibeshy------- e ho 0.184
-ntiu/7 - za - - - mu - ibeshy - - - - - - - e ho 0.152
-ntiu/5-za---mu-ibeshy------- e ho 0.137
-ntiu/7 - za - - - mu ii beshy - - - - - y-eho 0.074
-ntiu/l -za---muiibeshy----- y-eho 0.074
-ntiu/5 - za - - - mu ii beshy - - - - - y-eho 0.074
-ntiu/5 -za---muii beshy------- e ho 0.062
-ntiu/l -za---muiibeshy------- e ho 0.061
-ntiu/7 -za- - - muii beshy - - ----- e ho 0.058
-ntiu/l -za---muiibesh----- y-eho 0.039
-ntiu/5-za---muiibesh----- y-eho 0.037
-ntiu/7 -za---muii besh----- y-eho 0.034
-ntiv/l - za - - - mu - ibeshy - - - - - y-eho 0.009
-ntiu/5 -za---mu-ibeshy - - - - - y -e ho 0.004
-ntiu/7 - za - - - mu - ibeshy - - - - - y-eho 0.001

Table 1: Potential segmentations for the inflected verb 'ntuzamwibeshyeho’ as produced by a finite state
based morphological analyzer and ranked by our disambiguation method. Hyphens(-) represent potential
morpheme slots that are not filled for this instance. The stem or root is shown in bold. The top three
options only differ in the entity class for the subject — u/5 is for humans, 3rd person singular — u/1 also
for humans but 2nd person singular — while u/7 is for inanimate object. Notice that the disambiguation
tool predicted that the subject mostly likely is a 2nd person. The tool has also chosen to base on the
derived stem ’-ibeshy-’ (to err) rather than the original root *-beshy-’ (to lie), thus reflecting more focus
on semantics.

2 Related work

Computational morphology has been studied for decades, but most implementations and evaluations have
been conducted on languages that are not related to Kinyarwanda. Finite state methods for morphologi-
cal analysis have been proposed by Beesley and Karttunen (Karttunen, 2000) and have been popular for
morphological analysis. Our morphological analyzer is based on the underlying principle of two level
morphology (Koskenniemi, 1983), but our custom implementation does not follow the exact formalism
of finite state transducers. We rather focus on refining rules that are specific to Kinyarwanda through ex-
tensive empirical examination. In (Muhirwe, 2007), a morphological alternation model for Kinyarwanda
was presented using Xerox tools, but no empirical evaluation was conducted. In (Garrette et al., 2013),
an experiment was conducted on learning POS taggers for Kinyarwanda and Malgasay using a small
dataset of frequent words annotated by linguists. While POS tagging is an important task, morphological

4650

analysis is even more important for morphologically rich languages because it reveals more information
than what can be covered by a finite set of tags. Other work on Kinyarwanda has been more linguis-
tic in nature (Kimenyi, 1980); (Jerro, 2016), especially due to that Kinyarwanda is considered as a more
generic prototype of the larger group of Bantu languages, owing to its rich morphology and tonal system.

The problem of morphological disambiguation has been researched on for other morphologically rich
languages such as Turkish, Arabic and Modern Hebrew. Proposed methods range from statistical ones
(Hakkani-Tiir et al., 2002) (Cohen and Smith, 2007), to rule based approaches (Yuret and Tiire, 2006),
and more recently using recurrent neural networks (Zalmout and Habash, 2017). Most of these methods
are usually trained and evaluated on richly annotated tree-banks which are not available for low resource
languages like Kinyarwanda. The only labeled data required by our method is a list of inflection/stem
pairs which can be conveniently collected by untrained native speakers. Another major difference is also
that our disambiguation focuses on uncontextualized morphology of Kinyarwanda verbal forms. We
reserve contextual disambiguation and part of speech tagging for a future study.

O %4ans
izarigishijwe
kwigisha
kugisha
kurigisa
kwiga
gushira
gusiza

None of the above

REVERT

Figure 2: A smart-phone interface is used by volunteers to stem Kinyarwanda verb forms. For instance,
the analysis of the inflected form ’izarigishijwe’(...which have been made disappear) can result in am-
biguous stems — ’igish’(kwigisha: to teach), ’gish’(kugisha: to ask [for advice]), 'rigis’(kurigisa: to
make disappear), ’ig’(kwiga: to study), ’shir’(gushira: fo end) and ’siz’(gusiza: to prepare a place for
construction)

3 Methods

3.1 Dataset development

The dataset for this project comes from a crowd-sourcing effort where users labeled inflected forms of
Kinyarwanda verbs with corresponding lemma. From a web-crawled corpus, our toolkit detects potential
verb inflections, auto-segments them and asks volunteers to choose the right lemma from a proposed list
of candidates. For convenience of use, volunteers are asked to lemmatize the inflected verbs using a
simple mobile application (see Figure 2) and the labeled data are sent to a back-end server. The raw
labeled dataset was filtered for potential random user inputs by using a baseline classifier and removing
data for users who performed poorly on the otherwise least ambiguous instances. While more than 200

4651

volunteers used the stemming application, only data from 37 annotators was found to be consistent and
then used in this study.

3.2 Morphological analysis

Our morphological analysis is based on finite state methods (Karttunen, 2000). Table 2 shows a repertoire
of Kinyarwanda verb morphemes and examples of when they are used. The morphotactics, which dictate
the ordering of morphemes, are modeled with a hierarchical graph shown in Figure 3. It is this graph of
morpheme slots that make Kinyarwanda verbal system very productive. In theory, thousands of different
morpheme slot sequences can be produced by this graph, but in reality, there are more semantic and
syntactic restrictions.

In addition to the basic morphotactics graph model, morpho-graphemic rules and other morpheme
association rules are added to the analyzer using small constraint-enforcement language. The language
is expressive enough to allow a researcher to incorporate complex grammatical regularities. For example,
arule such as "{V;NEG;ta} = {!V;PRE_IN;nti}” prevents having two negation markers in the same verb
inflection. Also, *{V;PRE_IN;si} = {V;SUBIJ;n}" enforces the negative pre-prefix ’si’ to be used only
with first person singular. The rule *{V;STEM;#1} = {V;STEM;/"[hzcvrz]$/}’ limits the number of
single character stems, while ’{V;STEM;/"gamij$/} = {V;ASP;e}” allows the irregular verb ’-gamij’ (fo
aim) to only take aspect marker suffix ’-e’.

T
START START - @ ‘ / ‘ \
| @O N (o) #b@
- _L @ a @ .
G .) ~(r)
N J) >\ J O\

Figure 3: A hierarchical graph model of Kinyarwanda verbal morphotactics.

3.3 Classification

We handle morphological disambiguation as a classification problem with a variable number of classes
(candidate stems) for each instance. We compute two types of features from each morphological seg-
mentation and feed those features to a feed-forward neural network and finally produce probabilities with
a softmax function. We train the network to minimize a cross-entropy loss function.

Note that, since we have a variable number of instance-specific class labels (candidate stems), the
classifier is not really discriminating between a fixed set of classes but rather ranking segmentations
based on the features they present. Having our labels being only the stem part of segmentation, we also
need to account for the fact that there are multiple possible segmentations with the same valid stem. We
account for this in our cross-entropy loss function given in Equation 1.

M

Lop ==Y pjlog(p;) 1)
J

where:
* M is the number of candidate segmentations produced by the rule-based analyzer

* pj is the hypothesis probability assigned to candidate segmentation j from the soft-max layer

4652

Morpheme slot

Morphemes

Example

1. Nominal augment (N-AUG)

ua,i

u-a-som-ye:
uwasomye 'the one who read’

2. Pre-prefix (PRE-IN)

si, nti (negative),

ni (imperative),
ni (conditional)

nti-mu-a-som-ye:

ntimwasomye ’you didn’t read’
ni-mu-som-e: nimusome ’read’
ni-mu-som-a: nimusoma ’if you read’

3. Subject class marker (SUBJ)

n, u, tu, mu, a,
u, ba, u, 1, ri, a,
ki, bi, 1, zi, ru, ka,

tu, bu, ku, ha, ku,
mi

n-a-som-ye: nasomye [read (past)’
ba-za-som-a: bazasoma ’they will read’
ki-a-som-w-ye:

cyasomwe *which was read’

ku-som-a: gusoma ’to read’
i-mi-som-ir-e:

imisomere ‘way of reading’

4. Negation (NEG)

ta

tu-ta-som-a: tudasoma ’'we don’t read’

5. Tense—Apect—Modality (TAM)

1, a, ra, ara, za, aza,
ka, raka, kaza,

ki, racya, oka, aka

ba-ara-som-ye:

barasomye ’they read (past)’
ba-kaza-som-a:

bakazasoma ’and they will read’
ba-racya-som-a:

baracyasoma ’they still read’

6. Emphasizing prefix (NA-EMPH)

na

u-a-na-som-a:
wanasoma ’you can even read’

7. Third object class (OBJ 3)
marker (tri-transitivity)

mu, ba, wu, vi,
ri, ya, ki, bi,
i, zi, 1u, ka,
tu, bu, ku, ha

n-ara-ki-ha-mu-som-ir-ye:
narakihamusomeye
'l read it for her while there’

8. Second object class (OBJ 2)

ku, tu, ba, mu,
ba, wu, yi, 1i,

n-ara-Ki-mu-som-ir-ye:

marker (di-transitivity) ya, Ki, bi, yi, narakimusomeye

71, ru, ka, tu, 'l read it for her’

bu, ku, ha

n, ku, tu, ba,
9. First object class (OBJ 1) mu, ba, wu, yi, a-ara-ki-n-som-ir-ye:
marker (transitive verbs) 11, ya, ki, bi, yarakinsomeye

yi, zi, ru, ka, "he read it for me’

tu, bu, ku, ha

10. Reflexive (REFL)

1

a-ii-som-ir-aga:
yisomeraga 'he was reading for himself’

11. STEM - ku-som-a: gusoma ’to read’

12-13. Suffix (SUFF) ir, ish, ik, iz, y ki-ra-som-ik-a:

(repeatable) ur, uk, an kirasomeka ’it is readable’

14. Passive suffix (P-SUFF) w ki-a-som-w-ye: cyasomwe ’it was read by’
15. Aspect marker (ASP) a, e, aga, ye, i, aho | a-a-som-aga: yasomaga 'he was reading’
16. Locational post-suffix (LOC-P) | yo, ho, mo a-a-som-ye-mo:

yasomyemo 'he read inside’

Table 2: A repertoire of Kinyarwanda verbal morphemes.

4653

* pj is the reference probability which we set to:

%, if segmentation 5 has the right stem,
pj = (n being the number of such segmentations). 2)

0, otherwise.

3.4 Feature extraction
Similarity features

The first type of features estimates how similar a given segmentation is to other inflections of the same
stem, effectively handling the stem disambiguation part of the problem. Formally, given a candidate
segmentation x with a stem s, first we produce a set of N common inflections of the same stem {y;}VV €
Infl(s) NV by associating the stem with common standard affixes, generating the surface forms and
making sure that these surface forms are part of the word embedding vocabulary V. We choose K nearest
inflections to x among {y; } ZN (by cosine similarity) and estimate the final similarity scores as:

m({de(z,y:) }), 3)

where:

* {-}¥ notation means a set of N elements indexed by i
* fm () is @ mean function; we use both arithmetic, geometric and harmonic means as features.

* de(x,y;) is the normalized angular similarity between the word embedding vectors for = and y;,
ie.:

de(z,y;) = o(1 — %arccos (%)) 4)

with e(+) being the word embedding lookup function.

* o(-) is a normalizing sigmoid function of the form:

. Z—ming -8
with miny and Max ; being tunable hyper-parameters for each type of feature f demarcating the
active range of the feature.

Additionally, we use 2-dimensional euclidean distances of the token- and document- corpus frequen-
cies between z and y; to estimate how popular a given segmentation is in the corpus in relation to the
popularity of the inflection set {y; }X:

di(w, {yi}f) = o (g Tl (te@) = te(y)? + (taz) = ta(®))?), ©

where:

* t.(2) = o(token_count(z)), i.e. the sigmoid-normalized number of times z appear in the corpus

* tq(z) = o(document_count(z)), i.e. the sigmoid-normalized number of corpus documents con-

taining z
Finally,
te i+t 1
Fm{ (?J)Qd(y)}f() 7
and
te(z)+ta(z)
B ®)

are included as separate features.

4654

Morphological indicator features

The second type of features evaluates the appropriateness of “morphological features” present in a given
segmentation versus typical features associated with its stem in the training dataset. These indicator
features include the use of special morphemes, morpheme associations and special morpho-graphemic
rules inherent in the segmentation. For example, passivization (transformation from active to passive
form) is expressed by a special suffix but not all verbs can be used in passive form. The same applies to
transitivity (the number and type of object pronouns a verb can take), the use of special suffixes, personal
pronouns, locatives, and so on. Essentially, the M linguistically-motivated indicator features f;(z) are
compared to their selection ratio scores in the training dataset. By selection ratio scores, we mean:

h fi7 M
fn({or(somosenlfsl)y M) ©)
and separately

chosen|f;,s]
(proposedfi,s])” (10
where:

* chosen|f;, s] is the number of times stem s has been chosen as the valid stem for any morphological
segmentation having morphological feature f;.

* proposed|f;, s] is the number of times stem s has been proposed (either chosen or rejected) among
candidate lemmas for any segmentation having morphological feature f;.

The list of indicator features f; used in our experiments are given in Appendix A.

Feature extraction example

Here we present a working example of how features are extracted. Given the input the input word
"gatwikirwa’ to be lemmatized by the annotator, we follow the following steps to extract the training
data.

Step 1. Morphological analysis: The morphological analyzer first produces candidate segmentations
as provided in Table 2. The morphological indicator features (from Appendix A) of each candidate
analysis are shown in the same table.

No | Morphological analysis (morpheme sequence) | Indicator features from Appendix A
1 |--ka----- tu-ik--ir---wa- 1,5,17,24,26
2 | --ka----- tuii kir------ wa- 1,5,8,24
3 |--ka------- twik - -ir---wa- 1,17, 24,26
4 | --ka------- twikirw - - - - - y-a- 1,23
5 |--ka------- twikirw - - - - - - - a- 1
6 |--ka------- twikir - - - - - - wa- 1,24

Table 3: Example of morphological analysis for input word *gatwikirwa’ (1. covered or 2. burned)

Step 2. Annotator input: The annotator is presented with a list of candidate lemma to choose from:

gatwikirwa

1. kwika (to sink, fall, drop)

2. gukira (1. to be healed, releaved or 2. to be rich)
3. gutwika (to burn)

4. gutwikirwa (fo be covered)

5. gutwikira (to cover)

4655

Assuming the annotator chooses ’gutwikira’ as the correct lemma, then the annotated raw
data consists of the 5 labeled pairs: gatwikirwa/ik:0/1, gatwikirwa/kir:0/1, gatwikirwa/twik:0/1,
gatwikirwa/twikirw:0/2 and gatwikirwa/twikir:1/1.

Step 3. Generate inflection sets S; = {y;} for each candidate stem j: The morphological analyser
formulates a set of common inflections for each candidate stem:

1. ik: S1 = {kwika, turitse, turika, twitse, twikaga, yaritse, arika, ...}

2. kir: Sy = {gukira, arakize, turakira, dukize, bakize, tuzakire, ...}

3. twik: S5 = {gutwika, uzatwika, uzatwike, hatwitsemo, atwikamo, ...}

4. twikirw: Sy = {gutwikirwa, tugatwikirwa, yaratwikiwe, agatwikirwa, ...}
5. twikir: S5 = {gutwikira, yatwikiriza, yatwikirije, akitwikira, ...}

Step 4. Compute similarity features: The input word z =’gatwikirwa’ is then paired with each of
the nearest K entries y; in the inflection sets .S; to compute similarity scores dc(z,y;), tc(.), tq(.) and
d¢(x, S;) according to equations 4-8. Example values are provided below.

d.(’gatwikirwa’, ’kwika’) = 0.075 d:(* gatwikirwa’, ’kwika’) = 0.05
d(’gatwikirwa’, *gukira’) = 0.003 d; (" gatwikirwa’, *gukira’) = 0.01
d.(’gatwikirwa’, *gutwika’) = 0.822 dq(*gatwikirwa’, *gutwika’) = 0.61
de (" (

de((

B
e

gatwikirwa’, *gutwikirwa’) = 0.992 | d;(’gatwikirwa’, *gutwikirwa’) = 0.81
gatwikirwa’, "gutwikira’) = 0.986 | d;(’gatwikirwa’, ’gutwikira’) = 0.72

Step 5. Compute morphological indicator features: The morphological indicator features shown in
Table 3 will be used to populate the *proposed’ and *chosen’ tables in equations 9-10. For instance, given
the morphological analyzer output in Table 3 and annotator choice as gatwikirwa/twikir, the tables are
going to be populated as in the following example:

proposed[24, 'twikir’] | incremented by 1

chosen|[24, "twikir’] incremented by 1 | i.e. *cover’ is more likely to be passivized
proposed[8, *kir’] incremented by 1

chosen[8, *kir’] decremented by 1 | i.e. *be rich’ is less likely to be subject reflexive
proposed[1, "twikirw’] | incremented by 2

chosen[1, "twikirw’] decremented by 2 | i.e. the passivized form is just demoted

Step 6. Neural network input/output for training: For every candidate segmentation, the neural
network receives an input of 64 real values composed of 3 from equation 3, 1 from equation 6, 3 from
equation 7, 1 from equation 8, 3 means (geometric, arithmetic and harmonic) of all similarity features, 3
values from equation 9, 47 values from equation 10 (1 for each indicator feature in Appendix A) and 2
binary (0 or 1) features indicating the popularity of the lemma in two lexical resources (small/restricted
and large). An extra sigmoid-normalized weighted average similar to equation 6 was added to account
for the popularity of the type of inflection used to generate each element in the inflection set. In this
example, the target probability p; = 1 for the pair gatwikirwa/twikir and p; = 0 for the other 4 pairs.

4 Experimental setup

The first step in our experiments was to generate stem morphological indicator features from user an-
notations as explained in section 3.4. The second step involves preparing the dataset for training and
evaluation. After features are extracted, we split the data between in training and validation set and
then train a baseline classifier using only the data from user annotations. We up-sample by 4 factors
the annotations from the best trained annotator who is equipped with subtle linguistic understanding of

4656

Kinyarwanda verb morphology. We use the baseline classifier to then predict the stem for the entire un-
labeled vocabulary of Kinyarwanda verbal forms. We rank the predicted stems by prediction uncertainty
(entropy). The most uncertain instances are sent back to annotators for labeling in a batched active learn-
ing fashion (Settles, 2009). For active learning, we send batches of the top 10000 uncertain samples for
which the entropy H > 1. We also enrich our labeled set with the most confident predictions in a semi-
supervised manner. For semi-supervised learning, we only take examples for which the baseline model
has labeled with at least 0.95 top probability (P;), having at least 3 competing stems, (P; — P3) > 0.95
and entropy H < 0.1.

After expanding our labeled data through active learning and semi-supervised learning, we repeat
the first step of feature extraction to form our final training and evaluation dataset, which contains
about 170,000 examples. We split our dataset into training, development and test set in the ratio of
70%+15%+15% respectively. All our models are trained with gradient descent using ADAM update rule
(Kingma and Ba, 2014) using 0.01 learning rate in 256-sized mini-batches and for 50 epochs. For our
best fine-tuned model, we re-train the model with large batches of 4000 examples each using LAMB
method (You et al., 2019) for 100 more epochs. Since all features are precomputed, training each feed-
forward neural network takes less than 5 minutes on an quad-core machine. We use POSIX C and C++11
for this project with the only external dependency being Eigen matrix algebra library !.

S Experimental results and discussion

Model size — We evaluated the model robustness by varying the number of hidden units in the feed-
forward neural nets (Table 4). Surprisingly, the size of the of the model doesn’t affect the performance.
Even a small network of two hidden layers of 6 and 3 units respectively achieves almost the same accu-
racy as the network of 3 layers of 32,16,8 hidden units. We also observed very little over-fitting, having
the same level of accuracy on both training, development and test set. We believe that this persistent
performance is probably due to the semi-supervised method we used and possibly that the summarizing
features (i.e. fy,(-)) precomputed explain most of the label variations.

Size of feedforward layers | Morphological Embedding | FastText Embedding

64-32-16-8 89.32 89.30
64-32-8 89.39 89.30
64-6-3 89.28 89.19

Table 4: Test set accuracy for various model sizes using all 64 input features

Feature subsets — We then evaluated different feature subsets to assess which ones had greater im-
pact on the final performance. All the results presented in Table 5 used a the small model of two layer,
64-6-3 feed-forward units. The three statistics (arithmetic, geometric and harmonic means) of mor-
phological features account for most of the accuracy while using the individual morphological features
under-performs. This is probably due to that the small nature of neural network used doesn’t allow it
to effectively learn these statistics. The difference in the performance of inflectional similarity features
may be attributed to the differences in the two pre-trained word embeddings used. The vocabulary of our
”Morpho” embeddings is almost as twice as big than the fastText (Bojanowski et al., 2017) one, even
though they are trained on the same corpus and both are based on the Skip-Gram model (Mikolov et al.,
2013). So, comparing them requires carefully setting proper hyper-parameters min and Max ¢ for the
normalizing function o (-) in equation 4.

Annotator performance — Our final evaluation looked at how our fine-tune model rated different
individual annotator labels depending on their linguistic training level and the mode of active learning
used (Table 6). The 3 reported annotators in the table were identified contacts of the author and together
contributed more than 30% of the labeled data. Our interpretation of the results is that the model might

"http://eigen.tuxfamily.org/index.php?title=Main_Page

4657

Feature subset Morpho. Embedding | FastText Embedding
Summary statistics 87.92 88.29
Inflectional similarity with word embeddings 66.47 68.74
Inflectional similarity with token frequency 51.94 44.24
Morphological features summary 88.16 88.36
Morphological feature details 85.52 85.30
All features combined and training longer 89.51 89.55

Table 5: Test set accuracy using various feature subsets using 6-3 hidden units. The fine-tuned model
was trained longer using 32-8 MLP setup

Annotator training level | Uniformly random samples | Most uncertainty samples

Graduate student 84.9 61.9
College graduate 80.7 -
High school graduate 77.9 55.2

Table 6: Relative performance (training set accuracy) of different annotators with varying levels of
linguistic training.

be relying too much on easy examples pulled in through semi-supervised learning and noise introduced
by individual annotators. The level of annotator training also has a clear impact on the performance.

Sources of ambiguity — There are inherently multiple sources of ambiguity when one encounters
a Kinyarwanda verbal expression. Achieving full disambiguation requires having access to complete
contextual information. This information may even be encoded only in the tonal system (Kimenyi, 2002)
and thus unavailable in written form. In fact, reading written Kinyarwanda requires careful real-time
disambiguation by the reader because tones are not marked in text. Contextual information is also needed
for semantic disambiguation. For example, the verb ’yarigishije’ can mean both ’a-ara-igish-iz-ye’ (he
taught) or ’a-a-rigis-iz-ye’ (he made disappear). Without the semantic context, both segmentations are
possible. Sentence level disambiguation may also benefit from contextual agreements through the Bantu
noun class system. Our annotation process is also affected by lemmatization ambiguity and the blurred
boundary between inflection and derivation. For example it is subjective whether the verbs kwivuaga "ku-
ii-vug-a’ (to talk about self), kuvuza "ku-vug-y-a’ ("to make sound with (some object)’) and kuvugisha
"ku-vug-ish-a’ (fo talk to (someone)) are themselves lemma forms or just inflections of kuvuga 'ku-vug-
a’ (to talk).

6 Conclusion

This work focused on morphological disambiguation of Kinyarwanda verb forms using maximum en-
tropy model on new crowd-sourced stemming dataset. High disambiguation accuracy was achieved
through careful feature engineering. Intuitively curated inflectional features emerged as important par-
simonious predictors. Future work should look at how to directly use morpheme embedding methods
as a way to more generically represent both semantics and morphology in a unified form. Achieving
total disambiguation ultimately requires complete contextual information which may not be available in
written form.

Acknowledgements

This research was partly made possible by access to the S3C Laboratory facility in the Department
of Geography at the University of Oregon. We thank the volunteers who contributed to the stemming
dataset through Kinyarwanda Stemmer mobile application. We also thank the anonymous reviewers for
their insightful feedback.

4658

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135-146.

Shay B Cohen and Noah A Smith. 2007. Joint morphological and syntactic disambiguation. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 208-217.

Cagri Coltekin. 2010. A freely available morphological analyzer for turkish. In LREC, volume 2, pages 19-28.

Cagri Coltekin. 2014. A set of open source tools for turkish natural language processing. In LREC, pages 1079—
1086.

Dan Garrette, Jason Mielens, and Jason Baldridge. 2013. Real-world semi-supervised learning of pos-taggers
for low-resource languages. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 583-592.

Nizar Habash and Owen Rambow. 2006. Magead: a morphological analyzer and generator for the arabic dialects.
In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages 681-688.

Dilek Z Hakkani-Tiir, Kemal Oflazer, and Gokhan Tiir. 2002. Statistical morphological disambiguation for agglu-
tinative languages. Computers and the Humanities, 36(4):381-410.

Alon TItai and Erel Segal. 2003. A corpus based morphological analyzer for unvocalized modern hebrew. In
Proceedings of Machine Translation for Semitic Languages: Issues and Approaches, Workshop at MT Summit
IX (MT-SUMMIT-IX).

Kyle Jerro. 2016. The locative applicative and the semantics of verb class in kinyarwanda. Diversity in African
languages, page 289.

Lauri Karttunen. 2000. Applications of finite-state transducers in natural language processing. In International
Conference on Implementation and Application of Automata, pages 34—46. Springer.

Alexandre Kimenyi. 1980. A relational grammar of Kinyarwanda, volume 91. Univ of California Press.

Alexandre Kimenyi. 2002. A tonal grammar of Kinyarwanda: an autosegmental and metrical analysis, volume 9.
Edwin Mellen Press.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kimmo Koskenniemi. 1983. Two-level morphology: A general computational model for word-form recognition
and production, volume 11. University of Helsinki, Department of General Linguistics Helsinki, Finland.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pages
3111-3119.

Jackson Muhirwe. 2007. Computational analysis of kinyarwanda morphology: The morphological alternations.
International Journal of computing and ICT Research, 1(1):85-92.

Burr Settles. 2009. Active learning literature survey. Technical report, University of Wisconsin-Madison Depart-
ment of Computer Sciences.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James
Demmel, and Cho-Jui Hsieh. 2019. Large batch optimization for deep learning: Training bert in 76 minutes.
arXiv preprint arXiv:1904.00962, 1(5).

Deniz Yuret and Ferhan Tiire. 2006. Learning morphological disambiguation rules for turkish. In Proceedings of
the Human Language Technology Conference of the NAACL, Main Conference, pages 328-334.

Nasser Zalmout and Nizar Habash. 2017. Don’t throw those morphological analyzers away just yet: Neural
morphological disambiguation for arabic. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 704-713.

4659

Appendix A. Morphological indicator features used by the classifier

No | Feature key Feature explanation
1 | f.with_subjects Has a subject marker
2 | f.missing_subj Doesn’t have a subject marker
3 | f.with_.human_subjects | Has human subject marker
4 | f.with_location_subjects | Has locative subject marker
5 | f.with_objects Has object marker
6 | f.with_human_objects Has human object marker
7 | f.with_location_objects | Has locative object marker
8 | f.trans_any _refl Has reflexive marker
9 | f.trans_any_obj3 Has any object marker (transitive)
10 | f.trans_any_obj23 Has two object markers (ditransivive)
11 | f.trans_any_obj123 Has three object markers (tritransitive)
12 | f.obj2_obj3_suff Ditransitive with any suffix
13 | f.obj3_suff Transitive with any suffix
14 | f.obj2_obj3_refl_suff Ditransitive with reflexive marker and any suffix
15 | f.obj3_refl_suff Transitive with reflexive marker and any suffix
16 | f.suff_ish Has suffix -ish
17 | f.suff_ir Has suffix -ir
18 | f.suff.iz Has suffix -iz
19 | f.suff_an Has suffix -an
20 | f.suff_ik Has suffix -ik
21 | f.suff_uk Has suffix -uk
22 | f.suff_ur Has suffix -ur
23 | f.suffuy Has suffix -y
24 | f.suff w Has passive suffix -w
25 | fisuffiiry Has suffixes -ir followed by -y
26 | fsuffiirw Has suffixes -ir followed by -w
27 | f.suff_an_y Has suffixes -an followed by -y
28 | f.suffiiz_y Has suffixes -iz followed by -y
29 | fsuffiy_w Has suffixes -y followed by -w
30 | f.post_suff Has locative post-suffix
31 | f.mg_rule_r_y_none Uses suffix rule r + y — y e.g. biragoye: bi-ra-gor-ye (it is difficult)
32 | fmgruler.y.z Uses suffix rule r + y — z e.g. yarabuze: a-ara-bur-ye (went missing)
33 | f.obj3 ka ku Has object markers -ka or -ku
34 | f.suff_ish_ish Has suffixes -ish followed by -ish
35 | f.suffiir.ir Has suffixes -ir followed by -ir
36 | f.comb_obj3_suff_ w Has an object marker, a suffix and a passive suffix -w
37 | f.with_nloc_objno_suf | Has non-locative object marker but without a suffix
38 | f.suffl_suff2 Has two suffixes
39 | f.suffl_suff2_suff3 Has three suffixes
40 | f.ni_imperative Uses the imperative prefix ni-
41 | f.ni_conditional Uses the conditional prefix ni-
42 | fmgrule_t.y_s Uses suffixation rule t + y — s e.g. narose: n-a-rot-ye (I dreamed)
43 | f.mg_rule_t_.y_sh Uses suffixation rule t + y — sh e.g. nafashe: n-a-fat-ye (I took)
44 | f.suff_an_ir Has suffixes -an followed by -ir
45 | f.suff_ur.y Has suffixes -ur followed by -y
46 | f.suff_ur-w Has suffixes -ur followed by -w
47 | f.suff_uk_ y Has suffixes -uk followed by -y

4660

