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Abstract

Neural machine translation (NMT) models usually suffer from catastrophic forgetting during
continual training where the models tend to gradually forget previously learned knowledge and
swing to fit the newly added data which may have a different distribution, e.g. a different domain.
Although many methods have been proposed to solve this problem, we cannot get to know what
causes this phenomenon yet. Under the background of domain adaptation, we investigate the
cause of catastrophic forgetting from the perspectives of modules and parameters (neurons). The
investigation on the modules of the NMT model shows that some modules have tight relation
with the general-domain knowledge while some other modules are more essential in the domain
adaptation. And the investigation on the parameters shows that some parameters are important for
both the general-domain and in-domain translation and the great change of them during continual
training brings about the performance decline in general-domain. We conduct experiments across
different language pairs and domains to ensure the validity and reliability of our findings.

1 Introduction

Neural machine translation (NMT) models (Kalchbrenner and Blunsom, 2013; Cho et al., 2014;
Sutskever et al., 2014; Bahdanau et al., 2015; Gehring et al., 2017; Vaswani et al., 2017) have achieved
state-of-the-art results and have been widely used in many fields. Due to numerous parameters, NMT
models can only play to their advantages based on large-scale training data. However, in practical ap-
plications, NMT models often need to perform translation for some specific domain with only a small
quantity of in-domain data available. In this situation, continual training (Luong and Manning, 2015),
which is also referred to as fine-tuning, is often employed to improve the in-domain translation per-
formance. In this method, the model is first trained with large-scale general-domain training data and
then continually trained with the in-domain data. With this method, the in-domain performance can be
improved greatly, but unfortunately, the general-domain performance decline significantly, since NMT
models tend to overfit to frequent observations (e.g. words, word co-occurrences, translation patterns)
in the in-domain data but forget previously learned knowledge. This phenomenon is called catastrophic
forgetting. Figure 1 shows the performance trends on the in-domain and general-domain.

Many methods have been proposed to address the catastrophic forgetting problem under the scheme
of fine-tuning. Freitag and Al-Onaizan (2016) ensembles the general-domain model and the fine-tuned
model together so that the integrated model can consider both domains. Dakwale and Monz (2017) in-
troduces domain-specific output layers for both of the domains and thus the domain-specific features of
the two domains can be well preserved. Thompson et al. (2019), Barone et al. (2017), and Khayrallah
et al. (2018) propose regularization-based methods that introduce an additional loss to the original ob-
jective to help the model trade off between the general-domain and in-domain. All these methods show
their effectiveness and have mitigated the performance decline on general-domain, but we still don’t
know what happened inside the model during continual training and why these methods can alleviate the
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Figure 1: Performance trend for continual training of NMT on the Chinese to English translation task.
The model is first trained with the news domain data and then continually trained with the laws do-
main data (from epoch 0). The y-axis represents the BLEU scores on the test sets of the corresponding
domains.

catastrophic forgetting problem. The study on these can help to understand the working mechanism of
continual training and inspire more effective solutions to the problem in return.

Given above, in this paper, we focus on the catastrophic forgetting phenomenon and investigate the
roles of different model parts during continual training. To this end, we explore the model from the
granularities of modules and parameters (neurons). In the module analyzing experiments, we operate the
model in two different ways, by freezing one particular module or freezing the whole model except for
this module. We find that different modules preserve knowledge for different domains. In the parameter
analyzing experiments, we erase parameters according to their importance which is evaluated by the
Taylor expansion-based method (Molchanov et al., 2017) . According to the experimental results, we
find that some parameters are important for both of the general-domain and in-domain and meanwhile
they change greatly during domain adaptation which may result in catastrophic forgetting. To ensure
the validity and reliability of the findings, we conduct experiments over different language pairs and
domains.

Our main contributions are summarized as follows:

• We propose two analyzing methods to explore the model from the perspectives of modules and
parameters, which can help us understand the cause of catastrophic forgetting during continual
training.
• We find that some modules tend to maintain the general-domain knowledge while some modules

are more essential for adapting to the in-domain.
• We find that some parameters are important for both of the general-domain and in-domain, and their

over-change in values may result in performance slipping.

2 Background

In our work, we apply our method under the framework of Transformer (Vaswani et al., 2017) which
will be briefly introduced here. We will also introduce the terminology and symbols used in the rest of
the paper. We denote the input sequence of symbols as x = (x1, . . . , xJ), the ground-truth sequence as
y∗ = (y∗1, . . . , y

∗
I∗) and the translation as y = (y1, . . . , yI).

The Encoder The encoder is composed of N identical layers. Each layer has two sublayers. The
first is a multi-head self-attention sublayer (abbreviated as SA) and the second is a fully connected
feed-forward network, named FFN sublayer (abbreviated as FFN). Both of the sublayers are followed
by a residual connection operation and a layer normalization operation. The input sequence x will be
first fed into the embedding layer (abbreviated as Emb) and converted to a sequence of vectors Ex =
[Ex[x1]; . . . ;Ex[xJ ]] where Ex[xj ] is the sum of word embedding and position embedding of the source
word xj . Then, this input sequence of vectors will be fed into the encoder and the output of the N -th
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layer is taken as source hidden states and we denote it as H.
The Decoder The decoder is also composed of N identical layers. In addition to the same kinds of

two sublayers in each encoder layer, a third sublayer is inserted between them, named cross-attention
sublayer (abbreviated as CA), which performs multi-head attention over the output of the encoder stack.
The final output of the N -th layer gives the target hidden states, denoted as S = [s1; . . . ; sI ], where si is
the hidden states of yi.

The Objective The output of the decoder will be fed into the output layer (abbreviated as Out) and we
can get the predicted probability of the i-th target word over the target vocabulary by performing a linear
transformation and a softmax operation to the target hidden states:

p(yi|y<i,x) ∝ exp(Wosi + bo) (1)

where Wo ∈ Rdmodel×|Vt| is the parameter matrix of the output layer, and |Vt| is the size of target
vocabulary. The model is optimized by minimizing a cross-entropy loss which maximizes the probability
of the ground-truth sequence with the teacher-forcing training:

L = −1

I

I∑
i=1

log p(y∗i |y<i,x) (2)

where I is the length of the target sentence. A detailed description can be found in Vaswani et al. (2017).

3 Module Analysis

In this work, we will investigate the cause of the catastrophic forgetting phenomenon from the perspec-
tives of modules and parameters. As we know, the structure and the various kinds of modules in it has a
large impact on translation. In this section, therefore, we will study the function of different modules by
isolating them during continual training. The study on the parameters will be discussed in Section 4.

3.1 Analyzing Strategies

We propose two training strategies during the continual training process. The first is to freeze the target
module but update the rest of the model, called module-frozen training; the second, in contrast, is to
update the target module but freeze the rest of the model, called module-updated training. In this way,
we can estimate the ability of each module for preserving the general-domain knowledge and for adapting
to the in-domain. In addition, we group the target module based on two criteria. The first is based on
its position, e.g., we freeze or update all the sublayers in the first two layers of the encoder or the last
two layers of the decoder; the second is based on its type, e.g., we freeze or update the self-attention
sublayers or the cross-attention sublayers in all the decoder layers.

3.2 Experiments

3.2.1 Data Preparing
We conduct experiments on the following data sets across different languages and domains.

Chinese→English. For this task, general-domain data is from the LDC corpus1 that contains 1.25M
sentence pairs. The LDC data is mainly related to the News domain. MT06 and MT02 are chosen as the
development and test data, respectively. We choose the parallel sentences with the domain label Laws
from the UM-Corpus (Tian et al., 2014) as our in-domain data. We filter out repeated sentences and
chose 206K, 2K, and 2K sentences randomly as our training, development, and test data, respectively.
We tokenize and lowercase the English sentences with Moses2 scripts. For the Chinese data, we perform
word segmentation by using Stanford Segmenter3.

1The corpora include LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08, and
LDC2005T06.

2http://www.statmt.org/moses/
3https://nlp.stanford.edu/
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Figure 2: The BLEU of the experiments based on the position of the target module when only freezing
the target module (left blue bars) or only updating the target module (right red bars). The first three
subfigures (a-c) represent the general-domain BLEU and the last three subfigures (d-f) represent the in-
domain BLEU. The horizontal solid line in each subfigure denotes the BLEU before continual training
while the dashed line denotes the BLEU after continual training. The x-axis denotes the module at
different positions, e.g., ’Enc 01’ denotes the first two layers of the encoder, ’Dec out’ denotes the
output layer of the decoder.

English→French. For this task, we choose 600K sentences randomly from the WMT 2014 corpus as
our general-domain data, which are mainly related to the News domain. We choose newsdev2013 and
newstest2013 as our development and test data, respectively. The in-domain data with 53K sentences is
from WMT 2019, and it is mainly related to the Biomedical domain. We choose 1K and 1K sentences
randomly from the corpora as our development and test data, respectively. We tokenize and truecase the
corpora.

English→German. For this task, the general-domain data is from the WMT 2016 English to German
translation task which is mainly News texts. It contains about 4.5M sentence pairs. We choose the
news-test 2013 for validation and news-test 2014 for the test. For the in-domain data, we use the parallel
training data from the IWSLT 2015 which is mainly from the Spoken domain. It contains about 194K
sentences. We choose the 2012dev for validation and 2013tst for the test. We tokenize and truecase the
corpora.

Besides, integrating operations of 32K, 16K, and 30K are performed to learn BPE (Sennrich et al.,
2016) on the general-domain data and then applied to both the general-domain and in-domain data. The
dictionaries are also built based on the general-domain data.

3.2.2 Systems

We use the open-source toolkit called Fairseq-py (Ott et al., 2019) released by Facebook as our Trans-
former system. We train the model with two sets of parameters. For the quantitatively analyzing experi-
ments, the system is implemented as the base model configuration in Vaswani et al. (2017) strictly. For
the visualizing experiments, we employ a tiny setting: the embedding size is set to 32, the FFN size is
set to 64, and the rest is the same with the base model.
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Figure 3: The BLEU of the experiments based on the type of the target module. The x-axis denotes
the module of different types, where ’Emb’, ’SA’, ’CA’, and ’FFN’ denote the embedding layer, self-
attention sublayer, cross-attention sublayer, and FFN sublayer, respectively. The rest of the denotations
is just the same as in Figure 2.

3.2.3 The Results Based on the Position of the Target Module
The results of the experiments, which freeze or update the target module based on its position, are shown
in Figure 2, where the left blue bars correspond to the results of the module-frozen experiments and the
right red bars correspond to the results of module-updated experiments. As can be seen from the results
of the module-frozen experiments, for different positions of the encoder and decoder, freezing any single
module has a small impact on both the general-domain and in-domain BLEU, when compared with
the normal continual training. However, freezing the output layer of the decoder can better alleviate
the catastrophic forgetting phenomenon without degrading the in-domain BLEU, which implies that the
output layer is more capable of maintaining general-domain knowledge. As for the results of the module-
updated experiments, firstly, only updating the encoder can bring larger improvements on the in-domain
compared with only updating the decoder, which implies that the encoder is more essential for adapting
to the in-domain. Secondly, higher layers of the decoder tend to adapt to the in-domain, which, however,
is not the case in the encoder. Lastly, only updating the output layer results in a bad performance on both
domains, which indicates that the output layer highly depends on its surrounding modules.

3.2.4 The Results Based on the Type of the Target Module
Figure 3 shows the results of the experiments based on the type. The results of the module-frozen ex-
periments (the left solid bars) show that freezing any type of module has little effect on the final results.
As for the results of the module-updated experiments (the right dotted bars), we find that both the en-
coder embedding layer and the decoder embedding layer tend to preserve the general-domain knowledge,
meanwhile, they are bad at adapting to the in-domain. In contrast, the FFN layers are more essential for
adapting to the in-domain, though it is also easier for them to cause the catastrophic forgetting problem
in general-domain.

3.3 Summary and Inspiration

In this section, we analyze the impacts of different modules on the general-domain and in-domain trans-
lation during continual training. we find that some modules, e.g., the output layer, the embedding layers,
tend to preserve the general-domain knowledge; some modules, e.g., the encoder layers, the FFN layers,
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Figure 4: BLEU scores of the parameter erasure experiments with the model trained and tested on
the general-domain. The blue curve with triangles stands for erasing parameters in descending order
according to the importance while the orange curve with dots stands for erasing parameters in ascending
order.

are more essential for adapting to the in-domain. Inspired by our findings, we can freeze those modules
which are more important for general-domain during continual training to avoid catastrophic forgetting.
To reduce the potential loss on the in-domain translation, we can extend the size of those frozen layers
or add domain-specific layers parallel with them, and only update those newly added parameters during
continual training.

4 Parameter Analysis

When the structure of the NMT model is fixed, the performance is determined by its parameters. During
continual training, the change of the training data distribution makes the distribution of model parameters
vary accordingly, which leads to the variation of translation performance on both the general-domain and
in-domain. Motivated by this, therefore, we want to investigate the changing trend of model parameters
during continual training, aiming to figure out the influence of different parameters. Intuitively, different
parameters may have different importance for the NMT model, thus we firstly propose a method for eval-
uating the importance of parameters in this section. Then, we erase the model parameters increasingly
according to the importance to see the change of BLEU scores. Finally, we visualize the parameters and
measure their variations in the values to establish the connection between the parameter variation and the
catastrophic forgetting phenomenon.

4.1 Importance Evaluation Method
To evaluate the importance of each parameter, we adopt a criterion based on the Taylor expan-
sion (Molchanov et al., 2017), where we directly approximate the change in loss when removing a
particular parameter. Let hi be the output produced from parameter i and H represents the set of other
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parameters. Assuming the independence of each parameter in the model, the change of loss when re-
moving a certain parameter can be represented as:

|∆L(hi)| = |L(H,hi = 0)− L(H,hi)| (3)

where L(H,hi = 0) is the loss value if the parameter i is pruned and L(H,hi) is the loss if it is not
pruned. For the function L(H,hi), its Taylor expansion at point hi = a is:

L(H,hi) =
N∑

n=0

Ln(H, a)

n!
(hi − a)n +RN (hi) (4)

where Ln(H, a) is the n-th derivative of L(H,hi) evaluated at point a and Rn(hi) is n-th remainder.
Then, approximating L(H,hi = 0) with a first-order Taylor polynomial where hi equals zero, we get:

L(H,hi = 0) = L(H,hi)−
∂L(H,hi)

∂hi
hi −R1(hi) (5)

The remainder R1 can be represented in the form of Lagrange:

R1(hi) =
∂2L(H,hi)

∂2δhi
h2i , (6)

where δ ∈ (0, 1). Considering the use of ReLU activation function in the model, the first derivative of
loss function tends to be constant, so the second order term tends to be zero in the end of training. Thus,
we can ignore the remainder and get the importance evaluation function as follows:

ΘTE(hi) = |∆L(hi)| =
∣∣∣∣∂L(H,hi)

∂hi
hi

∣∣∣∣ (7)

Intuitively, this criterion disvalues the parameters that have an almost flat gradient of the objective func-
tion. In practice, we need to accumulate the product of the activation and the gradient of the objective
function w.r.t to the activation, which is easily computed during back-propagation. Finally, the evaluation
function is shown as:

ΘTE(hli) =
1

T

∑
t

∣∣∣∣δL(H,hli)

δhli
hli

∣∣∣∣ , (8)

where hli is the activation value of the i-th parameter of l-th module and T is the number of the training
examples. The criterion is computed on the all training data and averaged over T .

4.2 Parameter Erasure

To prove that different parameters are indeed different in importance and verify the effectiveness of the
proposed criterion for evaluating the importance of parameters, we conduct parameter erasure experi-
ments to see the change of BLEU scores. For each parameter matrix W of the model, we rank all the
parameters in it according to the proposed criterion and get the ranked list. Then we erase the model pa-
rameters (i.e., masking them to zero) increasingly according to the ranked list in ascending or descending
order. If the evaluation results are correct, erasing the parameters in the descending order will hurt the
translation quality more than erasing in the ascending order.

4.3 Experiments

The training data and experimental systems are just the same as in section 3.2.
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(a) Zh-En WSA
E0

(b) En-Fr WFFN
E2

(c) En-De WCA
D0

(d) Zh-En WCA
D1

(e) En-Fr WSA
D0

(f) En-De WFFN
D2

Figure 5: Illustration of parameter importance before and after continual training. Each subfigure rep-
resents a parameter matrix of the model, where each square in it represents a parameter. The lighter the
square in color, the more important the parameter.

4.3.1 Parameter Erasure for the General-Domain Model
Figure 4 shows part of the results of the parameter erasure experiments for all the three language pairs on
the general-domain test sets. In most cases, not surprisingly, both of the two curves decrease monoton-
ically and the curve of erasing the parameters in ascending order according to the importance is higher
than the other one. Based on this, we can conclude that some parameters are indeed more important than
others for the whole model and have a larger impact on translation quality. In some cases, however, we
also found some abnormal results: the two curves intersect or the curve is not monotonous. Although the
independence of each parameter has been assumed during the derivation of the proposed method, it isn’t
always this case in practice, which will lead to these abnormal results. Overall, the proposed criterion can
identify those important parameters in most cases, so that we can make use of it to analyze the behavior
of the parameters during the continual training process.

4.3.2 Parameter Importance Visualization
The distribution of parameter importance can be seen as an important feature, which can imply the inner
change of the model. Therefore we try to visualize the importance distribution before and after continual
training. To achieve this, we retrain models with the tiny parameter setting, considering the convenience
for presentation. The model is first trained with the general-domain data and we get the importance
evaluation matrices for all the modules, which are computed using the general-domain data. Then the
model is continually trained with the in-domain data and we also get the importance evaluation matrices
for the in-domain, which, in contrast, are computed with the in-domain data. These two matrices are
then visualized with heatmaps.

Figure 5 shows the results. Firstly, the more important parameters, which are lighter in the figures,
lie in certain rows or columns of the target parameter matrix. Considering that the parameters in the
same row or column are connected to the same neurons in the former or latter layer, we argue that some
neurons are more important for the model, which is consistent with the conclusion of Bau et al. (2019).
Secondly, the parameter distribution before and after continual training is very similar; most of the lighter
squares in the left pictures are still lighter than other squares in the right pictures. This observation result
indicates that the parameters which are important for the general-domain translation still have larger
impacts on the in-domain translation after the continual learning process in most cases. Lastly, there
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(a) Zh-En (b) En-Fr (c) En-De

Figure 6: The value change of the model parameters. The x-axis stands for the importance interval of the
model before fine-tuning, e.g., [20%, 30%) means the importance of parameters is between top 20% to
30%. The y-axis represents the Euclidean distance between the parameters of the model before and after
continual training.

are still lots of less important parameters after continual training, which have limited influence on the
in-domain translation.

4.3.3 Parameter Variation across Domains
From the results above, we find that the important parameters for the general-domain still have large
impacts on the in-domain translation after continual training. To figure out the variation of parameters
with different importance, we compute the average Euclidean distance for all the parameters in the model
before and after the continual learning process:

distance =
1

N

N∑
i=1

√
(WG

i −WI
i)
2, (9)

where N denotes the number of different modules in the model; Wi denotes the parameter matrix for
the i-th module; G and I denote the general-domain and in-domain, respectively. Then all the parameters
in each module are ranked and divided into ten groups according to their importance. The result of the
average Euclidean distance of parameters in each importance interval is shown in Figure 6. We find that
the top parameters change more greatly than the less important parameters. Considering their impacts on
the translation, we conclude that it is because of the excessive change of the important parameters that
causes the catastrophic forgetting phenomenon.

4.4 Summary and Inspiration

In this section, we propose a method for evaluating the parameter importance. Then through the param-
eter erasure experiments, we find that some parameters are more important and have a greater influence
on the output. Next based on the importance distribution visualization results, we find that some param-
eters are important for both of the domains. Finally, the average Euclidean distance of model parameters
before and after continual learning is calculated and we find that the important parameters change more
greatly, which causes the catastrophic forgetting problem. Inspired by our findings, we can freeze part of
those important parameters during continual training to avoid catastrophic forgetting. Besides, we can
retrain those unimportant parameters to further improve the in-domain translation.

5 Related Work

Analyzing Work Recently, much work has been concerned with analyzing and evaluating the NMT
model from different perspectives. Shi et al. (2016) investigates how NMT models output target strings
of appropriate lengths. Ding et al. (2017) analyzes the contribution of each contextual word to arbitrary
hidden states. Qi et al. (2018) analyzes when the pre-trained word embeddings can help in NMT tasks.
Voita et al. (2019) analyzes the importance of different attention heads. Bau et al. (2019) investigates the
importance and function of different neurons in NMT. Wuebker et al. (2018) finds that a large proportion
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of model parameters can be frozen during adaptation with minimal reduction in translation quality by
encouraging structured sparsity. Wang and Sennrich (2020) links the exposure bias problem (Ranzato et
al., 2016; Shao et al., 2018; Zhang et al., 2019) to the phenomenon of NMT tends to generate halluci-
nations under domain shift. Gu et al. (2020) finds that the NMT tends to generate more high-frequency
tokens and less low-frequency tokens than reference. Compared with them, this work mainly focuses on
investigating the functions of the different modules and parameters in the NMT model during continual
training. In this sense, the work of Thompson et al. (2018) is most related to ours, which tries to under-
stand the effectiveness of continued training for improving the in-domain performance. Compared with
their work, our work also explores the cause of the catastrophic forgetting problem in general-domain.
Besides, our work also analyzes the performance of NMT at the neuron (parameter) level.

Continual Training Continual training, which is also referred to as fine-tuning, is widely used in NMT
for the domain adaptation task. Luong and Manning (2015) fine tunes the general-domain model with the
in-domain data. Chu et al. (2017) fine tunes the model with the mix of the general-domain data and over-
sampled in-domain data. Khayrallah et al. (2018) and Thompson et al. (2019) add regularization terms
to let the model parameters stay close to their original values. Dakwale and Monz (2017) minimizes the
cross-entropy between the output distribution of the general-domain model and the fine-tuned model. Gu
et al. (2019) adds a discriminator to help preserve the domain-shared features and fine tunes the whole
model on the mixed training data. Jiang et al. (2020) proposes to obtain the word representations by
mixing their embedding in individual domains based on the domain proportions. Compared with them,
our work pays attention to exploring the inner change of the model during continual training as well as
the cause of the catastrophic forgetting phenomenon.

6 Conclusion

In this work, we focus on the catastrophic forgetting phenomenon of NMT and aim to find the inner
reasons for this. Under the background of domain adaptation, we propose two analyzing methods from
the perspectives of modules and parameters (neurons) and conduct experiments across different language
pairs and domains. We find that some modules tend to maintain the general-domain knowledge while
some modules tend to adapt to the in-domain; we also find that some parameters are more important for
both the general-domain and in-domain translation and the change of them brings about the performance
decline in general-domain. Based on our findings, we have proposed several ideas that may help improve
the vanilla continual training method. We will prove the effectiveness of these ideas in future work.
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