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Abstract

Soft contextualized data augmentation is a recent method that replaces one-hot representation
of words with soft posterior distributions of an external language model, smoothing the input of
neural machine translation systems. Label smoothing is another effective method that penalizes
over-confident model outputs by discounting some probability mass from the true target word,
smoothing the output of neural machine translation systems. Having the benefit of updating all
word vectors in each optimization step and better regularizing the models, the two smoothing
methods are shown to bring significant improvements in translation performance. In this work,
we study how to best combine the methods and stack the improvements. Specifically, we vary the
prior distributions to smooth with, the hyperparameters that control the smoothing strength, and
the token selection procedures. We conduct extensive experiments on small datasets, evaluate
the recipes on larger datasets, and examine the implications when back-translation is further
used. Our results confirm cumulative improvements when input and output smoothing are used
in combination, giving up to +1.9 BLEU scores on standard machine translation tasks and reveal
reasons why these smoothing methods should be preferred.

1 Introduction

Nowadays, neural network models are commonly used for the task of machine translation. The Trans-
former (Vaswani et al., 2017) architecture is the default choice for many competitive systems (Bojar et
al., 2018; Barrault et al., 2019; Ott et al., 2018). In order to make use of large amount of available data in
the target language, among others, back-translation is a frequently used method (Sennrich et al., 2016a;
Edunov et al., 2018; Graga et al., 2019).

Recently, a method under the name “soft contextualized data augmentation” (Gao et al., 2019) is
introduced and focus on the input side of neural machine translation models. Intuitively, the method
smoothes both the source input and the target input to the model. While one-hot vectors are traditionally
used to feed the word / token information to the network, this method instead uses an external language
model (LM) trained on the parallel data without additional monolingual data, and achieve a “smoother”
input where a “linear interpolation” operation is done on the word embedding matrices, instead of the
usual “table lookup”.

Conceptually, the “input smoothing” method above largely resembles the “label smoothing” method
used in the output side. Initially introduced in the field of image recognition (Szegedy et al., 2016), label
smoothing is included in the original Transformer setup (Vaswani et al., 2017) by default. Deducting
a certain probability mass from the true target and redistributing uniformly across the vocabulary, label
smoothing can also be thought of as penalizing over-confident system outputs.

From here on, to highlight our motivation, we will use “input smoothing” and “output smoothing”
to refer to “soft contextualized data augmentation” and “label smoothing” respectively. In this paper,
our motivation is straight-forward, that we want to carefully look at both input smoothing and output
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smoothing in combination. Specifically, below is a list of important research questions that we wish to
answer:

e Do improvements from input smoothing and output smoothing stack?

e While there are several hyperparameters one can tune, such as the choice for the prior distribution
to smooth with and the discounted probability mass, what is a rather good out-of-the-box recipe?

e Since back-translation is often included in the setup of a competitive neural machine translation
system, what implications are there in terms of using input smoothing and output smoothing in
combination with back-translation?

Consequently, we try to organize the paper in a reader-friendly structure:

1. For methodoloy in Section 3, we formally define the translation models and training criterions with
various smoothing methods.

2. For experimental results in Section 4, we describe our experiment progress following a clear logic:
first tune on a small dataset for fast iteration of experiments, then extend to other and larger datasets
for more robust conclusions. With unified input and output smoothing, we are able to obtain im-
provements up to +1.9 BLEU scores.

3. For anaylses in Section 5, after confirming cumulative improvements with input and output smooth-
ing, also in the case of back-translation, we further give our interpretations why the smoothing
methods work in practice.

2 Related Work

In the recent work by Gao et al. (2019), input smoothing is motivated and introduced. Conceptually,
the parallel data used to train neural machine translation models is only a sampled subset of the total
“true” translation data. Under the name of “soft contextualized data augmentation”, the authors use an
additional LM to give soft distributions across the vocabulary for randomly selected positions. Compared
to previous data augmentaion methods (Iyyer et al., 2015; Xie et al., 2017; Fadaee et al., 2017; Artetxe et
al., 2018; Lample et al., 2018), the soft smoothing method achieves more significant improvements. The
method is quickly adopted and motivates many interesting work, e.g. selecting words to “smooth” with
dependency parsing (Duan et al., 2020), automatic repairing noisy synthetic parallel data (Cheng et al.,
2020), and distilling knowledge from BERT (Devlin et al., 2019) via “text smoothing” (Wu et al., 2020).

On the other hand, output smoothing enjoys a slightly longer history. In this era where neural net-
work are extensively used for modeling, Szegedy et al. (2016) initially introduce the method of “label
smoothing” and Vaswani et al. (2017) include it by default into the Transformer setup. Discounting a
certain probability mass from to one-hot true target distribution, and redistributing uniformly across the
vocabulary, label smoothing wishes to solve the problem of over-fitting and boost adaptability. Relat-
edly, Pereyra et al. (2017) introduces a confidence penalty term, which is also mentioned in Szegedy
et al. (2016), to encourage more even model outputs. Investigating the implications of label smoothing
in terms of properties of learned features and in the case of knowledge distillation, Miiller et al. (2019)
further extends the knowledge of the smoothing method when used at the output side of the network.

To build a competitive machine translation system, the large amount of target-side monolingual data
can not be neglected. Traditionally for statistical machine translation, back-translating target-side mono-
lingual data already sees some use (Huck, 2018). For neural machine translation, Sennrich et al. (2016a)
formally introduces the method of back-translation, which marks an important improvement in the train-
ing pipelines. Edunov et al. (2018) extends the method to the data scenario where huge amounts of
monolingual data is available. While a separate target-to-source back-translation model is commonly
used, how exactly the artificial source-side texts should be generated largely remains a yet-to-resolve
research question. The sampling vs. search comparisons are already made in several works (Edunov et
al., 2018; Imamura et al., 2018; Graca et al., 2019), while Wang et al. (2019) being a most recent work
introducing uncertainty-based confidence estimation as an alternative.
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The term “smoothing” is also traditionally used in the context of count-based language modeling
(Jelinek and Mercer, 1980; Katz, 1987; Church and Gale, 1991; Kneser and Ney, 1995; Chen and
Goodman, 1996). In a broader sense, one-hot vectors commonly used at the input-side and output-side
of neural networks serve as empirical counts to the model. In this interpretation, both input smoothing
and output smoothing are similar in that they both discount certain probability masses from the what
is observed in data, to those rare events (rare combinations of input and output words / tokens). In
other words, the smoothing methods discussed in this paper should have an overall effect of combating
over-fitting and boosting generalization. Closely related, the standing investigations into knowledge
distillation (Hinton et al., 2015; Kim and Rush, 2016; Freitag et al., 2017; Tan et al., 2019) are also
connected works and may be further referred to.

3 Methodology

In this section, we define the translation models and training criterions using different combinations of
smoothing at the input side and output side. The distinction among these models is necessarily made in
order to draw a fair conclusion if the improvements from input and output smoothing can stack.

Consider parallel training data flj = fi...fj.-fs, f € F and e{ = ej...6;...er,e € F used to train
machine translation models, where f and e denote tokens in the source and target vocabularies F' and F,
4, J, 7 and I mark token positions in sentences. A typical neural model parametrized by # can be written
as pg(e;| fi] , ei_l). Note that for all equations in this section, we drop the dependencies on the running
index n in the total number of training sentence pairs N. Of course the criterions need to be normalized
over the sentences accordingly.

3.1 No Smoothing

In the case of no smoothing, the model dependencies on the source input tokens f; and the target input
tokens eil_1 do not need to be modified. At the output side, the one-hot representations of the target token
e; can be denoted with the Kronecker-Delta §. Therefore, the model and the criterion can be defined as
in Equation (1).

p=po (eilf{, ei)

I
L:—%ZZ(S(ei,e)logp (1)

i=1ecFE

Here, L is the training loss to be minimized, I is the target sentencee length in question and ) is a
summation over the vocabulary.
3.2 Input Smoothing

In the case of input smoothing only, the model needs an additional helper model gy, for source input
and an additional helper model g for target input, and additional hyperparameters ® that control the
smoothing process. The cross-entropy training criterion stays the same here. Therefore, the model and
the criterion can be defined as in Equation (2).

p=po (eilf{, € dore, Gigr, P)
I
1
L==72_2 dcie)logp )
1=1 eckE

In Gao et al. (2019), gsc and g are autoregressive LMs trained using only the parallel data. They are
linearly combined with the source and target word vectors to provide smoothed inputs to the network for
those selected tokens specified by ®, replacing the usual embedding matrix lookup.

fj,smoothed = Z QSrc(f’f{_l),]E 3)

fer
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As an example, Equation (3) shows that for a selected position j, all of the word vectors f in the source
vocabulary are combined via the posterior weights from gsee (f|f7 71) to obtain the smoothed source input
vector ﬂsmoothed. For input tokens at the target side eil_l, similar linear combinations can be done as well.
The selection procedure for tokens to smooth is heuristical in Gao et al. (2019). In their case, & = {v},
where 7 is the probability to randomly choose a position in J or I. Recently, Duan et al. (2020) propose
to smartly select words to “smooth” with dependency parsing. Alternatively, one can also select those
positions where the helper models g and g are most uncertain, e.g. determined by the information
entropy (Shannon, 1948). Furthermore, we introduce a smoothing strength hyperparameter A, shown in
Equation (4).
Fismoothed = A Y qse(FIFH)F+ (1= N )
fer
3.3 Output Smoothing

In the case of output smoothing only, the model dependencies do not change from Section 3.1. However,
the one-hot output targets need to be modified. Specifically, a certain probability mass m is deducted
from the one-hot target distribution, and redistributed across the output vocabulary with some helper
model goue. Therefore, the model and the criterion can be defined as in Equation (5).

p=po (el fi, e

I
1
L= =333 (1= m)d(es,e) + maou) log )

i=1eeF
In Vaswani et al. (2017), goy¢ is a simple uniform distribution (zero-gram LM). In our case, following our
previous experience, we examine both zero-gram LM qoy¢ = % and uni-gram LM goy(e€).
3.4 Input Smoothing + Output Smoothing

As illustrated in Figure 1, where f, € and & are word vector parameters, the smoothing methods treats
the underlying architecture of the encoder, decoder and the encoder-decoder attention as black boxes.
Although we only experiment with the Transformer architecture (Vaswani et al., 2017), the smoothing
methods can also be applied to LSTM attention models (Bahdanau et al., 2015).

encoder —— decoder

1 1

Gre — f —— ¢ — € —— G
7 1
# e

Figure 1: An illustration of input smoothing and output smoothing, where encoder and decoder architec-
tures can be thought of as black boxes.

Summarizing discussions in Section 3.1, 3.2 and 3.3, to apply both input smoothing and output
smoothing, the model and criterion can be formulated as in Equation (6).

p=po (eilfi 7" Gore, gt, )

1 I
L==23"3" (1= m)des ) + maou) logp ©

i=1ecE
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Compared to using one-hot vectors everywhere, using smoothed representations have the benefit of com-
bining potentially all word vectors in each update step. It is important to mention that, all smoothing
methods mentioned in this paper are only used during training, while during testing, the one-hot vectors
are again used, following the idea that a model trained with smoothed representation of words should
better generalize during testing. This can be further related to the topic of exposure bias (Schmidt, 2019),
where the training-testing mismatch may lead to unseen or corrupted context during search. Although
we do not conduct experiments to further validate the point, qualitatively we think input smoothing ef-
fectively lets the model see more unique contexts during training, mitigating the exposure bias problem.

A general note about the input smoothing helpers gs.c and gy is that, during training, the context
for a certain position is not limited only to the left. In other words, one does not have to use a left-
to-right LM to obtain the posterior distribution as in Gao et al. (2019). For example, a bi-directional
model which looks at the context at both sides like BERT (Devlin et al., 2019) can also be used, e.g.

¢sre = Po,BERT( f] ff 71, JJ 't1)- Another example is a system combination of a left-to-right and a right-

to-left autoregressive LM, e.g. let gyc = exp <a1 log pg, (fj]ff_l) + an 10gp92(fj’f]J+1)). One can
even go to the extreme and apply position-independent models to smooth the inputs, e.g. a uni-gram LM
or a zero-gram LM, the latter of which is already used for output smoothing in Vaswani et al. (2017).

3.5 Smoothing in Back-translation

To build a competitive neural translation model, back-translation is a commonly used method (Bojar et
al., 2018). Following recent studies, sampling from the back-translation model instead of using beam-
search is a popular alternative to obtain the synthetic source side (Edunov et al., 2018; Imamura et al.,
2018; Graca et al., 2019).

Since the back-translation model is already available, one straightforward extension is to use the the
posterior distributions from the back-translation model as smoothing helpers to smooth the artificial
source side. This also has the benefit of “letting the model see more data” without having to sample
more synthetic source sentences and train for more steps for each epoch. To put it into mathematical
notations, for a synthetic source sentence fi], gt generated by the back-translation model pg g using the
target side monolingual sentence e{ BT the weights for the linear combination of source embeddings are

directly from the back-translation model, i.e. gsc = pgpT( fj7BT\e{7BT, f];%)

4 Experiments

For fast iterations of experiments, we first conduct experiments on a smaller dataset, namely IWSLT2014
German—English (de-en). After obtaining meaningful and conclusive results, we repeat the core exper-
iments and extend to two more small datasets, IWSLT2014 Dutch—English (n1-en) and IWSLT2014
Spanish—English (es-en), plus a larger dataset, WMT2014 English—German (en-de). For the lat-
ter, we look at both the base and big model from the original Transformer paper and evaluate on
newstest2014, newstest2015 and newstest2016.

We implement the various smoothing methods in the fairseq toolkit (Ott et al., 2019) and conduct
experiments with it. For the vocabulary, we use 10,000 and 32,000 merge operations with joint byte
pair encoding from Sennrich et al. (2016b) for IWSLT and WMT respectively. For IWSLT, we largely
follow Gehring et al. (2017), lowercase all sentences, remove extremely long sentence pairs, subsample
sentence pairs from training data as our development set, and concatenate all available development and
test sets. For WMT, we adopt the preprocessing steps in Ott et al. (2018). For all of our experiments,
the three embedding matrices are tied, similar to that in Vaswani et al. (2017). For more details about
preprocessing, we refer the readers to the fairseq source, where the preprocessing scripts are available
and easy to adapt.

During training, we monitor the development set perplexity. After convergence, we further average
the most recent checkpoints for a small performance boost. Note that this checkpoint averaging step is
done for all of the models mentioned in this paper, so it is fair to compare the results to draw conclusions
about smoothing. During beam search, we consistently use a beam size of five for IWSLT and four for
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WMT for fair comparisons to literature. Finally, we report case-insensitive BLEU scores on IWSLT and
case-sensitive BLEU scores on WMT (Papineni et al., 2002) on the test sets.

4.1 Tuning on a Small Dataset

Output smoothing with a zero-gram LM (Vaswani et al., 2017) is known to consistently give performance
improvements. Therefore, our first step is to replicate the results from Gao et al. (2019) about input
smoothing. The original authors tune the v parameter, which controls the probability of each token to
be selected for input smoothing. In our case, we follow their setup and additionally vary X in order
to determine the optimal strength of smoothing. Furthermore, we look at alternative smoothing helper
models to be used as ggc and g, and examine the token selection procedure with information entropy,
as mentioned in Section 3.2.

36 I 30 \

2 o - T TS = Transformer LM negative entropy| 5
U355 e —— o —+— BERT entropy Yoo
@ i @ o baseline without input smoothing @

—back-translation model
--BERT
Transformer LM <
- zero-gram LM \ e~ symmetric input smoothing \
uni-gram LM \ — baseline without input smoothing | |

baseline without input smoothing 5 N best asymmetric input smoothing| *~—

% — .
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v ¥ A

(a) Effect of different input smoothing (b) Effect of preferring the most (c) Effect of smoothing all input tokens
helper model and ~. (un)certain input tokens to smooth. with different smoothing strength.

Figure 2: Experimental results on de-en.

Figure 2a shows our initial results on de-en. Compared to Figure 2 in Gao et al. (2019), the overall
trend of BLEU scores with respect to +y is similar. The large improvements by using input smoothing can
be confirmed. Interestingly, the two position-independent models, zero-gram LM and uni-gram LM, are
superior to the more complex models, giving up to +1.4 BLEU improvements. Note that all the results
in this Figure are obtained with zero-gram LM output smoothing, closely following the setup in Gao
et al. (2019). In preparation for later experiments with back-translation, we also test if only the source
input side is smoothed with a back-translation model, i.e. ggc = pgpr( fj7BT|e{7BT, Vit 1_3%) In this case,
the results are not satisfactory, indicating that even for the synthetic source side, a sim[;ler distribution is
probably more helpful.

We move on to study if the simple heuristic of using information entropy (given by the helper model) to
select input tokens to smooth can also give improvements. For this, we try to be creative and experiment
with ranking the input tokens both by information entropy and negative information entropy. An intuitive
explanation for this distinction can be made by asking the question, should one prioritize on words like
“dog” and “cat”, or words like “the”? In other words, does it matter if the words that the helper model is
most (un)certain about are preferred? Figure 2b reveals the answer. As seen, when only a small fraction
of the input tokens are selected, the performances of both heuristics are close to the baseline. But as soon
as more input tokens are selected, the BLEU scores immediately drop significantly. This indicates that
the default strategy to randomly select tokens to smooth should be preferred.

Since our motivation is have a unified view of input smoothing and output smoothing, aesthetically
there is a major difference between the current input smoothing Gao et al. (2019) and output smoothing
(Vaswani et al., 2017) methods. That is, at the output side, all target tokens are selected for smoothing
with a certain m, but at the input side, only a fraction of source and target input tokens are selected for
smoothing, and also smoothed strongly (A = 1). The absolute “symmetric” case at the input side should
actually be v = 1 and A < 1, meaning we also smooth all of the input tokens with a certain strength.
Taking the best “asymmetric” results so far into account, the behavior of input smoothing with different
A is not ideal. As shown in Figure 2c, the performance with symmetric input smoothing quickly drops
as \ increases, lagging behind asymmetric input smoothing consistently.
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As a short summary, tuning on the small dataset de-en gives us a solid idea that it makes sense to
use a simple enough helper distribution, e.g. zero-gram LM or uni-gram LM, for input smoothing. Our
previous work also tells the same story at the output side. Therefore, from here on, we focus more on the
use of these simple distributions for smoothing more systemically.

4.2 Evaluating on Other Datasets

First, we extend our previous results on the other two IWSLT datasets. In Table 1, the effect of applying
different combinations of oy, gsre and g is shown. From the results, it is clear that compared to the
no smoothing baseline, input smoothing only gives consistent improvements up to around +0.6 BLEU
scores. On the other hand, output smoothing only gives consistent improvements up to +1.0 BLEU
scores, slightly larger than applying input smoothing only. The numbers also confirm that simple helper
distributions are good enough, without the need to train additional complex models. When best setups
of input smoothing and output smoothing are used in combination, cumulative improvements can be
observed, giving up to around +2.0 BLEU scores. To answer the first question brought up in Section 1,
we confirm that the improvements from input smoothing and output smoothing do stack.

Compared to the literature, our baseline BLEU scores have some fluctuations but we think they are
acceptable. For example, in Gao et al. (2019), the baseline and LM-smoothed BLEU scores on es-en
are 41.6 and 42.6, respectively. Our Transformer baseline and simple all-uni-gram-LM smoothed model
are slightly worse, giving 41.3 and 42.4 respectively. However, when comparing de-en, our results are
slightly better than in Gao et al. (2019): 34.9 vs. 34.8 and 36.3 vs. 35.8.

Qout Qsrc Gtet | de-en | nl-en | es-en
- - 34.5 37.3 40.5
Transformer LM | Transformer LM 34.6 37.3 41.0
BERT BERT 34.5 37.4 40.5
" | back-translation model - 34.5 37.5 40.8
zero-gram LM zero-gram LM 34.8 379 41.0
uni-gram LM uni-gram LM 35.1 37.6 41.1
- - 349 37.7 41.3
Transformer LM | Transformer LM 36.1 38.2 41.6
zero-gram LM BERT BERT 35.6 38.3 41.4
back-translation model - 35.6 38.1 41.5
zero-gram LM zero-gram LM 36.3 38.9 424
uni-gram LM uni-gram LM 36.4 39.1 422
uni-gram LM - - 35.6 38.1 41.5
uni-gram LM uni-gram LM 36.3 39.1 424
Table 1: Smoothing with different gout, gsre and g combinations on IWSLT.
architecture Qout Gsre & Grgt newstest
2014 | 2015 | 2016
- 27.4 294 33.8
Transformer base | & LM zero-gram LM | 28.5 30.2 34.7
uni-gram LM | uni-gram LM | 28.5 30.6 | 348
Transformer big | zero-gram LM Zero-gram Ll\/i ;gg g(l)g ;ig

Table 2: Smoothing with different gout, gsre and gigy combinations on WMT.

In Table 2, the results on WMT are shown. Compared to using output smoothing only, roughly +1.0
BLEU scores can also be obtained when combining input smoothing and output smoothing. Generally
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speaking, a regularization method during training should help less on larger datasets. In this case, com-
pared to those corresponding results on IWSLT, where approximately +1.2 BLEU scores are obtained,
the degradation in improvement exists, but is not drastic.

Considering Table 1 and Table 2 together, empirical evidence shows that smoothing both the input and
output tokens to a Transformer model helps to improve translation performance significantly. To answer
the second question brought up in Section 1, a simple and effective recipe is to use zero-gram LM or
uni-gram LM helper models for qour, gsre and ger, without the need to train external complex models,
saving both energy and time of the machine translation practitioner.

4.3 Utilizing Target-Side Monolingual Data

Here, we further look at the implications when back-translation is used. Figure 3a shows the BLEU
scores of Transformer baseline system and a system where zero-gram LMs are used for gout, gsre and gug,
also on the synthetic source sentences generated by the back-translation process. It is worth mentioning
that for the Transformer baseline, the synthetic source sentences are sampled and not the hypotheses
resulting from beam search. As the figure shows, the improvements seen before sustain when more
target-side monolingual data is included in training. To answer the third question brought up in Section
1, the use of both input smoothing and output smoothing under the scope of back-translation should be
preferred as well.

As a side experiment, we also test the robustness of the improvements against the beam size hyperpa-
rameter. As can be seen in Figure 3b, both the baseline and our model improve when a larger beam size
is used in search. The improvements largely sustains and is rather robust with different hyperparameter
choices in this regard.

36 2951
355 — 29
35 1 285 f

345 o8l /,H,«

34 r 275
/ /

/
—<all-zero-gram-LM smoothing 4 —-all-zero-gram-LM smoothing

. . n . 27 . . n n .

0 2 4 6 8 0 2 4 6 8 10

BLEU
®
|
BLEU
J

33.5

number of target-side monolingual sentences (M)

(a) Effect of all-zero-gram-LM smoothing at both in-
put and output sides, when back-translation is used,
onnewstestl6.

beam size

(b) Effect of all-zero-gram-LM smoothing at both in-
put and output sides, when using different beam sizes,
onnewstests2014.

Figure 3: Examining beam search and back-translation.

5 Analyses

So far, it is clear that significant empirical improvements can be obtained with both input smoothing and
output smoothing. A natural question is then, why? Our interpretation of the improvements lies in how
frequent the word vectors are updated during the training process.

In Chen et al. (2018), the authors stress that word vector parameters make up the lion’s share in long
short-term memory (Hochreiter and Schmidhuber, 1997) neural network models, where the percent-
age even go up to 90% for a model with a large vocabulary. In our case, the percentage is lower for
Transformer models because byte pair encoding reduces vocabulary size drastically, but the word vector
parameters still make up a significant portion of total parameter count. For example, for Transformer
base with three-way shared vocabulary and embeddings on en-de, the percentage is still 27.5%.

When no smoothing is applied, each word vector in the input embedding matrices gets updated pre-
cisely the empirical count of the word times for each training epoch, because the one-hot vectors result
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in simple table lookups. With input smoothing, if the helper model’s posterior probability distribution
covers the whole vocabulary, this number increases to the empirical count of all tokens in the training
corpus. At the output side, the non-target tokens also show up in the denominator in the softmax calcu-
lation, complicating things a bit. One can nonetheless calculate the partial derivatives of the local losses
without and with output smoothing, L; 1o smooth and L; smooth, ON a certain non-target token e,, e.g. with
zero-gram LM output smoothing shown in Equation 7.

exp(eTh
L; no smooth = — log p<ZZ)
OLj no smooth h i
%ﬂm _ 7 eXp(eLTh)

exp(eTh m exn(&Th
Lion = (1= mlog S - 5 g S
€FE
aLl smooth h T m
€, A eXp(eL ) ‘E‘ ( )

Here, h denotes the context vector for position ¢ and Z denotes the denominator which is a sum over all
logits. It is clear that for non-target output word embeddings, the magnitude of the gradient increases
with an increasing m. In other words, output smoothing tends to update the non-target words more
drastically compared to when no smoothing is applied. In summary, both input embeddings and out-
put embeddings, including those embeddings of infrequent tokens, are more strongly updated with the
smoothing methods, explaining why these smoothing methods work well in practice.

Finally, we plot the negative log-probabilities with re- 1
spect to the frequency of words. In Figure 4, for frequent
tokens as well as the infrequent tokens, our model is able ;
to perform better than the Transformer baseline. Notice
that the negative log-probabilities become more noisy as
the tokens appear less often in the data, which is expected.

o
o
o

°
>
S

N

o
~
w

empirical frequency in test data
negative log-probability

6 Conclusion

o
)
S

In this paper, we combine input smoothing and output 0 ‘ ‘ ‘ : ;
smoothing for neural machine translation. We confirm " ikenindo ke by roquoneyn v
strong cumulative improvements of the two methods, giv-
ing up to +1.9 BLEU scores in our experiments. Contrary
to prior work, we find that simply smoothing everywhere
with position-independant language models such as a zero-
gram langauge model already gives significant improvements, setting us free from pre-training complex
external helper models. We show that the improvements also sustain in case of back-translation. Finally,
we explain that the key to the improvements lies in the increased update frequency of word vectors. Since
the benefits almost come for free, we encourage more usage as well as more theoretical justifications of
such smoothing methods, e.g. making symmetric smoothing work.

Figure 4: Scoring test tokens with Trans-
former baseline and all-zero-gram-LM
smoothed model on newstest2014.
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