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Abstract

We present a method for completing multilingual translation dictionaries. Our probabilistic ap-
proach can synthesize new word forms, allowing it to operate in settings where correct translations
have not been observed in text (cf. cross-lingual embeddings). In addition, we propose an approxi-
mate Maximum Mutual Information (MMI) decoding objective to further improve performance in
both many-to-one and one-to-one word level translation tasks where we use either multiple input
languages for a single target language or more typical single language pair translation. The model
is trained in a many-to-many setting, where it can leverage information from related languages to
predict words in each of its many target languages. We focus on 6 languages: French, Spanish,
Italian, Portuguese, Romanian, and Turkish. When indirect multilingual information is available,
ensembling with mixture-of-experts as well as incorporating related languages leads to a 27%
relative improvement in whole-word accuracy of predictions over a single-source baseline. To
seed the completion when multilingual data is unavailable, it is better to decode with an MMI
objective.

1 Introduction

Translation matrices, i.e. concept-aligned word lists across the world’s languages (Buck, 1949; Swadesh,
1950; Swadesh, 1952; Swadesh, 1955; Swadesh, 1971; Nastase and Strube, 2013; Wu et al., 2018), enable
several avenues of exploration in computational linguistics and human language technologies. They
strengthen word alignment models, which can in turn be useful for machine translation (Garg et al., 2019),
robust projection of morphosyntactic information across alignments (Yarowsky and Ngai, 2001), and
interlinear glossing. Further, fuller word lists enable neogrammarians to better explore phylogeny and
phonology across languages (Hewson, 1973; Lowe and Mazaudon, 1994).

This work is motivated by the tremendous capacity for humans to generalize during translation,
producing forms for words that have not been seen before. This becomes valuable especially for lower-
frequency words, which may not have been observed in training data but could be inferrable through
regular processes such as cognate relationships with related languages (Mulloni, 2007; Beinborn et al.,
2013), borrowing from neighboring or other influential languages, and even esoteric features like temporal
similarity (Schafer and Yarowsky, 2002; Wijaya et al., 2017) or image similarity (Bergsma and Van Durme,
2011). In this work, we focus on these cognate relationships, because cognates form a large amount of
both core vocabulary (Wu et al., 2020) and technical language (Mulloni, 2007).1 Unlike conventional
bilingual lexicon induction (Rapp, 1995), we do not wish to limit the predictions to words that have been
previously seen in a corpus. Automated methods to induce plausible translations for lexical translation
would significantly reduce the human effort needed for both elicitation (Chelliah, 2001) and building
machine translation systems for less heavily supported languages.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1We use a pragmatic definition of cognacy based on orthographic or phonetic similarity across languages (Kondrak, 2001),
which is adopted by other computational cognate research (Inkpen et al., 2005; Dinu and Ciobanu, 2014; Wu and Yarowsky, 2018).
A stricter linguistic definition demands shared etymology. Ciobanu and Dinu (2015) distinguish between these computationally.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Our approach to the problem of translation matrix completion is a neural model (parameterized
as a character-level sequence-to-sequence network) that handles multiple language pairs, along with
an objective function that maximizes both forward and backward probabilities. By leveraging both
probabilities, we try to maximize the flow of information between both source and target languages,
leading to more accurate model predictions. We find that by both leveraging information about a concept’s
form from related languages and carefully combining language-pair-wise predictions of an unknown
target word, we can improve accuracy by 27% relative to our baseline multilingual neural model.

Train Test

Concept French Spanish Italian Romanian

MONARCH monarque - monarca ??? (monarh)
CAFFEINE caféine cafeı́na caffeina ??? (cofeină)
KNEE genou - - ??? (genunchi)

Table 1: Completion of cognate clusters. Given partially observed cognate clusters, the task is to infer
missing values. “???” denotes words that are held out for testing purposes.

2 Related Work

The task of translation matrix completion, the filling-out of a universal conceptual inventory, has been
approached by three broad classes of methods. The first is to manually construct concept inventories, as in
Swadesh (1950) and followup work. The next is to automatically identify cognate relationships, e.g. in
word lists (Kondrak, 2001; Wijaya et al., 2017; Jäger et al., 2017) or raw text (Koehn and Knight, 2002).
The third, which is our focus, is to generate putative cognates by performing transduction in the form of
sound or orthographic shifts. In this vein, Mann and Yarowsky (2001) generate cognates by a pipeline of
dictionary lookup and probabilistic orthographic shifts. Mulloni (2007) uses an SVM to perform cognate
generation. Ciobanu (2016) uses a CRF with reranking to the same end.

Beinborn et al. (2013) and Wu and Yarowsky (2018) perform translation matrix completion with
extracted cognate lists in 6 and 60 language families respectfully, using character-level statistical machine
translation systems trained on separate source-target language pairs. Wu et al. (2020) performed the
same cognate transliteration task with a multi-source multi-target character-level variant of Johnson et al.
(2017).

We adopt the single system multilingual setup of Wu et al. (2020), which allows sharing information
across language pairs. We also take inspiration from recent successes in other generation tasks. Nishimura
et al. (2018)’s multi-source missing data problem used multiple encoders and a single decoder to leverage
multiple source language inputs, which we build on to employ the multiple sources simultaneously
during inference. Further, we introduce introduce a maximum mutual information (MMI) objective to the
problem, motivated by the translational equivalence of cognates (Hauer and Kondrak, 2020). MMI has
been explored in speech recognition (Bahl et al., 1986; Brown, 1987) and dialog (Li et al., 2016).

Besides MMI, there are a few existing methods for incorporating backward probabilities into the task
of translation. Yee et al. (2019) and Ng et al. (2019) follow a noisy channel approach, using Bayes’ rule
to integrate forward, backward and target language model probabilities. We follow Yee et al. (2019)’s
approach and implement both the MMI objective and an ensemble MMI objective.

3 Translation Matrix Completion

The core of this work is the translation matrix T (partially realized in Table 1), whose m rows are indexed
by concepts c and whose n columns are indexed by languages `. The entries Tc,` in the matrix T are
orthographic sequences drawn from each language’s alphabet Σ` that each form a word or multi-word
expression. These entries may be absent. The goal, then, is to predict a missing entry Tc,` from one or
more translational equivalents Tc,¬`. In this work, we restrict our focus to cognate relationships; the
translational equivalents that represent a concept share surface features.
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4 MMI Reranking

The MMI objective provides a principled way to rerank predicted cognates. We motivate its use with the
notion of translational equivalence (Hauer and Kondrak, 2020)—the idea that two words (and particularly
when we constrain our focus to cognates) should translate to each other, regardless of direction. Particularly,
cognacy is a symmetric relationship. The surface form in each language is a view into the (interlingual)
concept. This is explicitly modeled in the MMI objective, which simultaneously optimizes for both the
forward and backward direction translations. In the context of translation matrix completion, when filling
in a single concept across multiple languages, the translations—and particularly cognate relationships—
should all be equivalent across all languages (as opposed to sentence level translation, where a sentence in
one language can have multiple interpretations in another language).

Predicting cognates de novo is a sequence transduction task akin to transliteration. To perform this
task, it is common to use probabilistic models pθ(T | S) of target sequences T given source sequence S,
controlled by a set of parameters θ. (We will omit the parameter subscript for brevity.) In our case, T
and S are entries in the translation matrix, character sequences from alphabets ΣT and ΣS . The typical
decoding objective is to maximize the conditional log-likelihood, which we will use as a baseline:2

T̂ = arg max
T∈Σ∗

T

log p(T |S). (1)

However, to encourage the symmetric relationship of translational equivalence, we can instead use the
MMI objective:

T̂ = arg max
T∈Σ∗

T

log
p(T, S)

p(S)p(T )
(2)

Li et al. (2016) show that this can be reformulated as:

T̂ = arg max
T∈Σ∗

T

log p(T |S) + log p(S|T ) (3)

and then generalize it with a hyperparameter λ to control the weight of each term:

T̂ = arg max
T∈Σ∗

T

[(1− λ) log p(T |S) + λ log p(S|T )] . (4)

Because we wish to predict a word from its several cognates, we can further generalize Li et al. (2016).
That is, given source words Si for languages i ∈ 1..n− 1, we can find the target translation that maximizes
the mutual information between each source-target language pair:

T̂ = arg max
T

n−1∑
i=1

(1− λ) log p(T |Si) + λ log p(Si|T ) (5)

However, in our reformulated objective function, each term log p(Si|T ) in Equation (3) is intractable
during decoding. It requires knowledge of the complete prediction T , which is unavailable until decoding
has finished. Thus, we approximate this second term by rescoring k-best lists generated by the forward
model p(T |Si). This approximation has previously been used successfully by Li et al. (2016).

5 Experimental Setup

We formulate lexical translation as sequence-to-sequence character translation, using one model capable
of translating between any pair of languages. The input comprises the characters of the word along
with tokens to identify the source and target language. Including the target language token in the input
conditions the multilingual model to generate text in the target language (Johnson et al., 2017). The output
is a character sequence in the target language.

We continue to use this single-model architecture even when using multiple known entries in a row of
the translation matrix (that is, many translations of the word to be predicted). We do this by combining
distributions from each source language in either a mixture or product of experts (Hinton, 2002). We also
compare the two decoding objectives: conditional likelihood and maximum mutual information.

2More precisely, it is typical to decode with a approximate maximization to the argmax such as beam search.
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fr es it ro
(a) NOVEL

fr es it ro
(b) SINGLE

fr es it ro
(c) MULTI

Figure 1: The three experimental data settings, illustrated for a single row of the translation matrix. This
figure assumes that Romanian is the held-out language. Black solid lines show conditioning during
inference. Red dashed lines show relationships seen during training.

Dataset Cognate relationships among European languages are well-studied and broadly verifiable. To
this end, we use a data set from Dinu and Ciobanu (2014) which contains cognates in six languages:
French, Spanish, Italian, Romanian, Portuguese, and Turkish. All use the latin alphabet plus language
specific diacritics. Except for Turkish, these are Romance languages. (In fact, Turkish is not even in
the Indo-European family. Turkish is included because many French and Turkish words were imported
into Romanian, as well as French words into Turkish, leading to cognates between these languages.
The comparable performance thereon shows that the method is not limited to linguistic cognates.) Like
Mulloni (2007), we group words by cognate cluster using an unsupervised clustering algorithm (Wu and
Yarowsky, 2018), which results in 18K clusters covering 16K English concepts. Note that a single concept
may have more than one cognate cluster. We hold out 500 concepts for a validation set and 500 concepts
for a test set. The validation and test data are then used globally for our scenarios defined below.

Experimental scenarios Broadly, the test inputs available to our models at training and test time define
three scenarios, illustrated in Figure 1. In NOVEL, only a single form is present in the row. The model
must predict a cognate for a novel concept—one whose forms it has never seen in training. (This would
be a first step to filling a completely new row.) In the other two scenarios, only a single entry is missing.
In SINGLE, the model has seen other entries in the row during training, including the single source word,
and it must generate the missing form which is a form of indirect supervision. During inference, we only
test for the single (directly supervised) language pair. In MULTI, generation is conditioned on all known
forms of the concept. Comparing NOVEL to SINGLE addresses whether exposure to the concept’s forms is
beneficial (they differ in data availability), and comparing SINGLE to MULTI shows whether the standard
single-input, single-output sequence transduction framework is sufficient for cognate prediction (they
differ in conditioning during inference).

In all scenarios, during training the model has seen all extant entries in the rows from the training set and
no target-language words from the test set. While not all slots in the Cartesian product of data scenarios
(NOVEL, SINGLE, MULTI), decoding objectives (conditional log-likelihood or MMI), and ensembling
methods (mixture or product of experts) are plausible, this product subsumes the experiments we run.

Evaluation methods We report three metrics of cognate generation quality. For all, higher is better. The
first is exact string match accuracy, following Wu and Yarowsky (2018): does the model’s 1-best prediction
correctly predict the unknown word? The others refine the notion of “inaccurate.” Character-level BLEU
using SacreBLEU (Papineni et al., 2002; Post, 2018), awards partial credit for inexact matches. Mean
reciprocal rank (MRR), following Ciobanu (2016), answers: how far down the k-best list is the correct
form?

Experimental details We use a sequence-to-sequence LSTM model with attention (Bahdanau et al.,
2015) from the FAIRSEQ toolkit (Ott et al., 2019).3 We train the model using a hidden size of 1024 in
both the encoder and decoder, and embedding size of 512 with the NAG optimizer (Botev et al., 2017). In
addition, we use a dropout of 0.25, clip gradients to 0.1, and use early stopping with a validation set after
5 epochs of no improvement. All MMI tradeoff λ values are 0.5 unless otherwise specified. We decode
using a beam size of 10 and create k-best lists of length k=100.

3We focus on LSTM models as opposed to Transformer architectures due to their superior performance on grapheme-to-
phoneme conversion, another monotonic sequence transduction task (Gorman et al., 2020).
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ro es fr it po tr

ro 0 46 62 42 45 39

es 55 0 50 61 60 44

fr 58 56 0 53 43 44

it 54 50 67 0 50 30

po 58 66 65 61 0 38

tr 49 34 78 33 53 0

(a) NOVEL

ro es fr it po tr

ro 0 60 62 56 53 48

es 60 0 50 65 69 53

fr 83 62 0 67 48 56

it 56 62 67 0 57 37

po 62 73 65 65 0 49

tr 65 52 78 45 58 0

(b) SINGLE

Table 2: NOVEL (Left), SINGLE (Right), exact-match accuracy percentage without reranking. Source
language on Y-axis. Target language on X-axis.

ro es fr it po tr avg

NOVEL 55 50 64 50 50 39 51

SINGLE 65 62 64 60 57 49 59

NOVEL-MMI 60 53 63 51 53 47 55

SINGLE-MMI 66 62 63 58 59 63 60

MULTI 65 68 55 67 68 55 63

(a) MULTI exact-match accuracy percentage without reranking.
Target language on X-axis.

ro es fr it po tr avg

MULTI 65 68 55 67 68 55 63

MULTI-MMI 62 67 55 66 65 53 61

MULTI-LSE 67 69 55 67 68 55 63

MMI-LSE 64 67 55 66 68 53 62

(b) Comparison between the original objective and a mix-
ture of experts approach on MULTI. MMI-LSE is the
MULTI model with both MMI and LSE.

Table 4: Average exact match for SINGLE models, and exact-match accuracy for MULTI models.

6 Results

How much does seeing the concept help? (NOVEL vs. SINGLE) In Table 2, we report exact-match
accuracy for both NOVEL and SINGLE without reranking. The model sees up to 25% absolute increases
in accuracy between language pairs when tested on data for which it had prior knowledge of non-target-
language concepts. Of particular note, performance increases when translating to and from Turkish once
related language information is incorporated. This implies that the model can effectively leverage data
from outside of the testing language pair, even though the concept has not been seen in the target language.
While a similar finding has been shown in multilingual neural sentence-level translation, this is the first
time that it has been shown for lexical translation.

ACC MRR BLEU

NOVEL 51.47 .60 79.87
SINGLE 59.41 .67 82.61
NOVEL-MMI 54.55 .62 79.77
SINGLE-MMI 59.81 .66 82.28

Table 3: Comparing average Accuracy, MRR,
and BLEU across multiple scenarios.

By aggregating over languages (Table 3), we see
that SINGLE increases performance in all metrics. SIN-
GLE’s higher MRR shows that the model is not only
creating more accurate translations, but the quality of
the translations is also higher due to gold predictions
found higher in the k-best lists. This is also reflected
in the increase in character-level BLEU.

Does using multiple inputs help? (SINGLE vs.
MULTI) The standard encoder-decoder architecture
used for sequence transduction does not lend itself
well to simple integration of multiple input sequences.
Is it enough to pick one source language and use this model as-is (SINGLE), or does the invested effort in
ensembling predictions conditioned on multiple sources (MULTI) pay off?

On average, the MULTI model, with its final predictions determined by highest sum of log-probabilities,∑n
i=1 log p(T |Si), outperforms both NOVEL and SINGLE (Table 4a). In every language besides French,

the MULTI model does just as well if not much better translating into the target language.

How should we weight the ensemble? (MULTI vs MULTI-LSE) We observe one shortcoming in the
MULTI model: in some cases, it chooses to ignore an answer very highly rated among many source
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TARGET LANGUAGE: ROMANIAN
TARGET TEXT: T E L E F O N I S T

MULTI PREDICTED: T E L E F O N I C
Rank Turkish Portuguese Italian Spanish

1 t e l e f o n c t e l e f o n i s t t e l e f o n i s t t e l e f o n i s t
2 t e l e f o n c ă t e l l e f o n i s t t e l l e f o n i s t t e l l e f o n i s t
3 t e l e f o n c u t h e l e f o n i s t t h e l e f o n i s t t h e l e f o n i s t
4 t e l e f o n c o t e l e f o n i s t a t e l e f o n i s t a t e l e f o n i s t a
5 t e l e f o n c a d e l e f o n i s t d e l e f o n i s t d e l e f o n i s t
6 t e l e f o n t, ă t e l e p o n i s t t e l e p o n i s t t e l e p o n i s t
7 t e l e f o n c i e t e l e f u n i s t t e l e f u n i s t t e l e f u n i s t
8 t e l e f o n c i c t e l i f o n i s t t e l i f o n i s t t e l i f o n i s t
9 t e l e f o n c e t e l e f o n i c t e l e f o n i c t e l e f o n i c
10 t e l e f o n c u e t e l e f o n o s t t e l e f o n o s t t e l e f o n o s t
(17) t e l e f o n i c

MULTI-MMI PREDICTED: T E L E F O N I S T
Rank Turkish Portuguese Italian Spanish

1 t e l e f o n c u t e l e f o n i s t t e l e f o n i s t t e l e f o n i s t
2 t e l e f o n c t e l e f o n i s t a t e l e f o n i s t a t e l e f o n i s t a
3 t e l e f o n c o t e l l e f o n i s t t h e l e f o n i s t t e l l e f o n i s t
4 t e l e f o n c ü t h e l e f o n i s t t e l e f o n i s t ă t h e l e f o n i s t
5 t e l e f o n c ă t e l e f f o n i s t t e l e f o n i i s t t e l e f f o n i s t
6 t e l e f o n c v t e l e f o n i s t ă t e l e p h o n i s t t e l e f o n n i s t
7 t e l e f o n q u t e l e f o n n i s t t e l e f u n i s t t e l e f o n i s t ă
8 t e l e f o n c v ă t e l e f o n i i s t t e l e f o n h i s t t e l e f o n i i s t
9 t e l e f o n c a t é l e f o n i s t t e l e f o n i e s t t e l e p h o n i s t
10 t e l e f o n c u e t e l e f o n ı́ s t t é l e f o n i s t t é l e f o n i s t

Table 5: Romanian example of shortcomings of base MULTI objective and how it is inherently corrected
for in MULTI-MMI. The MULTI model incorrectly predicts ”telefonic” due to it being the highest scored
word across all languages; however, in MULTI-MMI this is corrected for by virtue of ”telefonic” not
being predicted by Turkish.

languages. This is due to the ensembling strategy, which determines a prediction’s ensemble score by
summing the log-probabilities of this prediction conditioned on each source language. This style of model
is a product of experts, in which one low score can effectively ‘veto’ a prediction when it is low or absent
on that language’s k-best list. The high weights from other languages cannot salvage it. This motivates us
to explore an alternative ensembling strategy, the mixture of experts. In a mixture of experts approach, we
define the probability of a translation as p(T |S1...n−1) ∝

∏n
i=1 p(T |Si).

For an explicit example, see Table 5, where we present a snippet of the k-best list for the target
Romanian word Telefonist. In the MULTI model, despite having 3 languages agree that Telefonist is the
correct translation, the model instead chooses Telefonic, which shows up much lower (rank 9 in the 3
languages) in their k-best lists. Here, Telefonist doesn’t show up in the Turkish k-best list, so according
to Equation (5), it is given 0% probability, so the combined probability of Telefonist is less than that of
Telefonic. This flaw shows that trying to find a globally optimal solution via a product of experts approach
may not be the correct way of leveraging multiple sources.

One possible solution is to instead sum the probabilities to form a mixture of experts, which is equivalent
to taking the LogSumExp (LSE) of the log-probabilities. Unlike a product of experts, a single model’s
low probability cannot ‘veto’. On average, using LSE improves overall accuracy, at worst it does nothing,
and overall it results in our strongest model, MULTI-LSE (results in Table 4b).

How should we decode? (Log-likelihood vs. MMI objective) Above, we described two decoding
strategies: maximum conditional log-likelihood and maximum mutual information. The latter infuses
a bias toward translational equivalence. Because the model’s training objective is the conditional log-
likeihood, MMI amounts to a rescoring method of the objective. We can decode NOVEL, SINGLE, and
MULTI with either strategy.
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ro es fr it po tr

ro 0 44 54 42 48 45

es 58 0 50 60 65 53

fr 75 62 0 53 52 56

it 56 52 67 0 50 37

po 62 69 65 61 0 46

tr 51 39 78 36 52 0

(a) NOVEL-MMI

ro es fr it po tr

ro 0 51 54 53 56 48

es 59 0 50 68 71 47

fr 92 62 0 60 48 67

it 57 66 67 0 60 48

po 61 75 65 67 0 46

tr 63 55 78 42 60 0

(b) SINGLE-MMI

Table 6: NOVEL-MMI (Left), and SINGLE-MMI (Right), exact-match accuracy percentage without
reranking. Source language on Y-axis. Target language on X-axis.

Target: b i o m Target: e n t e r o l o g i e

Rank MULTI MMI MULTI MMI

1 b i o m b i o m a e n t e r o l o g i e e n t e r o l o g y
2 b i o m a b i o m e n t e r o l o g i c e n t e r o l o g i e
3 b i o m ă b i o m ă a n t e r o l o g i e e n t e r o l o g y e
4 b i o m i c b i o m e e n t e r o l o g y e e n t e r o l o g g i e
5 b i o m a t b i o m o i n t e r o l o g i e e n t e r o l o g i c
6 b i o m a n b i o m i c e n t e r o l o g y e n t e r o l o g g e
7 b i o m e b i o m a s e n t a r o l o g i e e n t e r o l o g i u
8 b i o m o b i o m i e e n t e r o l o g i s t e n t e r o l o g i a n
9 b i o m a r e b i o m á h e n t e r o l o g i e a n t e r o l o g i e
10 b i o m a l b i o m a t e n t e r o l o g i a i n t e r o l o g i e

Target: c i n i s m Target: p s i h o l o g

Rank MULTI MMI MULTI MMI

1 c i n i s m k i n i s m p s i h o l o g p s i c o l o g
2 k i n i s m c i n i s m p s i c o l o g p s i h o l o g
3 c h i n i s m k i n i z m p s i c o l o g i c p s i c o l o g o
4 c i n i s m o c i n i s m o p s i c o l o g ă p s i k o l o g
5 k i n i z m k i n i s m o p s i c o l o g o p s i c h o l o g
6 k i n i s m o c h i n i s m p s i h o l o g i c p s i c o l ó g
7 s c i n i s m c i n i s m ă p s i c h o l o g p s i c o l o g ă
8 q u i n i s m c i n i s m a p s i k o l o g p s i c ó l o g o
9 h i n i s m q u i n i s m p s i c o l ó g p s i c o l o g a
10 c i n i s m ă k i n i s m ă p s i c o l o g a p s i h o l ó g

Table 7: Examples of Turkish to Romanian k-best lists for the SINGLE-MMI model.

ro es fr it po tr

ro 0 87 76 86 83 73

es 84 0 79 91 89 78

fr 89 84 0 88 77 76

it 81 88 82 0 86 70

po 86 90 77 90 0 75

tr 87 78 89 71 84 0

Table 8: SINGLE BLEU without rerank-
ing. Source language on Y-axis. Target
language on X-axis.

On average, using rescoring helps NOVEL, but gives
mixed results for SINGLE (Table 3). In particular for SIN-
GLE, in terms of language-to-language accuracy, there are
only a few language pairs that seem to benefit from rescor-
ing (Table 6b). Table 7 contains explicit examples of how
the model output is reranked for the Turkish–Romanian
language pair under the SINGLE-MMI model. The MMI
model takes the correct translation and swaps it with an-
other translation (that often is rank 2 in the list). This would
mean that the backward probabilities p(T |S) of these words
is larger than their forward counterparts, leading to wrong
translations. In the Turkish–Romanian backward model’s
probabilities (which are the SINGLE results), we see that Romanian-Turkish language pair has very low
accuracy, in addition to a very low BLEU score (Table 8), indicating that the generated translations are
not only wrong but also far from correct. For this reason, rescoring in SINGLE tends to choose suboptimal
candidates as the final translation.
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ro es fr it po tr AVG

MULTI 2.34 2.44 2.34 2.33 2.57 4.28 2.72
MMI 2.22 2.37 2.18 2.24 2.37 4.23 2.60

Table 9: Average Levenshtein distance between top 10 candidates and target word for MULTI and
MULTI-MMI models

Looking at results from NOVEL-MMI, performance on most languages pairs is unchanged, but a few
select language pairs have very large jumps in accuracy (Table 6a). For example, for French-Romanian,
we see large increases in accuracy, amounting to an overall average gain of 17% against the base model
(Table 4a). This implies that many correct translations are highly ranked in the k-best list, and the
backward model merely gives these predictions a boost to the top. Further analysis confirms this: when
we consider the MRR of only words the French Romanian model get wrong with NOVEL, the MRR is
quite high: 0.875. This then indicates that the Romanian backward model is able to find these candidates
and bring them to the top.

Lambda

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

es
fr
it
po
ro
tr
AVG

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
ra
cy

Figure 2: Effects of λ value on target lan-
guage accuracy for MULTI-MMI. λ = 0
represents using only the forward proba-
bility, and λ = 1 represents using only the
backward probability.

Initially, the MULTI-MMI results would suggest that
MMI is not useful in an ensemble setting. On closer inspec-
tion though, there are a few cases that would suggest other-
wise. We previously discussed a flaw with the MULTI model
using a product of experts approach. However, MULTI-
MMI inherently corrects for this (lower half of Table 5).
Here, the MULTI-MMI model correctly chooses Telefonist
as the correct translation. Despite the forward model not
generating it as a candidate, the backward model scored it
high enough to overcome the forward model. In addition, it
is interesting that due to the nature of the backward model,
the predictions that are towards the top of the list are more
similar to the target candidate. We confirm this by comput-
ing the Levenshtein distance between the top 10 candidates
and the target word (Table 9). Another example given in
Table 10 shows a similar phenomenon. While the MULTI

model predicts Fonetista, the MULTI-MMI model predicts
PHONETISTA. We observe an interesting phenomenon: all
words that start with “f” are no longer being scored as highly.
Again, decoding is able to pick out the correct word, even
when that word is not generated by one model.

In the case of MULTI-MMI with LSE, we find that the gains over MULTI-MMI are greater than the
gains between MULTI and MULTI-LSE. We believe that this is due to the backward model acting as a
form of regularization that helps flatten the distribution so that one “expert” does not overpower the rest.
Despite these gains, it still does not make up for the overall loss in accuracy due to the MMI objective.

Finally, we show the effects of λ on accuracy on a per-language basis (Figure 2). In most cases, a
higher λ coincides with decreased performance. However, this does not hold for Romanian, French,
and Turkish. First, for both Italian and Portuguese, we see changing λ does not greatly affect accuracy,
implies that for these languages, the backward model is only acting as additional noise. In this case the
backward distributions are too flat, so adding the backward term is the same as adding a constant to every
candidate’s score. For Turkish and French, as we increase λ, the model accuracy increases. This might
lead one to believe that the backward model is doing all the work, and the forward model is not helping at
all. However, this cannot be true: accuracy plummets when only using the backward term. We conclude
that the forward model instead acts as a base reference, from which the backward model can then fine
tune the results. In the case of Turkish, there seems to be a clear optimal λ of 0.6.
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TARGET LANGUAGE: PORTUGUESE
TARGET TEXT: p h o n e t i s t

MULTI PREDICTED: f o n e t i s t a

Rank Italian Spanish Romanian

1 f o n e t i s t a f o n e t i s t a f o n e t i s t a
2 p h o n e t i s t p h o n e t i s t f o n e t i s t
3 p h o n e t i s t a p h o n e t i s t a f o n e t ı́ s t a
4 f o n e t i s t f o n e t i s t f o n é t i s t a
5 f o n e t ı́ s t a f o n e t ı́ s t a f o n e t i s t o
6 p h o n e t i s t e p h o n e t i s t e f o n a t i s t a
7 p o n e t i s t a p o n e t i s t a f u n e t i s t a
8 p h o n e t i s t o p h o n e t i s t o f o n e t i s t e
9 f o n e t i s t o f o n e t i s t o f o n i t i s t a
10 p h o n é t i s t a p h o n é t i s t a f o n e d i s t a

MULTI-MMI PREDICTED: P h o n e t i s t

Rank Italian Spanish Romanian

1 p h o n e t i s t p h o n e t i s t f o n e t i s t a
2 p h o n e t i s t s p h o n e t i s t s f o n e t i s t
3 p h o n é t i s t p h o n é t i s t f o n é t i s t a
4 p h o n e t ı́ s t p h o n e t i s t o f o n e t ı́ s t a
5 p h ã o n e t i s t p h o n e t ı́ s t f o n e t i s t e
6 p h o n e t i s t o p h ã o n e t i s t f o n ê t i s t a
7 p h o n e t i s t a p h o n e t i s t a f o n e t i s t m
8 p h o n e t i s t e p h o n e t ı́ s t o f o n e t ı́ s t
9 p h o n e t ı́ s t o p h o n e t i ş t f o n e t i s t s
10 p h o n é t i s t a p h o n e t i s t e f o n e t i s t á

Table 10: Portuguese example of how MMI reorders k-best lists to improve accuracy.

7 Future Work

The work we presented here has particular applications to low-resource languages. As it is misguided to
claim that our system is language-agnostic without verifying (Bender, 2009), we plan to expand this work
to other language families, such as the Austronesian phonological cognate dataset of Bouchard-Côté et al.
(2013). Another direction involves experimenting with non-uniform mixing weights that can adaptively
give preference to certain languages, as in Wu and Yarowsky (2018). We would also like to extend this
work to generate cognates of inflected forms, rather than lemmas and without explicit lemmatization
and inflection subcomponents. Unlike existing cross-lingual morphological inflection tasks (McCarthy
et al., 2019; Vylomova et al., 2020) the source and target are in different languages, rather than relying
on transfer. Finally, to assess the downstream value of this linguistic tool, future work could populate a
statistical translation model’s phrase table with predictions from the model.

8 Conclusion

We present a single neural model to handle multilingual many-to-many translation of single words. In
addition, by indirectly leveraging multi-lingual information in sequence-to-sequence models, we can
improve accuracy in the matrix completion task (NOVEL vs SINGLE). By allowing knowledge of concepts
that will eventually be tested on between non-target language pairs, the model indirectly learns the correct
way to translate into an unseen word in the target language. In addition, directly leveraging multiple source
languages improves accuracy on average (by 10% relative to our SINGLE model, which is equivalent to
Wu et al. (2020)). A flaw in the ensemble scoring method is remedied in part by using LSE, and is also
inherently corrected for in the MULTI-MMI model. In addition we show that the MMI objective is a
feasible learning object and in some scenarios gives substantially better than baseline performance. One
such scenario is when multilingual data is unavailable. When such data is available, our MULTI-LSE
model tends to give best performance overall.
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