
Proceedings of the 28th International Conference on Computational Linguistics, pages 4619–4637
Barcelona, Spain (Online), December 8-13, 2020

4619

Syllable­based Neural Thai Word Segmentation
Pattarawat Chormai∗,⋆,†, Ponrawee Prasertsom‡, Jin Cheevaprawatdomrong‡

and Attapol T. Rutherford‡

‡Department of Linguistics, Chulalongkorn University, Bangkok, Thailand
†Computer Science and Electrical Engineering, Technische Universität, Berlin, Germany

⋆Max Planck School of Cognition, MPI for Human Cognitive and Brain Sciences,
Leipzig, Germany

p.chormai@tu-berlin.de, {ponrawee.pra, jin.ch}@gmail.com,
attapol.t@chula.ac.th

Abstract

Word segmentation is a challenging pre­processing step for Thai Natural Language Processing
due to the lack of explicit word boundaries. The previous systems rely on powerful neural network
architecture alone and ignore linguistic substructures of Thai words. We utilize the linguistic
observation that Thai strings can be segmented into syllables, which should narrow down the
search space for the word boundaries and provide helpful features. Here, we propose a neural
Thai Word Segmenter that uses syllable embeddings to capture linguistic constraints and uses
dilated CNN filters to capture the environment of each character. Within this goal, we develop
the first ML­based Thai orthographical syllable segmenter, which yields syllable embeddings
to be used as features by the word segmenter. Our word segmentation system outperforms the
previous state­of­the­art system in both speed and accuracy on both in­domain and out­domain
datasets.

1 Introduction

Word segmentation presents a fundamental challenge for Thai language processing. Many of the down­
stream natural language processing tasks require that texts be broken into a sequence of words before
applying any models. For example, bag­of­word models or RNN models usually require that the text is
represented as a sequence of words. Notable examples of writing systems without clear word boundaries
are Japanese, Chinese, and Khmer, which often require an automatic word segmentation. However, the
Thai script differs from Chinese and Japanese in that a Thai character represents just a consonant or a
vowel, but a Chinese character represents a whole syllable. The Thai script uses 44 consonant symbols,
15 vowel symbols, and 4 tonal symbols. A word is composed of one or more syllables, and each syllable
is formed by a set of intricate orthographical rules for valid sequences of Thai alphabet symbols. Hence,
it is not straightforward to extend the techniques from Chinese or Japanese to Thai word segmentation
problem.
Thai Word segmentation is complicated by linguistic ambiguity and out­of­vocabulary cases. A word

can be formed by juxtaposing two “words” e.g. เห็นชอบ (/hěn tChÔ:p/, approve) = เห็น (/hěn/, see) + ชอบ
(/tChÔ:p/, like). This kind of word formation can be detected with a simple dictionary lookup, but harder
cases that require context abound in the language. For example, กอดอกไม้ can be segmented into กอ|ดอก|ไม้
(/kO: dÒ:k máj/, flower bush) or กอด|อก|ไม้ (/kÒ:t Pók máj/, hugging a wooden chest), but the latter is
rather nonsensical and statistically unlikely. The local context is needed to select the right segmenta­
tion; therefore, dictionaries only provide partial solutions to this problem. Further, a constant stream of
new words and loanwords complicates the task of word segmentation because they never appear in the
dictionaries.
In recent years, a few open­sourced Thai word segmenters have been introduced and used widely in the

industry. Notable examples of open­sourced Thai word segmenters include PyThaiNLP (Phatthiyaphai­
bun et al., 2016), Sertis (Sertis Co., Ltd., 2017), and DeepCut (Kittinaradorn et al., 2019), which claim
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good performance according to their own respective benchmarks. The accuracies of these word segmen­
tation systems are not benchmarked on the same datasets for a rigorous comparison within and across
domains. In this paper, we reimplement some of these baselines for comparison. More importantly,
these techniques formulate the word segmentation problem as a character­sequence tagging problem and
ignore the fact that characters form a syllable as an intermediate step to word formation.
Our systems take advantage of the fact that every word can be parsed into orthographical syllables. A

sequence of Thai characters can be thought of as a sequence of orthographical syllables, each of which
consists of at least two consonant characters or a pair of a consonant and a vowel. We hypothesize that
syllable segmentation should simplify the downstream task of word segmentation. We explore the use of
syllables in two ways. We use syllables as features (embeddings) for the word segmentation model, and
we also try posing the word segmentation as a syllable­tagging problem, as opposed to character­tagging
problem. We present a neural word segmentation model that utilizes character and syllable embeddings
as the representation and achieve state­of­the­art result. We conclude that underlying linguistic structures
(such as syllables) can serve as a suitable structure for neural architecture, which yields better performance
as a result.
Our contributions can be summarized as follows:

• We propose a neural Thai word segmentation model that outperforms the previous state­of­the­art
system in both in­domain and out­of­domain evaluations at F1 scores 0.95 and 0.86 respectively .
Our model also operates 8.9× and 3.5× faster than the previous system on CPU and GPU instances
respectively. Our code is publicly available1.

• We develop the firstML­based Thai orthographical syllable segmenter, which achieves 0.96 syllable­
levelF1 and 0.99 character­levelF1 score and allows very little error to propagate to the downstream
word segmentation task.

• We show that syllable segmentation helps word segmentation as a feature and as a structure for word
segmentation. Our syllable segmenter is now part of PyThaiNLP package, which is widely used by
the Thai NLP community.

2 Problem Statement: Thai Word and Syllable Segmentation

Given a string of Thai text, a Thai word segmenter identifies the word boundaries within the string. This
problem is formulated as a classification problem or sequence­tagging problem where we try to identify a
character that starts a new word in the string. A Thai word is defined as the smallest lexical unit that still
conveys the meaning (Aroonmanakun, 2007). Most ambiguous and debatable cases revolve around the
degree of compositionality of nouns and verbs. The word การบา้น (/ka:n.bâ:n /, homework) is one word,
although การ (/ka:n/, nominalization morpheme) and บา้น (/bâ:n/, house) are also words in other context.
The meaning of การบา้น is not compositional from the two potential morphemes and therefore should

be treated as one word. As a more uncertain example, it is arguable that the meaning of กอดอก (/kÒ:t

Pòk/, to cross arms) is composed of กอด (/kÒ:t/, to hug) and อก (/Pòk/, chest) and therefore should
not be treated as one word. Our dataset follows the guidelines that favor the segmentation takes the
degree of compositionality into account and not grammatical function changes such as nominalization or
verbalization.
Syllable segmentation task is defined similarly, but we try to find syllable boundaries instead of word

boundaries. It is noteworthy that word boundaries are always subset of syllable boundaries because
each syllable belongs to exactly one word. We use this fact as a basis for our model architecture. An
orthographical syllable is defined as a substring in a word that can be pronounced as one or one and a half
phonological syllable. For example, the word จินตนา can be segmented into two orthographical syllables
จิน (/tCin/), which is also phonologically one syllable, and ตนา (/ta.nǎ:/), which is phonologically two
syllables. The mismatch between orthographical and phonological syllables is very common, and we
believe orthographical syllable is more tractable computationally because each syllable is guaranteed to
be at least two characters long and each syllable can also be a word itself in some cases.

1github.com/heytitle/Syllable­based­Neural­Thai­Word­Segmentation

https://github.com/heytitle/Syllable-based-Neural-Thai-Word-Segmentation
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3 Related Works

Thai word segmentation share some similarities with Chinese and Japanese word segmentation, but the
linguistic differences require different types of models, but some insights from their techniques inspire
our approaches. Both Chinese and Japanese word segmentation problems are formulated as character­
sequence tagging problem. BiLSTM has been found to be very effective for Chinese (Ma et al., 2018)
and Japanese (Kitagawa and Komachi, 2018). Interestingly, length­sensitive BIES tagset proves to be a
better tagset that the standard BI tagset (Nakagawa, 2004). The BIES tagset cannot be readily applied to
Thai word segmentation since Thai words are at least two characters long. In this study, we automatically
group characters into syllables first, so that such length­sensitive tagset can be applied.
Previous approaches to Thai word segmentation can be categorized into two categories: dictionary­

based and learning­based. (Poowarawan, 1986) proposes the first dictionary­basedmethod using a greedy
algorithm to decide when a word should be formed. Dictionary­based methods inevitably suffer from
unseen words, and hence are harder to generalize to other domains. (Sornlertlamvanich, 1993) uses
Maximal Matching, to handle such unseen word cases.
Past machine­learning word segmenters utilize subword features. (Theeramunkong et al., 2000) pro­

pose Thai Character Clusters (TCCs). TCCs differ from the notion of syllables used in our work in that
TCCs are based loosely on the orthographical syllables and designed with information retrieval applica­
tions in mind. Using TCCs, (Theeramunkong and Usanavasin, 2001) develop a decision tree classifier to
determine whether a word should be formed from TCCs, based on a predefined metric. (Aroonmanakun,
2002) presents a two­stage word segmentation that incorporates handcrafted syllable features with dy­
namic programming to form the most reasonable segmentation, while (Bheganan et al., 2009) use a hid­
den Markov model to form words that are then verified with a dictionary.
Modern approaches to this problem are used by practitioners, but it is unclear which approach is the

most accurate or fastest. (Kittinaradorn et al., 2019) present DeepCut, a 1­dimension CNN for Thai word
segmentation. The alleged state­of­the­art system (Sertis Co., Ltd., 2017) and (Lapjaturapit et al., 2018)
use a BiRNN to segment words with multiple possible segmentation candidates. These results are not
systematically benchmarked or published, but we use these architectures as our baselines.

4 Our Approach
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Figure 1: CNN­based word segmenter with charac­
ter and syllable features using 3­level Iterated Di­
lated Convolutions (Strubell et al., 2017). Colors
represent different embeddings. Word in figure is กาล
เวลา (/ka:n we: la:/, time).

We propose two Thai word segmentation sys­
tems based on BiLSTM and CNN architectures.
The BiLSTM­based system follows the stan­
dard formulation of sequence­tagging BiLSTM
model.
For the CNN­based system, unlike DeepCut

that uses multiple convolutions on features, we
employ Iterated Dilated Convolutions proposed
by Strubell et al. (2017). Iterated Dilated Convo­
lutions is a hierarchical dilated convolutional lay­
ers that the dilation number increases doubly at
each layer. It allows the model to consume suffi­
cient context with fewer parameters, and Strubell
et al. (2017) demonstrate its advantages in pre­
diction performance on entity recognition tasks
and computational efficiency. We use a stack of
three levels with width three and dilation num­
bers 1, 2, and 4; In total, it covers the context of
seven characters on each side.
After the convolution layers or the BiLSTM

layers, we have two fully­connected layers, combined extract features to the probability of tags. Figure
1 depicts the convolution architecture in details.
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Our systems use syllables as additional features and structures to the model. Both systems use char­
acter embeddings and syllable embeddings as features. For a given character, we first find the syllable
that contains the character and then look up the syllable embedding. Syllable embeddings should provide
higher­level information than a character type or a character embedding can afford. As an additional ex­
periment, we reformulate the task as a syllable­sequence tagging problem instead of a character­sequence
tagging one. In this formulation, we use syllable embeddings only for both BiLSTM and CNN­based
models.
We use new tagsets to take advantage of the fact that words with different lengths are distributed

differently. The standard tagset uses binary tags: B for the beginning of a new word and I for the inside
of a word. We explore a length­sensitive tagset: BI­short, BI­mid, and BI­long for words that have 1­2
syllables, 3­4 syllables, and 5+ syllables, which we call Scheme A. We also experiment with another
length­sensitive tagset: BI­k tag where k = {1, 2, 3, 4+} is the length of the word in terms of number of
syllables, which we call Scheme B.
All of the proposed models require an automatic syllable segmenter as a preprocessing system for the

word segmenters. Thai syllables are mostly bound by rules, but ambiguity and typos are natural occur­
rences in real data. To the best of our knowledge, there is no previous work in Thai syllable segmentation,
and syllables have never been used as features for ML­based word segmentation systems. We propose
a Conditional Random Fields (CRF) syllable segmenter primarily to be used as a preprocessing step for
the word segmenter. We use template­based n­gram features to capture the local context of the sequence.

5 Experiments

5.1 Evaluation Metrics

Word starting character (1)

Correctly tokenized word
Wrongly tokenized word✗

Regular character (0)

Legend

TP   TN    FN   TN   TP   TN   TN  TP  TN  FP  TN

True Label

Prediction

Character-Level
Word-Level

Text ฝ น ต ก ท ี ่ ท ะ เ ล

Evaluation

✓✗✗ ✗

✓

Figure 2: Segmentation evaluation metrics. Correct
segmentation is ฝน|ตก|ทีÉ|ทะเล (/fǒn tók thî: tháP le:/,
rain at sea).

Evaluating the quality of word segmenters is typ­
ically done on a character­level (CL) basis. Stan­
dard measured metrics are precision, recall, and
F1 of starting­word characters. However, in­
tuitively, when a token is tokenized wrongly,
it would consequentially affect the tokenization
of following tokens. Thus, measuring only the
character­level metrics would overestimate the
tokenization performance of syllable or word to­
kenizers. Therefore, in this work, we also mea­
sure the chunk­level metrics—the syllable level
(SL) or world level (WL). SL andWL F1 are cal­
culated based on the number of correct syllables and words respectively rather than characters. Figure 2
illustrates the character­level and chunk­level measures.

5.2 Experiment 1: Syllable Segmenter

We hypothesize that syllable segmentation is simple enough that we can treat it as a preprocessing step for
word segmentation. We use pycrfsuite implementation of CRF (Peng and Korobov, 2018; Okazaki, 2007)
and train the model on Thai National Corpus (TNC) (Aroonmanakun et al., 2009). The TNC contains
a subcorpus of 2.56M annotated syllables (around 8M characters). The dataset is split three­way for
training, development and testing using the 70:20:10 scheme. The training, development, and test sets
contain 1.8M syllables, 0.5M syllables, and 0.25M syllables respectively.
We hypothesize that CRF is suitable for syllable segmentation because of its inclusion of sequential

information. We test this hypothesis by comparing it against amaximum entropymodel (MaxEnt), trained
using the scikit­learn implementation (Pedregosa et al., 2011). For both algorithms, we experiment with
the following features, with N and window size W of 1 to 4: i) individual characters within W places
around on both sides of a potential boundary (Chr); ii) two N­grams on both sides (ChrSpan); iii) N­gram
features that include all N­grams withinW places on both sides.



4623

5.3 Experiment 2: Word Segmenter
Our training data is BEST­2010 (NECTEC, 2010). Annotated with word boundaries and name entities,
the corpus contains 415 Thai documents from four categories: news, articles, encyclopedias, and novels,
accounting for 134,107 samples (split by line), around 5.11M words, and 18.74M characters. Balancing
the distribution of categories, we take 10% of the training set as a validation split. We use the official
provided test set (officially named as TEST_100K) for evaluation, which has 2,252 samples, about 128K
words, and 496K characters.
Apart from in­domain evaluation on BEST­2010 test set, we also perform cross­domain word segmen­

tation evaluations on another two datasets: i) Thai National Historical Corpus (TNHC) (Sawatphol and
Rutherford, 2019) contains 20,791 samples, around 599K words, and 2.14M characters of Thai classical
literature documents with word boundaries annotated by humans, and ii) Wisesight corpus (Wisesight
(Thailand) Co., Ltd., 2019) contains 26,700 social media messages. Because the Wisesight dataset does
not have word boundary annotation, we randomly take 1,000 samples (with 7 spam messages removed)
from the test split and manually segment them using the same word segmentation standard proposed by
Aroonmanakun (2007). We call this Wisesight­1000: it has around 22K words, and 75K characters; our
annotation is available at Wisesight’s repository. Appendix B summarizes the statistics of the datasets.
Our word segmenters are from two models families, namely BiLSTMs and CNNs with Iterated Dilated

Convolutions, or (ID­CNNs) for short. These word segmenters come with variants of:

• CRF: CRF can be employed in the last step of prediction.

• Features sets: we experiment with i) character and character type embeddings and ii) syllable em­
beddings for character­sequence models. See Appendix C.4 for the details of our character type and
syllable dictionaries;

• Tagset: discussed in Section 4, we also experiment with three tagsets: BI, SchemeA, and SchemeB
(BI­k tagset);

We use the convention of (Model-Family)[-CRF](Features)-(Tagset) to refer to the specific con­
figuration of each model.
We compare our word segmenters with two strong baselines: i) PyThaiNLP (Phatthiyaphaibun et al.,

2016) with its maximal matching engine (Sornlertlamvanich et al., 1997); ii) DeepCut (Kittinaradorn et
al., 2019), a character­level CNN (Zhang et al., 2015) with a stack of 13 convolutional filters, followed by
pooling and fully­connected layers, comprising around 500K trainable parameters. iii) BiLSTM(CH)­BI
and ID­CNN(CH)­BI, which are similar to the existing Thai word segmenters: (Sertis Co., Ltd., 2017)
and (Kittinaradorn et al., 2019) respectively.
We use PyTorch (Paszke et al., 2019) for implementing word segmenters and train them using Adam

(Kingma and Ba, 2015). For each model family, we perform 20 hyperparameter search trials using the
random search strategy (Bergstra and Bengio, 2012). We use batch size of 32 and 128 for character­level
and syllable­level models respectively. Detailed information about our training settings, hyperparameter
search space, and the best configuration of each model configuration from the search can be found in
Appendix D.

6 Results and Discussion

6.1 Syllable Segmentation Performance
Both MaxEnt and CRF achieve near­perfect performance (Table 1). This suggests that the output from
syllable segmentation is suitable for downstream as it allows very little error to propagate. Our top
performing models are CRF­based with character and trigram features (N = 3, W = {3, 4}) for both
feature types). We observe that syllable boundaries from the model withW = 4 better align with word
boundaries in BEST­2010 validation set; hence, we use this syllable model in our word segmentation
experiment.

6.2 Word Segmentation Performance
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Model Features Syllable­seg
Character­level F1 Syllable­level F1

CRF Chr (W=3), Trigram (W=3) 99.46% 98.58%
CRF Chr (W=3), ChrSpan (W=3) 99.29% 98.10%
CRF⋆ Chr (W=4), Trigram (W=4) 99.44% 98.54%
MaxEnt Chr (W=4) 99.18% 97.84%
MaxEnt Chr (W=4), Trigram (W=4) 99.29% 98.02%

Table 1: Our methods achieve near­perfect syllable­level F1 scores on Thai National Corpus (TNC) test
set. (⋆): we use the model to train word segmenters.

Method Sequence unit Features Tagset BEST­2010 Val. WLF1

Character‡ Syllable Best AVG ± STD
BiLSTM Character 3 7 BI 97.01% 96.55 ± 0.44

Character 3 3 BI 97.34% 97.06 ± 0.28
Syllable 7 3 BI 97.09% 96.49 ± 0.45
Syllable 7 3 SchemeA 97.08% 96.27 ± 0.56
Syllable 7 3 SchemeB 96.94% 96.47 ± 0.42

BiLSTM­CRF Syllable 7 3 BI 97.20% 96.73 ± 0.29
Syllable 7 3 SchemeA 96.90% 96.57 ± 0.40
Syllable 7 3 SchemeB 96.97% 96.41 ± 0.35

ID­CNN Character 3 7 BI 96.53% 95.75 ± 0.83
Character 3 3 BI 97.11% 96.88 ± 0.16
Syllable 7 3 BI 97.06% 96.47 ± 0.41
Syllable 7 3 SchemeA 97.02% 96.51 ± 0.33
Syllable 7 3 SchemeB 96.86% 96.43 ± 0.39

ID­CNN­CRF Syllable 7 3 BI 97.22% 96.63 ± 0.39
Syllable 7 3 SchemeA 97.26% 96.70 ± 0.38
Syllable 7 3 SchemeB 97.09% 96.76 ± 0.33

Table 3: Word segmentation quality (WLF1) on BEST­2010 validation set from different methods. Best
WLF1’s of each model family and sequence level are in bold. Best, mean and standard deviation of each
setting’s WLF1are statistics from 20 search trials. See Appendix D for the search space and each setting’s
best configuration.

Method Dataset (WLF1 )
In­Domain Out­Domain
BEST­2010 Wisesight TNHC

Previous work
Dictionary­based 71.18% 78.97% 72.70%
DeepCut 94.46% 84.45% 78.17%

Ours
BiLSTM
(CH)­BI 95.05% 85.85% 79.31%
(CH+SY)­BI 95.59% 86.15% 78.70%
­CRF(SY)­BI 95.51% 86.10% 79.89%

ID­CNN
(CH)­BI 94.31% 85.80% 79.22%
(CH+SY)­BI 95.45% 86.43% 79.87%
­CRF(SY)­SchA⋆ 95.60% 86.15% 79.64%

Table 2: Word segmentation quality (WLF1) on
BEST­2010 test set, Wisesight­1000 and TNHC
datasets from different methods. Syllables help im­
prove out­of­domain performance for both BiLSTM
and ID­CNN models.

BiLSTM(CH+SY)­BI and ID­CNN­CRF(SY)­
SchemeA achieve the state­of­the­art perfor­
mance on the BEST­2010 test set benchmark
and out­of­domain datasets (Table 2). Our re­
sults confirm the hypothesis that syllables help
improve word segmentation performance. On
the validation set, syllable features improve
BiLSTM­CHWLF1from 97.01% to 97.34% and
improve ID­CNN from 96.53% to 97.11% (Ta­
ble 3). We observe similar improvement on the
test set (Table 2).
The effects of syllable embeddings are more

pronounced when we only consider out­of­
vocabulary (OOV) cases (Table 4), where the
models need to generalize rather than simply
memorize words found in the training set. Syl­
lable embeddings improve OOV recall from
59.58% to 67.42% for BiLSTM and from
51.92% to 64.09% for ID­CNN. This further
confirms that syllable embeddings help improve
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Figure 3: Expected validation performance WLF1 and training duration from ID­CNNs and BiLSTMs
trained on a different set of features.

Method OOV Recall
Dictionary­based 21.31% (24.70%)
DeepCut 52.09% (60.47%)

BiLSTM
(CH)­BI 49.51% (59.58%)
(CH+SY)­BI 58.62% (67.42%)
­CRF(SY)­BI 58.37% (65.09%)

ID­CNN
(CH)­BI 44.83% (51.92%)
(CH+SY)­BI 48.52% (64.09%)
­CRF(SY)­SchemeA 56.53% (65.35%)

Table 4: Out­of­Vocabulary (OOV) recalls from BEST­2010 test set and different methods. Values in
parentheses are calculated by tokens. BiLSTM(CH)­BI and ID­CNN(CH)­BI are our control models,
and the other BiLSTMs and ID­CNNs are the best model selected from hyperparameter search.

word segmentation.
We observed modest or inconsistent improvement from the CRF layers and the length sensitive tagsets

(SchemeA and SchemeB). This might be because BiLSTMs and CNNs already take the context of the
sequence into account. The pattern of tagsets is likely to be found by thesemodels without explicitly given.
This contradicts the previous findings where BIE tagsets were used effectively in Chinese (Nakagawa,
2004).
Additionally, we also used the methods proposed by Dodge et al. (2019) to calculate the expected

performance given computational budget. Figure 3 shows the expected validation performance (WLF1)
versus the computational budget displayed as training duration on Nvidia GTX 1080, which is the average
training time times n, for different model configurations from BiLSTMs and ID­CNNs. We see that
models with syllable features have higher expected validation performance than models using character
features onlys (BiLSTM(CH)­BI and ID­CNN(CH)­BI). Hence, one needs significantly less amount of
computation budget for hyperparameter optimization when incorporating syllable features.
Interestingly, when considering training duration budget below seven hours, Figure 3 illustrates

that ID­CNN(CH+SY)­BI would yield higher expected performance than BILSTM­CRF(SY)­BI and
ID­CNN­CRF(SY)­SchemeA. This might be useful information for practical settings. Although
BiLSTM(CH+SY)­BI provides the most optimal expected validation performance and training duration
curve, using such a model might not be efficient in certain settings that only CPU instances available. We
shall discuss the issue in Section 8.
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7 Explaining Word Segmenters

Figure 4: Explaining tagging predictions of เวลา|ใน|ความหมาย|ของ|วทิยาศาสตร์ (/we: la: naj khwa:m mà:j khÓ:ï

ẃit ja: sá:t/, time in a scientific definition) from ID­CNN(CH+SY)­BI and BiLSTM(CH+SY)­BI us­
ing Integrated Gradients. The visualized attribution scores are absolute and normalized. Vertical and
horizontal lines illustrate predicted word boundaries.

We perform further analysis on how ID­CNN(CH+SY)­BI and BiLSTM(CH+SY)­BI utilize the given
features across the sequence. We use Integrated Gradients (Sundararajan et al., 2017) to explain tag
predictions of these models by computing the attribution of each position to the prediction. We set the
interpolation step size to 100 and use Captum2 for Integrated Gradients computation. We use a sequence
of padding characters as the baseline input sequence (Mudrakarta et al., 2018) and take the absolute values
of the attribution scores.
Figure 4 shows the amount of attributions determining word segmentation prediction for เวลา|ใน|ความหมาย|

ของ|วทิยาศาสตร์ (/we: la: naj khwa:m mà:j khÓ:ï ẃit ja: sá:t/, time in a scientific definition). One
can see that the attributions concentrates around a narrow band surrounding the diagonal line for both
ID­CNN(CH+SY)­BI and BiLSTM(CH+SY)­BI, suggesting high contributions from neighbor charac­
ters. Therefore, this evidence implies that going through all the locations in the sequence as done in
BiLSTM(CH+SY)­BI might be not optimal for the Thai word segmentation task.

Figure 5: Distributions of normalized attri­
bution scores from ID­CNN(CH+SY)­BI and
BiLSTM(CH+SY)­BI using Integrated Gradients.
Two dashed lines indicate the size of CNN filter.

To provide quantitative measures, we select
samples whose length is between 21 and 50 char­
acters from the BEST­2010 test set, resulting in
338 samples. We then calculate the attribution
amount allocated to each surrounding location
up to 10 character left and right (Figure 5). Attri­
bution scores are concentrated around three char­
acters on both sides. This suggests that mod­
els such as ID­CNNs that consume features from
only a selective set of neighbor locations are suf­
ficient for our segmentation purpose, rather than
going through the sequence as in BiLSTMs.
Moreover, we also see here that the two attri­

bution distributions are slightly left­skewed, sug­
gesting models rely more on neighboring charac­
ters from the left side than the right side. This is
reasonable because it aligns with the writing direction of Thai language.

2github.com/pytorch/captum/releases/tag/v0.2.0

https://github.com/pytorch/captum/releases/tag/v0.2.0
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Method BEST­2010 Test Set Segmentation Time (Wall Clock)
t2.medium p2.xlarge(bs=1) p2.xlarge(bs=128)

DeepCut 252.89 ± 9.93 (1×) 134.54 ± 1.20 (1×) ­
PyThaiNLP† 2.93 ± 0.07 (86×) ­ ­

BiLSTM
(CH)­BI 123.29 ± 0.19 (2.1×) 48.14 ± 0.05 (2.8×) 10.12 ± 0.04 (1×)
(CH+SY)­BI 77.04 ± 0.53 (3.3×) 40.42 ± 0.38 (3.3×) 17.65 ± 0.15 (0.6×)
­CRF(SY)­BI 62.05 ± 0.56 (0.5×) 52.73 ± 0.49 (2.6×) 20.62 ± 0.08 (0.5×)

ID­CNN
(CH)­BI 11.87 ± 0.11 (21.3×) 7.22 ± 0.01 (18.6×) 5.28 ± 0.02 (1.9×)
(CH+SY)­BI 23.48 ± 0.25 (10.8×) 18.60 ± 0.09 (7.2×) 16.56 ± 0.09 (0.6×)
­CRF(SY)­SchemeA 28.32 ± 0.26 (8.9×) 38.94 ± 0.54 (3.5×) 19.28 ± 0.12 (0.5×)

Table 5: BEST­2010 test set segmentation time from different methods and computing instances.
t2.medium is a CPU instance, while p2.xlarge is a GPU instance. Numbers in parentheses indicate a
speed factor (higher is faster) to the reference method displayed with (1×). bs stands for batch size.

8 Speed Benchmark

We perform speed benchmark of two existing methods, namely PyThaiNLP and DeepCut, and our word
segmenters. We conduct the benchmark on two AWS cloud instances: t2.medium and p2.xlarge; the
former is a CPU instance, while the latter is a GPU instance. We use UNIX’s time to measure the wall
clock of segmentation and AWS’s official deep learning image3. For each method or configuration, we
perform five runs in which the first two runs are burn­in, and we average segmentation time from the last
three. We refer to Appendix A for our benchmark code.
Table 5 shows that ID­CNNs are generally faster than BiLSTMs on t2.medium and p2.xlarge when

batch size is small (bs=1); they are on par for a large batch size (bs=128). Comparing to DeepCut, our
syllable models are faster. More precisely, the best syllable variants of BiLSTMs and ID­CNNs are 3.3×
and 8.9× faster than DeepCut respectively, on t2.medium. The speed factor of our best models reduce
to around 3× on p2.xlarge(bs=1).
For p2.xlarge(bs=128), we did not benchmark DeepCut in this setting because its API does not

allow batch size configuration. We use BiLSTM(CH)­BI’s time as the reference instead. From the ta­
ble, we see that both BiLSTM­CRF(SY)­BI and ID­CNN­CRF(SY)­SchemeA are on par in terms of
speed. Nevertheless, we consider here the results on t2.medium the most important one because word
segmentation is one of the first step in NLP, and it should be efficient without a special hardware.

9 Conclusion

In this work, we propose to use syllable knowledge for Thai word segmentation. We perform a system­
atic comparison between existing Thai word segmenters and our different model configurations based
on LSTMs and CNNs. Our results show that incorporating syllable can improve word segmentation
performance significantly both in­domain and out domain evaluations. We also analyze results from hy­
perparameter search, and the analysis shows that using syllable features require less computational budget
for the search to find word segmenters with decent performance.
We also explain two character­level word segmenters using Integrated Gradients, showing that the

LSTM­based word segmenter relies only a faction of neighbor character when predicting tags of the
sequence, suggesting that using CNNs models are more efficient than LSTMs. Our speed benchmark
shows that our best and fastest syllable model ID­CNN­CRF(SY)­SchemeA is 8.9× and 3.5× faster than
DeepCut, the current state of the art, on CPU and GPU instances respectively.
In future, we would like to investigate 1) the end­to­end learning paradigm, combining syllable and

word segmentation into one model; 2) the effect of pretrained syllable embeddings; and 3) the effect of
word segmentation on downstream tasks.

3AWS’s Deep Learning AMI Linux 2 v.29
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A Code

Our code is available at github.com/heytitle/Syllable­based­Neural­Thai­Word­Segmentation.

B Dataset Statistics

Dataset # Characters # Words
BEST­2010

Train 18.7M 5M
Validation 2M 0.55M

Test 0.50M 0.19M

TNHC 2M 0.67M
WiseSight­1000 76K 22K

TNC 8M 2.56M†

Table 6: Dataset statistics. (†): number of syllables.

C Data Preprocessing

C.1 Syllable Segmentation for Word Segmenters
For word segmenters that rely on syllable features, we first split the input sentence to separate parts based
on punctuation signs. Then, each part is syllable­segmented, and the list of syllables of the sentence is
formed from these parts’ syllables.

C.2 BEST­2010 Out of Vocabulary Experiment
We first select words that are in BEST­2010 test set but not in the training set. We then select only Thai
words. More details can be found at oov.py in our repository.

C.3 TNHC
We remove one file whose name is จดหมายเหตุรายวนัของสมเดจ็เจา้ฟ้ามหาวชิรุณหิศ.json out due to encoding issues. For
the rest, we remove meta tags, such as author, data, or filename from each file. Our preprocess script can
be found at process-tnhc.py in our repository.

C.4 Character Type and Syllable Dictionaries
Our character type dictionary is drawn fromDeepCut’s character type dictionary 4. It separates characters
into 12 categories, shown in Table 7.
For the syllable dictionary, we extract all syllables from BEST­2010 training set and then map each

syllable into a category if one of our regular expression rules applies. We have four categories, namely
1) punctuation, 2) URLs, 3) sequence of English alphabets, and 4) number.

C.5 Benchmark
We remove name­entity tags and separators (|), both repeated and tailing ones from the reference and
given input. We refer to our benchmark.py in the repository for more details.

D Training Parameters and Hyperparameter Optimization Details

Table 8 shows our setting and training parameters, and Table 9­24 shows hyperparameter search space
for each model family. During the training, we keep the best checkpoint of each model, i.e. the final
model is the checkpoint of the epoch thas has the lowest validation loss.

4https://github.com/rkcosmos/deepcut/blob/master/deepcut/utils.py

https://github.com/heytitle/Syllable-based-Neural-Thai-Word-Segmentation
https://github.com/rkcosmos/deepcut/blob/master/deepcut/utils.py
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Category Description
Alphabet 1 กขฃคฆงจชซญฎฏฐฑฒณดตถทธนบปพฟภมยรลวศษสฬอ
Alphabet 2 ฅฉผฟฌหฮ
Vowel 1 า ะ ํา _ิ _ ี _ ึ _ ื _ ั - ู - ุ
Vowel 2 เแโใไ
Tone mark _ ่ _ ้ _ ๊ _ ๋
Symbol _ ์ ๆ ฯ .
Digit 0123456789๑๒๓๔๕๖๗๘๙
Quotation ” ’ ‘ ’
Lower case English alphabet abcdefghijklmnopqrstuvwxyz
Upper case English aphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ
Space
Others

Table 7: Character type mapping.

Training Parameter Value
Computing infrastructure Nvidia GTX 1080
Number of search trials 20

Optimizer Adam
Learning rate schedule ReduceOnPlateau
Learning rate patient 0 epoch
Number of epochs 20

Batch size
Character level models 32
Syllable level models 128

Embedding Dimension
Character 32

Character type 32
Syllable 64

Table 8: Training parameters.
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Average training duration 92 minutes
Average validation word­level F1 96.55±0.44%
Best validation word­level F1 97.01%
Best model’s number of trainable parameters 2,209,348

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 8.10e­04
weight decay loguniform(1e­6, 1e­3) 3.04e­06
LSTM cells uniform­interger(128, 512) 489
linear layer uniform­interger(16, 48) 34

dropout uniform(0, 0.5) 0.4048

Table 9: Best hyperparameter and search space for BiLSTM(CH)­BI.

Average training duration 112 minutes
Average validation word­level F1 97.06±0.28%
Best validation word­level F1 97.34%
Best model’s number of trainable parameters 1,391,035

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 7.99e­04
weight decay loguniform(1e­6, 1e­3) 1.94e­04
LSTM cells uniform­interger(128, 512) 204
linear layer uniform­interger(16, 48) 27

dropout uniform(0, 0.5) 0.3850

Table 10: Best hyperparameter and search space for BiLSTM(CH+SY)­BI.

Average training duration 25 minutes
Average validation word­level F1 96.49±0.45%
Best validation word­level F1 97.09%
Best model’s number of trainable parameters 1,595,134

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 7.21e­04
weight decay loguniform(1e­6, 1e­3) 4.77e­04
LSTM cells uniform­interger(128, 512) 274
linear layer uniform­interger(16, 48) 36

dropout uniform(0, 0.5) 0.1567

Table 11: Best hyperparameter and search space for BiLSTM(SY)­BI.
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Average training duration 25 minutes
Average validation word­level F1 96.27±0.56%
Best validation word­level F1 97.08%
Best model’s number of trainable parameters 1,869,546

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 9.95e­04
weight decay loguniform(1e­6, 1e­3) 5.67e­04
LSTM cells uniform­interger(128, 512) 326
linear layer uniform­interger(16, 48) 26

dropout uniform(0, 0.5) 0.2167

Table 12: Best hyperparameter and search space for BiLSTM(SY)­SchemeA.

Average training duration 23 minutes
Average validation word­level F1 96.47±0.42%
Best validation word­level F1 96.94%
Best model’s number of trainable parameters 2,173,258

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 8.96e­04
weight decay loguniform(1e­6, 1e­3) 2.53e­04
LSTM cells uniform­interger(128, 512) 376
linear layer uniform­interger(16, 48) 18

dropout uniform(0, 0.5) 0.4452

Table 13: Best hyperparameter and search space for BiLSTM(SY)­SchemeB.

Average training duration 132 minutes
Average validation word­level F1 96.73±0.29%
Best validation word­level F1 97.20%
Best model’s number of trainable parameters 2,697,374

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 6.45e­04
weight decay loguniform(1e­6, 1e­3) 4.00e­04
LSTM cells uniform­interger(128, 512) 448
linear layer uniform­interger(16, 48) 28

dropout uniform(0, 0.5) 0.1465

Table 14: Best hyperparameter and search space for BiLSTM­CRF(SY)­BI.
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Average training duration 135 minutes
Average validation word­level F1 96.57±0.40%
Best validation word­level F1 96.90%
Best model’s number of trainable parameters 2,997,807

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 6.37e­04
weight decay loguniform(1e­6, 1e­3) 3.70e­05
LSTM cells uniform­interger(128, 512) 484
linear layer uniform­interger(16, 48) 39

dropout uniform(0, 0.5) 0.4632

Table 15: Best hyperparameter and search space for BiLSTM­CRF(SY)­SchemeA.

Average training duration 128 minutes
Average validation word­level F1 96.41±0.35%
Best validation word­level F1 96.97%
Best model’s number of trainable parameters 2,572,503

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 7.81e­04
weight decay loguniform(1e­6, 1e­3) 6.53e­05
LSTM cells uniform­interger(128, 512) 431
linear layer uniform­interger(16, 48) 33

dropout uniform(0, 0.5) 0.3202

Table 16: Best hyperparameter and search space for BiLSTM­CRF(SY)­SchemeB.

Average training duration 98 minutes
Average validation word­level F1 95.75±0.83%
Best validation word­level F1 96.53%
Best model’s number of trainable parameters 391,291

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 3.88e­04
weight decay loguniform(1e­6, 1e­3) 4.41e­04

convolution filters uniform­interger(128, 256) 235
linear layer uniform­interger(16, 48) 39

dropout uniform(0, 0.5) 0.0008

Table 17: Best hyperparameter and search space for ID­CNN(CH)­BI.
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Average training duration 105 minutes
Average validation word­level F1 96.88±0.16%
Best validation word­level F1 97.11%
Best model’s number of trainable parameters 1,161,791

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 9.20e­04
weight decay loguniform(1e­6, 1e­3) 1.17e­05

convolution filters uniform­interger(128, 256) 200
linear layer uniform­interger(16, 48) 47

dropout uniform(0, 0.5) 0.2167

Table 18: Best hyperparameter and search space for ID­CNN(CH+SY)­BI.

Average training duration 46 minutes
Average validation word­level F1 96.47±0.41%
Best validation word­level F1 97.06%
Best model’s number of trainable parameters 1,136,281

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 9.01e­04
weight decay loguniform(1e­6, 1e­3) 2.27e­04

convolution filters uniform­interger(128, 256) 208
linear layer uniform­interger(16, 48) 29

dropout uniform(0, 0.5) 0.2329

Table 19: Best hyperparameter and search space for ID­CNN(SY)­BI.

Average training duration 45 minutes
Average validation word­level F1 96.51±0.33%
Best validation word­level F1 97.02%
Best model’s number of trainable parameters 1,136,339

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 7.02e­04
weight decay loguniform(1e­6, 1e­3) 2.79e­04

convolution filters uniform­interger(128, 256) 207
linear layer uniform­interger(16, 48) 41

dropout uniform(0, 0.5) 0.3650

Table 20: Best hyperparameter and search space for ID­CNN(SY)­SchemeA.
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Average training duration 43 minutes
Average validation word­level F1 96.43±0.39%
Best validation word­level F1 96.86%
Best model’s number of trainable parameters 1,169,615

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 8.24e­04
weight decay loguniform(1e­6, 1e­3) 3.22e­05

convolution filters uniform­interger(128, 256) 219
linear layer uniform­interger(16, 48) 40

dropout uniform(0, 0.5) 0.0875

Table 21: Best hyperparameter and search space for ID­CNN(SY)­SchemeB.

Average training duration 158 minutes
Average validation word­level F1 96.63±0.39%
Best validation word­level F1 97.22%
Best model’s number of trainable parameters 1,206,435

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 9.67e­04
weight decay loguniform(1e­6, 1e­3) 1.77e­04

convolution filters uniform­interger(128, 256) 232
linear layer uniform­interger(16, 48) 35

dropout uniform(0, 0.5) 0.1696

Table 22: Best hyperparameter and search space for ID­CNN­CRF(SY)­BI.

Average training duration 155 minutes
Average validation word­level F1 96.70±0.38%
Best validation word­level F1 97.26%
Best model’s number of trainable parameters 997,375

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 8.55e­04
weight decay loguniform(1e­6, 1e­3) 5.86e­04

convolution filters uniform­interger(128, 256) 150
linear layer uniform­interger(16, 48) 19

dropout uniform(0, 0.5) 0.1658

Table 23: Best hyperparameter and search space for ID­CNN­CRF(SY)­SchemeA.
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Average training duration 158 minutes
Average validation word­level F1 96.76±0.33%
Best validation word­level F1 97.09%
Best model’s number of trainable parameters 1,092,547

Hyperparameter Search Space Best Assignment
learning rate loguniform(1e­4, 1e­3) 9.67e­04
weight decay loguniform(1e­6, 1e­3) 2.03e­04

convolution filters uniform­interger(128, 256) 192
linear layer uniform­interger(16, 48) 19

dropout uniform(0, 0.5) 0.1111

Table 24: Best hyperparameter and search space for ID­CNN­CRF(SY)­SchemeB.
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