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Abstract

In many domains, dialogue systems need to work collaboratively with users to successfully re-
construct the meaning the user had in mind. In this paper, we show how cognitive models
of users’ communicative strategies can be leveraged in a reinforcement learning approach to
dialogue planning to enable interactive systems to give targeted, effective feedback about the
system’s understanding. We describe a prototype system that collaborates on reference tasks
that distinguish arbitrarily varying color patches from similar distractors, and use experiments
with crowd workers and analyses of our learned policies to document that our approach leads
to context-sensitive clarification strategies that focus on key missing information, elicit correct
answers that the system understands, and contribute to increasing dialogue success.

1 Introduction

As dialogue systems move into richer domains, they must increasingly cope with situations where ob-
jects don’t have generally-known names, where people describe concepts in incompatible ways, and
where language use is fundamentally creative and uncertain (Furnas et al., 1987). People succeed in
such situations thanks to their collaborative interactions, which let the speaker and the audience share
responsibility for reaching a satisfactory mutual understanding (Clark, 1996). This paper contributes to
a broader project of building dialogue systems that can do the same.

We focus specifically on the problem of asking targeted, effective clarification questions with creative
language. The difficulty of this problem is highlighted by the interactions shown in Figure 1, taken
from the human-subjects evaluations reported in Section 6. In these dialogues, our system (playing the
role of matcher in the referential communication task of Monroe et al. (2017)) uses varying clarification
questions to follow up initial color descriptions provided by crowd workers (playing the role of director),
and is thereby able to successfully distinguish the target color patches from their contextual distractors.

x0 x1 x2 x0 x1 x2

director: lusher green
matcher: sea green or bright green?
director: sea green
matcher: [Selects]

director: light green
matcher: Do you mean lime green?
director: yes
matcher: [Selects]

Figure 1: Our system (matcher) interacting with crowd workers (director). System and users are pre-
sented with the same color patches in random order; the director must identify x0 in a text chat conversa-
tion. At left, the system’s clarification contrasts two alternative referents (lush, as it happens, is outside
its vocabulary). At right, the system’s clarification redescribes the most likely alternative. The choice is
based on a learned strategy, described in Section 5, that takes into account both the system’s uncertainty
in context and likely patterns of user response. Both interactions here are successful.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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In formulating such questions, the system must resolve the specific uncertainty it faces in context; there
are many options about how to present that uncertainty to users. Meanwhile, depending on the context
and the form and content of the clarification question, the director may not understand the question as
intended—as both human–human conversations in this domain (Monroe et al., 2017) and evaluation data
with our system confirm. Thus, for the system to synthesize a question with a good outcome, it needs
accurate models of the interpretations, interactive strategies and responses of human interlocutors, to
guide its behavior. We meet this challenge by integrating a reinforcement learning approach to dialogue
policy with cognitive models to describe the actions and outcomes available to the system.

In particular, our work relies on a new, probabilistic model of contributions to dialogue, as planned
by the user and understood by the system. We construct this model by analyzing human behavior and
profiling system performance on a benchmark dataset of human–human conversations, drawing on data
collection and modeling work from the recent dialogue literature (Monroe et al., 2017; McMahan and
Stone, 2020). We use this model at planning time to roll out simulated interactions that track user
deliberation, anticipate user dialogue moves at the level of utterance content, and predict task outcomes.
We use deep Q-learning (Mnih et al., 2015) to estimate the effectiveness of different actions as a function
of dialogue state. Our approach culminates in a context-sensitive policy that decides whether and how
to present clarification options to users, contingent on the ambiguity of user input and the predicted
outcomes of different resolution strategies.

Our work is the first to intelligently deploy a range of clarification strategies, selected to reduce sys-
tem uncertainty in a targeted and effective way, and exploiting the creative use of diverse vocabulary
to describe alternatives. We explain the contrast with previous approaches in Section 2. We describe
the experimental framework that we build on and extend in Section 3, and describe our reinforcement
learning approach in Section 4. We demonstrate the effectiveness of our approach with two kinds of
experiments. In Section 5, we analyze reinforcement learning outcomes to document the success of
the learning process and characterize the intuitively satisfying policies that result. In Section 6, we de-
scribe human-subjects evaluations of these strategies that indicate that adaptive clarification improves
the system’s success and that reinforcement learning improves user satisfaction. These experiments also
enable us to quantify the match between simulation predictions and observed human behavior. Together,
these evaluations substantiate the claim that our approach combines effective communication, targeted
clarification, and expressive vocabulary.

2 Related Work

Our work contributes to the general project of grounding in interactive systems—making sure that system
and user have a shared understanding of content in conversation; see Clark and Schaefer (1989) or Traum
(1994). We follow the broadly decision-theoretic approach initiated in the early 2000s by Paek and
Horvitz (2000), Walker (2000) and others.

Grounding has been a major focus of research in spoken dialogue systems because of the uncertainties
associated with speech recognition results, making confirmation strategies particularly important. Opti-
mal decisions have long been guided by user simulations that capture the realistic dynamics of slot filling
dialogues; see Young et al. (2013) for review. However, because we work with written rather than spoken
language, our concern is uncertainty at deeper levels of interpretation, including such new dimensions of
user simulation as the flexible vocabulary and syntax that users adopt, their strategic variability in pro-
ducing and interpreting utterances, and their deliberation in coordinating with their interlocutors. While
a range of work has attempted to model and learn about such referential and speech act ambiguity from
dialogue data, including McRoy and Hirst (1995) and DeVault and Stone (2009), these models have not
been used to drive decision-theoretic approaches to clarification.

Reinforcement learning in open-domain referential communication has instead focused on simple de-
cisions, such as whether to wait or move forward in incremental dialogue (Manuvinakurike et al., 2017)
or asking yes/no questions to resolve ambiguity in visual dialogue (Niu et al., 2019; Shekhar et al., 2019;
Zhang et al., 2018). Corpus-based modeling work has shown, however, that natural strategies for col-
laborative reference are typically substantially more flexible (Clark and Wilkes-Gibbs, 1986; Ginzburg
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and Cooper, 2004; Heeman and Hirst, 1995; Schlangen, 2004). Our work aims to learn correspondingly
more flexible policies. We argue elsewhere (Khalid et al., 2020) that formal models of discourse coher-
ence give important resources to do this. Although we build on that work here, our prior work has not
addressed the problem of learning context-sensitive clarification strategies. Appelgren and Lascarides
(2020) also consider semantic grounding of color terms and exploit formal models of discourse coher-
ence to do so; however, their work so far assumes dialogue policies (and primitive motor skills) to be
fixed and known in advance.

In rolling out dialogue transcripts using detailed models of interaction, our work may recall utterance-
level models of strategic negotiation, such as Jang et al. (2020). An important contrast is that these
models learn by self-play: two learning agents interact with and adapt to one another. This is not a
good fit for human–agent collaboration since agents can easily learn policies by self-play that work well
for other agents but cannot be interpreted by human users. This explains the unique role of cognitive
modeling in our approach.

3 Background: Task, Models and Architecture

We work in a constrained referential communication domain, inspired by the human subjects experiments
of Clark and colleagues (Clark, 1996). Two participants communicate via text chat. In each round,
participants both see a set of three color patches, arrayed in possibly different orders. One participant,
the director, gets an indication of a target patch to identify. The other participant, the matcher, can
click on the patches. The director and matcher can freely exchange text messages to coordinate on the
target object. The round is successful if the matcher selects the indicated target. Monroe et al. (2017)
crowdsource a large dataset of human–human conversations in this setup; we call this the Colors-in-
Context (CIC) dataset. Figure 2 shows a sample interaction from CIC. Note the matcher’s use of a two-
alternative comparative clarification question to pin down a more precise understanding of the director.

3.1 Human Strategies

The complexity of the task depends on the visual difficulty of distinguishing the target color from its
alternatives. Monroe et al. (2017) set up three conditions, including FAR conditions where all the patches
are visually distinctive, CLOSE conditions where all the patches are visually similar, and SPLIT conditions
where the target has a single distractor that’s visually similar. As Figure 2 shows, more challenging
contexts elicit a wide range of utterances, including creative, detailed but nevertheless vague expressions.

We follow McMahan and Stone (2020) in modeling such strategies through cognitive models of choice
under uncertainty. McMahan and Stone (2020) first train a large-scale semantic model of color descrip-
tions using Randall Monroe’s crowdsourced collection of free text descriptions of color patches, as cu-
rated by McMahan and Stone (2015). Then, building on prior work in computational pragmatics, they
describe a number of psychologically-plausible inference methods for predicting the effectiveness of se-
mantic content in identifying a target referent. For example, speakers might try to anticipate and shape
the listener’s interpretive reasoning while drawing on shared and familiar meanings (Monroe and Potts,
2015), speakers might try to signal innovative meanings that would name the target unambiguous (Meo
et al., 2014), or speakers might rely exclusively on established and unambiguous meanings, as in classic

x0 x1 x2

director: the very dull red
matcher: lighter or darker
director: lighter

Figure 2: An example from the Colors in Context (CIC) dataset (Monroe et al., 2017) of the director and
matcher coordinating so that the matcher can click on the correct color patch (x0).
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approaches to generating referring expressions (Dale and Reiter, 1995). Each of these reasoning meth-
ods is implemented as a model that produces a probability distribution over a diverse (but finite) set of
descriptive expressions. McMahan and Stone (2020) fit a latent variable model that best explains the
dataset of Monroe et al. (2017) with a mixture of such strategies. The result is a probability distribution

P(wk|xi,C)

describing the likelihood that a human speaker will use the term wk to identify a target xi in the context C
of a specific set of three patches to be distinguished. McMahan and Stone (2020) have made their code
and models available at https://go.rutgers.edu/ugycm1b0 to enable follow-up work such as
ours. Our system uses their models in three ways: it uses the model to sample likely user utterances
in new dialogue contexts; it uses the model to estimate the likely target objects associated with user
utterances; and it uses the model to plan natural system utterances that would be likely understood.

3.2 System Architecture

Our system tracks the organization and flow of dialogue using a novel formal model of the collaborative
reference task. The principles behind this model are described in full in Khalid et al. (2020). We have
released our implementation, including a pre-trained RL model, at https://go.rutgers.edu/
tc7k14b, to enable replicability of our results. We highlight key aspects of the implementation here.

In brief, unlike approaches based on an information-state update approach (Larsson and Traum, 2000),
collaborative discourse theory (DeVault et al., 2005), or a flat state-space (Heeman, 2007), we model
utterances as making abstract moves that attach into an evolving discourse structure, as in formal ap-
proaches such as SDRT (Lascarides and Asher, 2009). One advantage of this approach is that it enables
the system to represent a hierarchical dialogue structure, which is important for maintaining context
through clarification episodes, without cumbersome logic for plan recognition or stack manipulation.

3.2.1 Understanding Utterances

Our understanding module is based on a probabilistic context free grammar (PCFG): the rules are hand-
crafted based on CIC development data; rule weights are automatically estimated based on the likelihood
that estimated parses identify the actual target in CIC training data. At run time, we use an A* chart parser
to find the most likely parse of an utterance, while drawing on heuristics for partial parsing to handle ut-
terances with unseen vocabulary and syntax. Parses are associated with contributions to logical form that
introduce discourse referents, characterize them in terms of the basic color predications of McMahan
and Stone (2015), and use logical operations and coherence relations to link these predications into a
knowledge graph representing the content of the discourse.

3.2.2 Modeling Conversational State

Utterance understanding feeds into a symbolic representation of discourse content. To track progress on
referential communication, we define a probabilistic semantic evaluation operation to link that discourse
content to the visual context. The input is the structure of speaker commitments. The output is a posterior
distribution over candidate color patches for the target. Following Khalid et al. (2020), this distribution
takes the form of a probability distribution:

P(xi|w0, . . . ,wt−1,wt ,C)

where wt represents the descriptive constraint on the target associated with the tth speaker commitment, xi

ranges over the candidate color patches in the scene, and C indicates the dependency of the calculation on
a specific visual context, in this case given by three color patches. (Note that this posterior is calculated
based purely on the contributions from the director; since the matcher does not know the target, their
contributions typically don’t constrain the referent but instead, as with clarification questions, shape the
course of the conversation.)
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3.2.3 Modeling Color Descriptions
Color descriptions are interpreted using the EM model of McMahan and Stone (2020). In generating
color descriptions of a target in context, we also sample from the distribution generated by the EM
model (which, although sometimes ambiguous, seems to give the most human-like results).

4 Modeling Dialogue Decisions

Like many reinforcement learning frameworks, our approach starts from the models of dialogue state
and action described in Section 4.1 and induces a policy that chooses an action based on dialogue state.
Choice is based on outcome; we use the user simulation described in Section 4.2 to predict the outcomes
of actions, and measure the success of the dialogue based on the reward function described in Section 4.3.
We contrast two configurations: a basic one invites the system to choose whether to ask a confirmatory
clarification question or to proceed with its best interpretation; the more substantive one invites the
system to choose one of three forms of clarification question: a confirmatory clarification question CQ1
involving one description A? (e.g., do you mean the mauve?), a disjunctive clarification question CQ2
involving two alternatives A or B? (e.g., bright purple or pink?), and an exhaustive clarification question
CQ3 describing all the objects in the context A or B or C? (e.g., lime green or grey green or green?).

4.1 State Representation and Action Sets
Our action set includes four meaningful actions for the system: CQ1, CQ2, CQ3 and S (for selection).
Parameters for these actions are instantiated by rules based on the learned models of McMahan and
Stone (2020). In particular, S requires a target object xi. The system chooses xi to maximize the posterior
probability P(xi|w0, . . . ,wt−1,wt ,C) given the dialogue content so far. Meanwhile, the CQ actions require
descriptions wn that identify an appropriate target xi. To compute these descriptions, we use the mixture
model from McMahan and Stone (2020) to compute a probability P(wn|xi,C), exclude terms wk that
already occur in the dialogue, renormalize, and sample from the resulting distribution. Our action set
also includes user actions: I for identifying a target using a description wn; a yes answer Y and a no
answer N for clarification questions, a repeat action R using a description from a previous CQ and an
unrecognized case U where not even a partial interpretation is available.

The state representation used by the RL model for training purposes is a concatenation of posterior
distribution P(xi|w0, . . . ,wt−1,wt ,C), one-hot encoding representation of actions which have been taken
so far, a turn counter, and a Boolean feature representing if the parser was unable to completely parse the
whole sentence. It is given as follows:

st = {∀xiP(xi|w0, . . . ,wt−1,wt ,C) : [a1,a2, ...,at ] : TurnCounter : IncompleteParse}
We train the model to choose between clarification requests and select actions. We also include an invalid
state reached after dialogue exceeds a maximum dialogue length of 15 turns.

4.2 User Simulation
Algorithm 1 shows the logic that we use to simulate the strategy of the user director interacting with the
system. In all cases, the basic flow of the director simulation is the same: the director has to contribute
an appropriate description to try to characterize the target t in the context C corresponding to a sample
interaction d from the CIC dataset. In many cases, this means sampling an appropriate new description
W . The most general way we use is to sample from the EM mixture probability distribution P(W |t,C) as
modeled by McMahan and Stone (2020).

Meanwhile, if the director is responding to a clarification question, the director also has the option of
confirming with the repetition of an element A from the matcher’s proposed descriptions. The candidate
descriptions for this purpose are drawn in an input list L storing the descriptions used in the previous
iteration. The response A is appropriate if the true target t is assigned the highest probability among the
candidates under the EM mixture posterior distribution P(x|A,C). In this case we say t is the referent
of A in C. In the case of perfect communication, the director would simply describe the target using the
first appropriate description from the list L+W . This description is the initial assignment to Content in
Algorithm 1.
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Algorithm 1 Director Simulation. The director’s job is to come up with an appropriate characterization
Content of the target to continue the interaction; Content defaults to a new description W . Complexity
comes from allowing for director errors (via a mistake) and from anticipating system failures (via parse
errors and out-of-vocabulary OOV items).
Require: CIC data item d with context C; original initial director utterance U ; target patch t
Require: Description W of target t in context C (generated from EM model or sampled as U)
Require: Move M and description list L of options from prior utterance (both possibly empty)

After First director turn opportunity:
if U does not have a complete parse then

return Move(U)
else

return Identify(W )

MistakeRates = {CQ1 : 0.35,CQ2 : 0.20,CQ3 : 0.05}
OOVRate = 0.1
Content← First {A in L : referent(A,C) = t}+W
mistake← random()< MistakeRates[M]
if mistake then

Content← random choice (L+W −Content)
if Content =W then

if random()< OOVRate then
return No, Identify(OOV)

else
return No, Identify(W )

else
return R(Content)

Accurately anticipating user behavior, however, requires modeling two crucial possibilities: the system
may not understand the user, and conversely the user may not understand the system. To handle the
possibility where the system does not understand the user, we distinguish the initial contribution and
subsequent ones. For initial contributions, we choose to always retain problematic utterances from the
original CIC data. For subsequent contributions, we have a 10% chance that new descriptions from the
user are an out-of-vocabulary item that leads to a uniform posterior over the targets.

To handle the possibility that the user does not understand the system, we associate an error probability
with each of the clarification questions. We set these probabilities to 0.35, 0.20 and 0.05 in response to
A?, A or B?, and A or B or C?, based on approximate rates in the CIC development data. (In light of the
evaluation results presented in Section 6, it would be interesting to refine this model based on observed
rates when people interact with the system.) In case of error, the director randomly uses one of the
alternative descriptive contents maintained as a candidate by the algorithm.

4.3 Reward Function

Our initial reward function is designed as a proof of concept for our approach, to embody the commonly
observed tradeoff between dialogue length and task success (Walker et al., 1997). Ultimately, we would
like to optimize user satisfaction. User satisfaction is not observable, but it can be approximated, follow-
ing Walker et al. (1997), by correlating user’s reported preferences with other features of the dialogue
such as length and task success, based on empirical observations. However, this requires the kind of eval-
uation results we present in Section 6, which were of course not available during our initial experiments.
Instead, we crafted an artificial reward function with typical characteristics, penalizing both dialogue
length and task failure. In particular, we operationalize dialogue length in terms of the number of distinct
types of referring expressions that are used in the dialogue. Clarification questions may have one, two
or three referring expressions and are penalized accordingly. User answers are penalized only if they
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introduce new referring expressions into the dialogue. Thus, the cost associated with each action and
other rewards and penalties in our reward function is given below:

R =



0.95 Select and Success
−1 Select and Failure
−0.05 Clarification: A?
−0.1 Clarification: A or B?
−0.15 Clarification: A or B or C?
−0.05 New Color Description
−1 Dialogue exceeds maximum length

These individual actions rewards are accumulated as the dialogue proceeds and the model is optimized
to maximize the average cumulative reward.

5 RL Experiment

To optimize the system’s policy, we use the DQN algorithm (Mnih et al., 2015). In DQN, we have
two neural nets: a policy network, θp, and a target network, θt . Both networks estimate the expected
long-term reward of taking action a in state s, but the policy network is adjusted dynamically via back-
propagation during training while the target network updates more slowly.

We use experience replay memory. We repeatedly sample actions as preferred by the policy network
under an ε-greedy policy with exponential decay. This gives a transition from state s to s′ and an imme-
diate reward r(s,a,s′). This transition is inserted into a experience replay buffer so that a mini-batch of
transitions can be sampled from it for training. We make sure each sampled mini-batch always includes
the most recent transition (Zhang and Sutton, 2017).

In training, the target network is used to get an estimate over the future utility of the next state s′,
which is used to minimize the temporal difference error δ of the policy network:

δ = Qθp(s,a)− (r(a)+ γ ∗maxa′∈AQθt (s′,a′)),

where A is the action set and γ is the discount factor; δ drives an update to θp by back-propagation
using the Huber loss. We update the target network after each iteration using a smoothing parameter τ

(Fujimoto et al., 2018):

θ
i+1
t = θ i

p ∗ τ +θ i
t ∗ (1− τ)

5.1 Training details

We trained the model on 5000 conversations from the CIC dataset and used 500 unseen CIC game
samples from the test to evaluate the model performance. Our experience memory is a circular buffer
of size 15,000. We set γ = 0.99, α = 0.000075, τ = 0.1, and use Adam for parameter adjustment with
a mini-batch of size 64. After each pass over the training set, the performance of model over unseen
samples was evaluated and training was stopped when model had not improved for the past 5 epochs
and difference of average loss over unseen samples between consecutive epoch was less than 10−2.
For consecutive iterations when absolute difference of loss over unseen samples was greater than 10−2,
learning rate was decreased by a factor of 0.1.

To train the model for the case where system can ask only one type of clarification question, we
represent both the target and policy networks as linear models. For the multiple clarification strategy
experiment, we represent the networks as two layered networks with ReLU activation applied on the
output of hidden layer.

5.2 Learning Results

We train two types of RL models one which can choose between a Confirmation question and a Select
action, and another which can choose between Three Clarification strategies and a Select action.
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(a) Average Train Loss (b) Average Training Reward (c) Learned Policy

Figure 3: Learning to choose between Confirmation Question and Selection: (a) running average of loss
during training; (b) running average of reward during training; and (c) a map of action decisions by the
matcher in response to the director’s initial utterance, as a function of the interpretive ambiguity across
the three candidate referents.

Learned Policy Always Select Always Clarify
Success Rate 0.92 0.83 0.95
Number of Turns 2.83 2.00 4.44
Average Reward 0.66 0.55 0.56
Clarification Round 1 0.30 0.00 1.00

Table 1: Characteristics and performance for the learned policy in simulation

Choosing Between Confirmation and Selection: As a first case study, we run an RL training session
given the choice of actions CQ1 and S. Figure 3 shows the training loss, average reward progression
during training, and a policy visualization for this experiment.

The policy visualization is particularly indicative of the learned behavior in the experiment and de-
serves close attention. The director’s initial utterance is typically an identification action offering a de-
scription of the target square. All such cases lead to comparable state representations at the next system
move, differing only in the probabilities they assign to the alternative target patches. Since there are three
candidates, the space of probabilities is a 2-simplex, which we visualize here in order of weight creating
an arrowhead shape: the greatest probability p (visualized on the x axis) can range from one third to 1,
the second-largest probability q (visualized on the y axis) must be at least (1− p)/2 but cannot exceed
1− p, and the third probability is 1− p−q. At each point, we can query the policy with corresponding
state representations to get a predicted action. As Figure 3(c) shows, the policy prefers selection at the
tip of the arrow, where the choice is clear, and clarification elsewhere.

Table 1 draws the comparison of performance parameters of the learned policy against two baseline
policies: 1) Always Select at first turn and 2) Always clarify at first turn. The profile of the learned policy
shows that the RL framework learns an appropriate balance between dialogue length and task success to
maximize average reward. This experiment shows that our approach can replicate established methods
for using RL to optimize dialogue thresholds.

Choosing Between Multiple Clarification Strategies: Now we run an RL training session to decide
among all the available actions: CQ1, CQ2, CQ3 and S. Again, we visualize the average train loss,
reward and the learned policy visualization: see Figure 4.

Here too, the policy visualization is particularly informative. As before, the tip of the arrowhead
shows selection. Now there is a peripheral area at the lower right where there is strong evidence for one
dominant interpretation, but still substantial ambiguity: here the system asks the lightweight confirmation
question. Meanwhile, at the top of the wedge, we have cases where the top two referents dominate the
options and the third can be effectively discounted. Here the learned policy asks the two-alternative
clarification question. The remainder of the policy space has sufficient evidence for all the possibilities
that the best option is to use an exhaustive clarification question.

As the visualization shows, the decision thresholds for the different choices combine information
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(a) Average Train Loss (b) Average Training Reward (c) Learned Policy

Figure 4: Plots showing the performance of multi-clarification learned policy: (a) running average of
loss during training; (b) running average of reward during training; and (c) a map of action decisions
by the matcher in response to the director’s initial utterance, as a function of the interpretive ambiguity
across the three candidate referents.

x0 x1 x2

director: Purple
Matcher: Light purple, bright purple or blue?
Director: bright purple
Matcher: [SELECT]

Figure 5: An example conversation of the user with our system that demonstrates the effectiveness of the
use of clarification questions for the successful completion of the task.

from all the candidate referents. As an indication of the responsiveness of these patterns to dialogue
outcomes, Table 2 contrasts the performance of the learned policy in simulation to a baseline strategy
that considers only the top candidate (but which we handcrafted to ensure that it beat uniform baselines):
Select when Pmax >= 0.95, clarify using strategy A? when Pmax >= 0.80, clarify using strategy A or B?
when Pmax >= 0.60 and clarify using strategy A or B or C?

Learned Policy Baseline: Mixed Policy
Success Rate 0.90 0.85

Average Length 2.63 3.70
Average Rewards 0.73 0.58
Clarification Rate 0.24 0.49

Table 2: Baseline multi-clarification strategy versus multi-clarification policy learned through RL.

6 Human Evaluation

We ran human evaluation experiments to assess how effective learned policies were in human interac-
tions. We are interested not only in task success, but in the kinds of questions the system asks, the kinds
of answers it gets, and users’ impressions of the system.

Protocol. This study was conducted with the approval of our human subjects review committee. We
recruited 60 subjects through Amazon Mechanical Turk. Participants were all US citizens, gave written
consent, and were compensated at an estimated rate of USD 15 an hour. Each subject played 4 games
with the system out of which 2 were selected from the close condition, 1 from the far condition and 1
from the split condition. After each trial, subjects were asked to rate the performance of the system on a
scale of 0 to 5 and leave us feedback. We conducted experiments with a baseline system, which clarifies
whenever the probability of the most likely referent is less than 0.95, as well as with the two RL systems
reported in Section 5.
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Results. Figure 5 shows an example conversation of the user with our system that shows how the
use of clarification leads to a natural and effective conversation in this task. The rates of successful
trials are reported in Table 3. We can see from the results of the human evaluation that the single-
clarification system is comparable with the rule-based baseline. Although we see an improvement in
the results of the multi-clarification model, the results of the t-tests show that the differences are not
statistically significant (p > 0.05, t > 0.942). The more capable RL models received increasingly high
overall ratings. The average overall ratings of the baseline model, the RL-SignalClarification model,
and the RL-MultiClarification model are respectively 3.70, 4.33, and 4.66. The differences between the
ratings are statistically significant according to the results of the t-tests (p < 0.01, t > 11.172).

condition
average

far close split

human
evaluation

Baseline 0.947 0.685 0.941 0.816
RL-SingleClarification 0.952 0.750 0.809 0.827
RL-MultiClarification 1.0 0.772 1.0 0.865

Table 3: Success rates in human evaluation trials and the expected success rates.

The distribution of different types of clarification questions in human evaluation trials shows that our
analysis of system policy carries over to live trials. Out of total dialogue moves conducted by the model,
clarification questions were asked 46% of the time. Out of these, the first type of clarification question
“A?” was asked 54.5% of the time and the second and third type appeared 18.2% and 27.3% respectively.
Further, we study whether clarification questions elicit correct answers. In human evaluation trials, the
accuracy of the “A?” clarification question is 57% and the accuracy of the “A or B?” and the “A or B or
C” questions are respectively 71% and 76%. These differences underscore the importance of modeling
human errors at the level of responses to individual dialogue moves.

In comparing the simulation model to actual performance, we observed that further breakdowns are
necessary to capture the inherent task difficulty. The RL model expects relatively flat performance across
the different conditions: 0.884 for close, 0.817 for far and 0.827 for split. In fact the differences are much
greater—a natural direction for improvement as we iterate this methodology.

7 Discussion and Conclusion

In this paper, we have shown how a model of user utterances, capturing word choice and anticipating
both user errors and system difficulties, can be used to optimize the fine-grained interactive strategy to
resolve interpretive ambiguities in referential communication.

The work has a number of limitations. It captures only some of the clarification strategies people ex-
pect in this domain, and doubtless more sophisticated domains involve more complex referential strate-
gies and problem solving. Even for color swatches, an important missing case concerns utterances that
compare referents rather than characterizing them (brighter rather than bright). The user simulation is
only roughly data driven and captures only some of the factors that influence speaker choice; the re-
ward function likewise represents a coarse approximation to user satisfaction. Ultimately, we would like
the system to derive its user models from its own interactions and learn the features that predict user
satisfaction and user choice.

More generally, this work is only an initial step towards more flexible learned models of situated, col-
laborative interaction, and applying the technique to a broader range of problems, including explanation,
diagnosis and negotiation, is crucial for the next generation of dialogue applications. We are hopeful
about exploring such directions in future work.
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