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Abstract

Models of human sentence processing effort tend to focus on costs associated with retrieving
structures and discourse referents from memory (memory-based) and/or on costs associated with
anticipating upcoming words and structures based on contextual cues (expectation-based) (Levy,
2008). Although evidence suggests that expectation and memory may play separable roles in
language comprehension (Levy et al., 2013), theories of coreference processing have largely
focused on memory: how comprehenders identify likely referents of linguistic expressions. In this
study, we hypothesize that coreference tracking also informs human expectations about upcoming
words, and we test this hypothesis by evaluating the degree to which incremental surprisal
measures generated by a novel coreference-aware semantic parser explain human response times
in a naturalistic self-paced reading experiment. Results indicate (1) that coreference information
indeed guides human expectations and (2) that coreference effects on memory retrieval may
exist independently of coreference effects on expectations. Together, these findings suggest that
the language processing system exploits coreference information both to retrieve referents from
memory and to anticipate upcoming material.

1 Introduction

Maintaining a model of discourse referents and their relations is a core function of human language
understanding and depends on the ability to recognize when linguistic expressions corefer. Identifying
the referent of a linguistic expression (coreference resolution) is a well-established task in natural
language processing, and a sizeable psycholinguistic literature has explored the computations that support
coreference resolution in humans. Theories of coreference processing generally agree on a critical role
played by searching associative memory stores for plausible referents (Greene et al., 1992; Grosz et
al., 1995; Gordon, 1998; Almor, 1999; Ariel, 2001), based on findings that coreference is more easily
established to more salient or activated referents, as evidenced by human reading latencies (Gordon, 1998;
Cunnings et al., 2014). Nonetheless, some coreference-related phenomena are not obviously related to
search. Consider the following example:

Sally frightened her brother because Sally/she/he...

Numerous studies indicate that he in the boldfaced slot is more difficult to process (i.e. read more slowly)
than she despite the fact that he corefers unambiguously to her brother, the most recently activated
discourse referent (Garvey and Caramazza, 1974; Garnham et al., 1996; Stewart et al., 2000; Koornneef
and Van Berkum, 2006; Hartshorne, 2014, inter alia). This is due to the implicit causality of the verb
frightened, which predisposes comprehenders to expect an explanation in terms of the agent of the
frightening event, rather than the patient (Garvey and Caramazza, 1974). In addition, the full name Sally
is more difficult to process than the pronoun she, despite the fact that both expressions unambiguously
identify their referent. This is due to a phenomenon known as the repeated name penalty (Gordon et al.,
1993). All of these expressions unambiguously identify their target referents, and for some, the preferred
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referent is not necessarily the most recent. It is thus not straightforward to account for these effects
solely on the basis of retrieval difficulty. Various accounts of these and related coreference phenomena
exist, such as the informational load hypothesis of Almor (1999), which posits a trade-off between the
information content of referring expressions and their linguistic complexity. However, to our knowledge,
little prior work has explored the role coreference might play in more general expectation-based theories
of human sentence processing (Hale, 2001; Levy, 2008; van Schijndel et al., 2013; Rasmussen and Schuler,
2018), according to which comprehension difficulty is driven by mechanisms that incrementally reallocate
cognitive resources between competing interpretations of the unfolding sentence. Expectation-based
theories have been highly successful in providing broad-coverage explanations of sentence processing
difficulty, but have so far been evaluated using local lexical (n-gram) or syntactic (parser-based) contexts
(Demberg and Keller, 2008; Frank and Bod, 2011; Smith and Levy, 2013, inter alia). We show here
that they can also be a useful framework for understanding coreference-related phenomena like those
mentioned above, since knowledge of available discourse referents and patterns of referential form might
guide comprehenders’ expectations about upcoming words.

In this study, we implement a novel coreference-aware generative incremental semantic parser and
show that coreference awareness significantly improves fit of surprisal estimates from the parser to human
reaction times in a self-paced reading experiment. We further show that a previously proposed estimator of
coreference resolution difficulty explains additional variance over that explained by the parser, suggesting
that the memory phenomenon is at least partially independent of expectation. Together, these results
indicate that comprehenders incrementally exploit coreference information both to identify referents of
linguistic expressions (a memory effect) and to inform predictions about upcoming words (an expectation
effect). Our study thus joins previously reported evidence of the need for both memory-related and
expectation-related mechanisms in accounting for the full range of human sentence processing phenomena
(Levy et al., 2013).

2 Previous Work

Coreference resolution has been extensively studied, both as a psycholinguistic phenomenon and as a
natural language processing task. Psycholinguistic investigations have largely focused on the memory
retrieval mechanisms that allow comprehenders to identify the referents of linguistic expressions (Greene
et al., 1992; Grosz et al., 1995; Gordon, 1998; Almor, 1999; Ariel, 2001; Kehler and Rohde, 2015; Jaffe
et al., 2018). Some computational models have attempted to implement these theories in order to solve
the coreference resolution task. For example, Wiemer-Hastings and Iacucci (2001) implement Gordon
(1998), Tetreault (2002) is inspired by Centering Theory (Grosz et al., 1995), and Webster and Nothman
(2016) draw on the Accessibility Hierarchy (Ariel, 2001) for feature design. Webster and Curran (2014)
propose an incremental coreference resolution system inspired by Centering and Accessibility theories by
maintaining a ranked stack of entities supposed to reflect the reader’s mental state. Kehler and Rohde
(2015) offer a Bayesian account of pronominal reference that highlights an asymmetry between pronoun
production and interpretation.

Other computational models are less directly inspired by human cognition but achieve strong perfor-
mance on the coreference resolution task. Wiseman et al. (2016) use LSTMs to track each entity cluster,
where the hidden state is updated with each mention that is linked to the cluster, allowing for use of
entity-level features. Lee et al. (2017) propose an end-to-end coreference resolution system without
external resources using bidirectional LSTMs and an attention mechanism for head finding.

However, none of the above systems integrate explicit coreference tracking into a full generative model
of natural language. As a result, while such systems may be amenable to studying coreference retrieval
processes in human comprehenders, they cannot be used to test the present hypothesis that coreference
information guides comprehenders’ overall expectations about upcoming words.

Also of relevance are recent high-performance large-scale language models like ELMo (Peters et
al., 2018), BERT (Devlin et al., 2019), and GPT-2 (Radford et al., 2018), which have been argued to
learn coreference information (Clark et al., 2019). However, these models rely on powerful deep neural
networks that are difficult to interpret, and it is generally not possible to manipulate their access to
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coreference information in order to evaluate the impact of this information on human expectations.
Ji et al. (2017) propose an incremental generative model that explicitly tracks coreference but the

joint objectives are not depedendent on each other, meaning that they do not model word expectation as
dependent on the coreference decision.

3 Background

The models used in this paper obtain surprisal predictors from an incremental processing model based
on a left-corner parser, trained on corpora annotated with both syntactic and coreference information
(Weischedel et al., 2012), which produces a simple incremental probabilistic account of sentence process-
ing by making a single lexical attachment decision and a single grammatical attachment decision at each
word.

3.1 Surprisal from Processing Models
Surprisal can be calculated as the difference between negative log probabilities of prefixes generated by a
processing model at consecutive time steps:

S(wt)
def
= − log P(wt|w1..t−1) = − log P(w1..t) + log P(w1..t−1) (1)

These prefix probabilities can be calculated by marginalizing over hidden states in the forward proba-
bilities of an incremental processing model:

P(w1..t) =
∑

qt

P(w1..t qt) (2)

These forward probabilities are in turn defined recursively using a transition model:

P(w1..t qt)
def
=
∑
qt−1

P(wt qt | qt−1) · P(w1..t−1 qt−1) (3)

3.2 Left-corner Parsing
The transition model described in this paper is based on a probabilistic left-corner parser (Johnson-Laird,
1983; Roark, 2001; van Schijndel et al., 2013; Rasmussen and Schuler, 2018), in part because it requires a
bounded amount of working memory at every time step, and because it makes a fixed number of decisions
after every word.

The model maintains a distribution over possible working memory store states qt at every time step t,
each of which consist of a bounded number D of nested derivation fragments ad

t /b
d
t (partial phrase

structure trees). Each derivation fragment at a given depth d spans a part of a possible derivation tree from
some apex sign ad

t (syntactic category in the case of a purely syntactic parser) to some base sign bd
t in

its right progeny. Previous work has shown large tree-annotated resources such as the Penn Treebank
(Marcus et al., 1993) do not require more than D = 4 such fragments (Schuler et al., 2010).

Like other incremental parsers (Dyer et al., 2016; Hale et al., 2018; Jin and Schuler, 2020) this model
makes a series of probabilistic decisions which incrementally define a syntactic structure. The left-corner
parsing model defines new words wt and store states qt by first making a lexical decision `t (related to
hypothesizing a preterminal above wt and possibly attaching it to an existing derivation fragment) and then
making a grammatical decision gt (related to hypothesizing some minimal binary branch that subsumes
both wt and wt+1 and possibly attaching it to an existing derivation fragment) after encountering each
word:1

P(wt qt | qt−1) =
∑
`t ,gt

P(`t | qt−1) ·

P(wt | qt−1 `t) ·

P(gt | qt−1 `t wt) ·

P(qt | qt−1 `t wt gt) (4)
1Johnson-Laird (1983) refers to these decisions as ‘shift’ and ‘predict,’ respectively.
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Figure 1: Natural deduction rules for parsing. The parse is a list of derivation fragments where a lexical
match and grammatical match rules modifies the structure at each timestep. Negative lexical match
(m`t = 0) posits a new left-child sign at increased depth. Positive lexical match (m`t = 1) discharges the
expected base sign from the previous timestep. Negative grammatical match (mgt = 0) maintains the
current derivation fragment and generates new apex and base signs for it, while positive grammatical
match (mgt = 1) joins the current derivation fragment with its superordinate fragment and generates a new
base sign.

Together, these decisions generate the n unary branches and n − 1 binary branches in a Chomsky normal
form tree spanning an n-word sentence.

Each lexical decision includes a match decision m`t ∈ {0, 1} about whether to identify the preterminal
above the next lexical item as the base sign of the derivation fragment above it, and a decision about
the category label c`t for this preterminal sign. Each grammatical decision includes another match
decision mgt ∈ {0, 1} about whether to identify the lowest nonterminal sign that contains but does not end
with the current lexical item as the base sign of the derivation fragment above it, as well as a decision
about the category label cgt of this nonterminal, and a decision about the category label c′gt

of its right
child. Derivation fragments above this nonterminal are then carried forward, and derivation fragments
below it are set to null (⊥):

P(qt | qt−1 `t wt gt)
def
=

D∏
d=1


Jad

t, b
d
t = ad

t−1, b
d
t−1K if d < δ

Jad
t, b

d
t = agt , bgtK if d = δ

Jad
t, b

d
t = ⊥,⊥K if d > δ

(5)

where indicator JϕK = 1 if ϕ is true and 0 otherwise, and δ = argmaxd′{a
d′
t−1,⊥} + 1 − m`t − mgt , and

signs agt and bgt are here simply cgt and c′gt
, respectively. Figure 1 shows the natural deduction rules for

the lexical and grammatical match rules, and resulting structures from such decisions.

3.3 Semantic Processing Model

Experiments in this paper use an extension of the left-corner parsing model described above (Oh and
Schuler, forthcoming) which incorporates referential semantics by augmenting each preterminal, apex,
and base sign to include not only a category label cpt , cad

t
or cbd

t
, but also a referential context vector hpt ,

had
t

or hbd
t
∈ {0, 1}K+V ·K , where K is the dimension of the referential context vector for the predicate and

each argument, and V is the maximum valence or number of syntactic arguments of any category. This set
of up to V syntactic arguments is well-defined for phrase structure grammars like HPSG (Pollard and Sag,
1994) or categorial grammars like CCG (Steedman, 2000) or GCG (Bach, 1981; Nguyen et al., 2012),
and may include non-local arguments such as gap-fillers, relative and interrogative pronoun antecedents,
extraposed or heavy-shifted items, and passive subjects.

Vectors for syntactic predicates and arguments may be dense, generated by neural network models
in order to maximize prediction accuracy, but experiments described in this paper will adopt a sparse
encoding generated by explicit features in order to perform a clean ablation with a coreference model and
avoid confounds related to hyperparameter tuning. In this sparse encoding, a vector for a referent signified
by a sign contains a set of referential context indicators (Levy and Goldberg, 2014), each consisting of a
predicate constant and a path of up to three labeled associations that connect that predicate to that referent.



4591

For example, pour might be a referential context for the eventuality of a pour predicate, and pour 2 might
be a referential context for the second argument of a pour predicate.

The model is then augmented to generate not only match decisions and category labels for each lexical
and grammatical decision, but also sparse binary vectors for these referential contexts. Match decisions
are then estimated using logistic regression on pairs of referential contexts from these sparse vectors.

Lexical decisions now directly generate not only match m`t and preterminal category labels c`t but also
referential context vectors h`t for preterminal signs, which define complete preterminal signs p`t :

p`t

def
=

cbδt−1
,hbδt−1

+ h`t if m`t = 1

c`t ,h`t if m`t = 0
(6)

The sparse encoding adopted in these experiments defines each lexical preterminal vector as a Kronecker
delta (one-hot vector) concentrated at the lemmatized predicate corresponding to the current word, with no
path (in the case of verbs, adjectives, prepositions and relational nouns) or with a path ‘1’ (in the case of
non-relational nouns, whose signified referents are usually the first participant of an elementary predication
labeled by that noun). For example, pour is a referential context indicating a ‘pouring’ predicate, whereas
cloud 1 is a context indicating the first argument of a ‘being a cloud’ predicate. Contexts with other paths
(e.g., pour 1 for entities that ‘pour’ or pour 2 for entities that are ‘poured’) are generated by operators in
grammatical decisions.

Grammatical decisions do not generate referential context vectors directly, but rather generate (in
addition to match decisions mgt and category labels cgt and c′gt

) triples of operators ogt , o′gt
, o′′gt

, corre-
sponding to unary operations (e.g. to re-order syntactic arguments or to associate non-local syntactic
arguments with local syntactic arguments), or operations to derive left or right child signs from parent
signs (e.g. to obtain argument or modifier referents from predicate referents or to attach left children as
non-local arguments of right children). These operators are then associated with elements of a fixed set of
composition matrices Oogt

, Oo′gt
, Oo′′gt

, which can then be used to compose signs agt and bgt in Equation 5.
For example, a verb with context pour might predict a direct object noun phrase sibling with context
pour 2.

In these grammatical decisions, the apex sign agt used in Equation 5 is unchanged from the previous
time step when there is a match in the grammatical phase, and when there is no match, it is calculated by
traversing up from the left child (via Oo′gt

>) and then up through the unary operations at the parent (via
Oogt
>):

agt

def
=


aδt−1 if m`t ,gt = 1, 1
cgt ,Oogt

>Oo′gt
>haδt−1

if m`t ,gt = 1, 0

aδt−1 if m`t ,gt = 0, 1
cgt ,Oogt

>Oo′gt
>hp`t if m`t ,gt = 0, 0

(7)

The base sign bgt used in Equation 5 is calculated by traversing from the left child to the parent (via Oo′gt
>)

and then down to the right child (via Oo′′gt
) when there is no match in the grammatical phase, and when

there is a match, it is calculated by combining the result of traversing up from the left child (via Oo′gt
>) and

down from the parent (via Oogt
) and then traversing down to the right child (via Oo′′gt

):

bgt

def
=


c′gt
,Oo′′gt

(Oogt
hbδt−1

+ Oo′gt
>haδ+1

t−1
) if m`t ,gt = 1,1

c′gt
,Oo′′gt

Oo′gt
>haδt−1

if m`t ,gt = 1,0

c′gt
,Oo′′gt

(Oogt
hbδt−1

+ Oo′gt
>hp`t ) if m`t ,gt = 0,1

c′gt
,Oo′′gt

Oo′gt
>hp`t if m`t ,gt = 0,0

(8)

This model will serve as the non-coreference baseline in experiments described in Sections 5 and 6.
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Aquai thought hei was lucky to see a cloud j pouring its j rain onto himi

0 0 1 0 0 0 0 0 0 0 1 0 0 2

Figure 2: An example sentence with predictor values for MentionCount (Jaffe et al., 2018), the number of
previous mentions to the same referent. Words sharing a subscript value are coreferential.
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Figure 3: Natural deduction rules for parsing with coreference. Note the presence of the additional
preterminal sequence allows semantic contexts to be inherited from antecedents to anaphors. Otherwise,
the rules are identical.

4 Coreference Model

Like the semantic parser described above, the coreference-aware parser2 is trained with explicit supervision
from annotated corpora to maximize the probability of all variable values. However, a number of changes
and additions are necessary to add coreference information to the parser described above.

The coreference-aware model marginalizes prefix probabilities off of entire sequences of durable
preterminal signs p1..t (for mathematical convenience, we henceforth split the lexical decision `t above
into a lexical decision `t and a preterminal decision pt) as well as the current store state qt:

P(w1..t) =
∑

p1..t ,qt

P(w1..t p1..t qt) (9)

These sequence probabilities are again defined recursively using a transition model with a larger sequential
context:

P(w1..t p1..t qt)
def
=
∑
qt−1

P(wt pt qt | w1..t−1 p1..t−1 qt−1) · P(w1..t−1 p1..t−1 qt−1) (10)

Since the size of this distribution increases exponentially with the length of the sentence, only hidden
state sequences with optimal p1..t−1 are maintained on a beam. This larger context is propagated to the
lexical model:

P(wt pt qt | w1..t−1 p1..t−1 qt−1) =∑
`t ,gt

P(`t | w1..t−1 p1..t−1 qt−1) ·

P(pt | w1..t−1 p1..t−1 qt−1 `t) ·

P(wt | w1..t−1 p1..t−1 qt−1 `t pt) ·

P(gt | w1..t−1 p1..t−1 qt−1 `t pt wt) ·

P(qt | w1..t−1 p1..t−1 qt−1 `t pt wt gt) (11)

which is augmented with a factor over coreference indices i`t (highlighted):

P(`t | w1..t−1 p1..t−1 qt−1) def
= P(i`t | w1..t−1 p1..t−1 qt−1)

· P(m`t h`t c`t | i`t qt−1) (12)

2All code is publicly available at https://github.com/modelblocks/modelblocks-release
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Referential contexts for preterminals are then augmented with contexts of antecedents hpt−i`t
(highlighted),

where this term is a zero vector in case there is no coreference:

P(pt | w1..t−1 p1..t−1 qt−1 `t)
def
=

Jpt = cbδt
,hbδt

+ h`t + hpt−i`t
K if m`t = 1

Jpt = c`t ,h`t + hpt−i`t
K if m`t = 0

(13)

The grammatical decisions retain the original context but depend on the lexical decision. Adding referential
context h`t conditioned on coreference index i`t allows the probabability of lexical decision `t to be
influenced by the referential contexts of prior coreferent material. Since grammatical decisions depend on
the lexical decision in a given timestep, parsing and coreference are fully interactive.

For example, at the word its in Figure 2, the model would consider coreference antecedent offsets
including those corresponding to he (ten words back: i`t = 10) and cloud (two words back: i`t = 2).
With the correct antecedent, the referential context of its would inherit the cloud 1 context, making the
following word rain more likely than if it had inherited the incorrect antecedent context he 1.

Coreference decisions are modeled as a conditional probability distribution of an offset index i`t at
time t, given the referential context sets of the base sign and of all previous preterminal signs:

P(i`t | w1..t−1 p1..t−1 qt−1) def
=

P(nt,i`t ∀i′,i`t ¬nt,i′ | p1 . . . pt−1 bδt−1)∑
i P(nt,i ∀i′,i ¬nt,i′ | p1 . . . pt−1 bδt−1)

(14)

where non-anaphors are represented with an offset index of zero. This distribution is defined as the
probability that a binary indicator model chooses the word at time step t − i as being immediately
coreferential with (i.e. a direct antecedent of) the word at the current time step t and also not immediately
coreferential with any other offset i′ prior to time t. This positive coreference choice is normalized by
all other positive coreference choices of other offsets i. Probabilities for these indicator variables are
then estimated independently (using logistic regression on pairs of referential contexts) and multiplied
together:

P(nt,i ∀i′,i ¬nt,i′ | p1 . . . pt−1 bδt−1) def
= P(nt,i | pt−i bδt−1) ·

∏
i′,i

P(¬nt,i′ | pt−i′ bδt−1) (15)

Natural deduction rules for the coreference-aware parser are shown in Figure 3; lexical and grammatical
match rules follow the same structural outcomes but the presence of an additional preterminal list now
allows for coreference information to be inherited as described in Equation 13.

5 Experiment 1

To test the hypothesis that comprehenders use coreference information to guide linguistic expectations,
the non-coreference parsing model described in Section 3.3 and the joint parsing and coreference model
described in Section 4 are trained on version 5 of the coreference-annotated subset of the OntoNotes
corpus (Weischedel et al., 2012), totaling 12,256 sentences, reannotated into a generalized categorial
grammar (Nguyen et al., 2012) to provide valences and operators for referential contexts. In a baseline
model, a variety of control predictors including the non-coreference-aware parser surprisal are then
regressed to self-paced reading times from the Natural Stories (Futrell et al., 2018) corpus using the R
LMER (Bates et al., 2008) package. Then, a full model augments the baseline model with a fixed effect
for the coreference-aware surprisal estimate and a likelihood ratio test (LRT) is performed. By-subject
random effects are included for all predictors in both models.

5.1 Data
Natural Stories consists of 10 naturalistic stories with data from 181 participants who took part in a
self-paced reading experiment.The data are filtered to exclude sentence initial and final words to control for
edge effects, removing sentences for which respondents answered fewer than 4 comprehension questions
correctly, and reading time durations less than 100ms or greater than 3000ms. This results in 768,584
reading time observations which are partitioned into an exploratory set of 383,906 observations and a
held-out set of 384,678 observations. The partition allows for parameter selection on exploratory data and
a single hypothesis test on held-out data, eliminating the need for multiple trials correction.
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Effect β (z) β (ms)
Word Length 7.487 3.22
Story Position -15.47 -41.26
NgramSurp 9.958 5.40
NoCorefSurpS1 0.676 0.118
CorefSurpS1 3.198 0.554

Table 1: Experiment 1 fixed effect estimates for full model on held-out data partition. Positive effects
correspond to increases in reading time duration while negative effects correspond to a decrease in reading
time duration.

5.2 Predictors and Spillover

Low-level control predictors include: Word Length, the length of a word measured in characters, and Story
Position, a measure of the proportion of the story completed, ranging from 0 to 1 and calculated as current
sentence index divided by total sentence count. Story Position is meant to control for order effects and
task learning and habituation (Baayen et al., 2017; Jaffe et al., 2018).

Three surprisal predictors are also included: NgramSurp is the incremental surprisal estimate based
on a 5-gram language model trained on the Gigaword corpus (Graff and Cieri, 2003) using the KenLM
toolkit (Heafield et al., 2013). It is meant to account for word predictability based on local lexical context
alone. NoCorefSurp is the baseline incremental surprisal estimate that comes from the parser described
above in Section 3.3. Surprisal is calculated as the difference in log probability from the previous timestep
to the current timestep as allocated on the beam (see Equation 1). CorefSurp is the incremental surprisal
estimate that comes from augmenting the parser with coreference resolution, as described in Section 4.

Because the effect of interest may be delayed, it is standard psycholinguistic practice to consider
spillover values of predictors from preceding words (Rayner et al., 1983). However, including all plausible
spillover variants for every predictor often leads to identifiability problems in mixed effects modeling
(Shain and Schuler, 2019). For this reason, we select the single spillover position that maximizes effect
magnitude in the exploratory set for each predictor in this study. To optimize, we use a stepwise selection
procedure on the exploratory set starting with control variables and moving on to critical (surprisal)
variables. At each step (predictor), we select the spillover position up to three words away that maximizes
the effect estimate for the predictor, then add the selected spillover variant to the model. This procedure
makes the model maximally parsimonious while enabling us to account for delayed effects. Selection
based on effect size in this mixed model setting focuses the selection procedure on effects that generalize
most strongly across participants. Using this procedure, NgramSurp had the largest fixed effect magnitude
in situ and was added first. Once NgramSurp was in the baseline, the NoCorefSurp fixed effect was
found to be strongest when spilled-over by one (S1). Since CorefSurp should be compared fairly with
NoCorefSurp, it was also spilled over by one position. NoCorefSurp and CorefSurp are consequently
spilled over one word (S1), while all other predictors are not spilled over. Results for both experiments
are shown for held-out data that was not optimized directly for spillover position. All predictors were
z-scored prior to fitting.

5.3 Results

Experiment 1 results show an improvement in fit to reading time data when using a coreference-aware
incremental surprisal estimate. The predictor CorefSurpS1 is statistically significant (p = 5.6e-5) ac-
cording to a likelihood ratio test (LRT) between the ablated and full model, where the full model differs
minimally to include a fixed effect for CorefSurpS1. A positive effect estimate means that increased
surprisal correlates with increased reading time. Table 1 shows the fixed effect estimates for the full model
and Table 2 shows the p-value for the LRT.

One concern is that jointly training coreference with parsing could create noise for basic parsing
decisions if incorrect referential context is used to condition parsing decisions. However, categorial
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Comparison p
CorefSurpS1 over NoCorefSurpS1 5.6e-5
MentionCount over CorefSurpS1 3.4e-5

Table 2: Main result. Hypothesis tests for critical coreference predictors show that CorefSurpS1 is
significant over a baseline model that includes low-level predictors and NoCorefSurpS1. MentionCount is
significant over a baseline model that includes Story Position, NgramSurp, and CorefSurpS1.

Model Training Corpus F-score
NoCoref OntoNotes 77.2
Coref OntoNotes 76.9

Table 3: Categorial grammar parsing performance is comparable between coreference and non-coreference
versions of the parser.

grammar labeled bracketing F scores for the parser3 trained with and without coreference actually show
comparable performance, as seen in Table 3. Additionally, the incremental coreference submodel does
indeed specifically learn coreference information.4

Analysis of residuals further supports the hypothesis that improved fit is driven in part by better
control of coreference effects. Binning reading time residuals by word position, we find that the average
mean residual for word positions following a pronoun is significantly smaller in magnitude in the full
coreference-aware model (-7.67) than in the ablated model (-9.13) (p = 3.79e-48 by paired t-test).5

6 Experiment 2

It is conceivable that expectation alone is sufficient to account for coreference-related processing costs
that have previously been attributed to memory. To test this possibility, we conduct a follow-up analysis in
which we test whether the number of previous mentions of a discourse referent (MentionCount) facilitates
its retrieval from memory, as has been argued by a previous study that did not directly control for the
effects of coreference on expectation (Jaffe et al., 2018). See Table 2 for example values of MentionCount.

Two models are regressed to self-paced reading time data from the NaturalStories corpus, and an LRT
assesses the difference in fit resulting from adding a fixed effect for MentionCount. Following Jaffe et al.
(2018), we restrict the analysis to head words of anaphoric expressions, leaving 54,026 observations in
the held-out data. Using CorefSurpS1 in the baseline means that a fair comparison would also spill over
MentionCount by one, resulting in MentionCountS1.6 Word Length was removed as the weakest baseline
predictor in order to achieve model convergence.

6.1 Results

MentionCount shows a significant facilitation effect over the novel coreference-aware surprisal baseline
(Tables 2 and 4), strengthening evidence for MentionCount as a possible memory effect in self-paced
reading, separate from effects of coreference information on expectation.

3These results are not directly comparable to PTB parsing results due to the finer-grained label set of the categorial grammars
used to define valences and operators for referential contexts. Additionally, when trained on the coreference-annotated subset of
sentences in OntoNotes, the parser is undertrained compared to when training on the entire Treebank (roughly 4x larger).

4For pronouns, anaphoricity detection recall is 81% and the accuracy of correct entity choices when restricted to correctly
recalled pronominal mentions is 42%. Correct entity choice here means choosing any correct antecedent in the chain. For all
words, anaphoricity detection shows recall: 34%, precision: 72%, F1: 40%, and accuracy of correct entity choices when restricted
to correctly recalled mentions is 36%; this corresponds to non-incremental scores of: MUC:23.47, B3:17.66, CEAFm:24.6,
CEAFe:17.8, and BLANC:10.28. Although these are relatively low compared to state-of-the-art coreference models, this model
is incremental and generative (in order to provide surprisal estimates) and is computing joint syntactic probabilities, and the
coreference performance is sufficient to show significant effects.

5By contrast, the average mean residual over all word positions is near zero for both models (full: 0.003, ablated 0.004) and
not significantly different. This is an expected outcome given the definition of linear mixed effects models.

6Using in situ CorefSurp and MentionCount would likely result in a larger effect based on spillover optimization results; the
spilled over results presented in experiment 2 is a more conservative and still significant result.
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Effect β(z) β(ms)
Story Position -11.26 -30.03
NgramSurp 13.11 7.11
CorefSurpS1 3.32 0.58
MentionCountS1 -3.92 -0.20

Table 4: Fixed effects from Experiment 2 full model. MentionCount is significant when added to a strong
baseline including lexical, syntactic and coreference controls. Word Length is omitted for convergence
reasons as the weakest predictor. There are 54,026 observations from 180 subjects. With a range of 1 to
90 in this corpus, MentionCountS1 accounts for approximately 20ms of reading time facilitation at its
max value.

7 Conclusion

In this study, we have argued that expectation-based theories of human sentence processing (Hale, 2001;
Levy, 2008; van Schijndel et al., 2013; Rasmussen and Schuler, 2018) can be augmented to account for
the influence of coreference information on human comprehenders’ expectations about upcoming words.
We proposed a novel coreference-aware generative incremental semantic parser and showed empirically
that coreference awareness explains significant variance in human reading behavior. We nevertheless
showed that a previously proposed effect of coreference information on memory retrieval survives in the
presence of the coreference-aware predictability estimate, indicating that this effect cannot be explained
away by expectation as currently implemented.7 Our results suggest that coreference information may be
used by multiple subroutines in the language comprehension system, both to retrieve likely antecedents
from memory and to inform expectations about upcoming words. This proposal is in line with prior
arguments that both memory and expectation are necessary to account for the full range of human sentence
processing phenomena.
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