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Abstract

In this study, linguistic knowledge at different levels are incorporated into the neural machine
translation (NMT) framework to improve translation quality for language pairs with extremely
limited data. Integrating manually designed or automatically extracted features into the NMT
framework is known to be beneficial. However, this study emphasizes that the relevance of the
features is crucial to the performance. Specifically, we propose two methods, 1) self relevance
and 2) word-based relevance, to improve the representation of features for NMT. Experiments
are conducted on translation tasks from English to eight Asian languages, with no more than
twenty thousand sentences for training. The proposed methods improve translation quality for
all tasks by up to 3.09 BLEU points. Discussions with visualization provide the explainability
of the proposed methods where we show that the relevance methods provide weights to features
thereby enhancing their impact on low-resource machine translation.

1 Introduction

Neural machine translation (NMT) (Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al., 2017; Ki-
taev et al., 2020) is known to give state-of-the-art translation quality for language pairs having abundance
of parallel corpora. In case of resource poor scenarios, additional translation knowledge is acquired either
through transfer learning in the form of pre-trained model parameters or by supplying external monolin-
gual corpora. However, exploiting linguistic information effectively in low-resource conditions is still
an under-researched field. Annotating the source side with various syntactic features e.g. part-of-speech
(POS), lemma, dependency labels etc. can help in accurate translation when either a surface word is
polysemous i.e. having multiple senses on varying context or the same word form is shared by different
root words due to the inflectional nature of the language. Hence, for morphologically rich languages,
ideally, the use of language specific knowledge should improve the translation quality.

To the best of our knowledge, there are not an adequate amount of research works on effectively in-
corporating arbitrary syntactic information into NMT. One possible reason could be that in high resource
scenario the network learns from the large amount of training data to handle the problem caused by
polysemy and morphological variants. In this direction, the notable works are done by (Sennrich and
Haddow, 2016; Hoang et al., 2016; Li et al., 2018). Sennrich and Haddow (2016) incorporated several
features at the source side by employing a separate embedding matrix for each component of a source
token including the word and its associated features. Finally, all embeddings are concatenated to enrich
the representation. Inspired by this work, Hoang et al. (2016) developed a method to process feature
sequences of the source sentence by separate recurrent neural networks (RNNs) and combined the out-
put of all RNNs using a hybrid global-local attention strategy. Li et al. (2018) proposed a complex RNN
architecture to model source-side linguistic knowledge. Their approach, at the first level, passes the
morphological properties of each word sequentially through an RNN to build a composite representation
of the features. These representations are further encoded by an RNN at the sentence level. Very re-
cently, Pan et al. (2020) came up with a dual-source Transformer model to process words and features in
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isolation. The output of the word Transformer and the feature Transformer are fed to the decoder by two
encoder-decoder attention sub-layers put in a series. All the models discussed so far ignore to consider
whether a particular feature of a given word is really relevant for the translation task.

The above point motivates us to conduct the present research. We hypothesize that only including the
features alongside the word by using a generalized embedding layer or forming a composite represen-
tation by taking all features together does not exploit the features completely. There should be some
mechanism which can justify the relationship between a word and its supporting features as well. Driven
by this idea, we come up with two simple strategies which measure the relevance of the word and the fea-
ture embeddings obtained from the output of the embedding layers. The first one is self relevance which
considers the relevance of a feature with respect to itself. We apply an attention function to the feature
embedding, which in turn generates a mask determining the importance of that feature. Finally, the mask
is applied on the feature to effectuate the attention. Our second approach considers the feature relevance
with respect to the corresponding word which is the most vital component of a source token. In this case,
the attention function operates on a word-feature pair and returns the mask determining the word-based
relevance of the input feature. For experimentation, we choose the Transformer network of Vaswani
et al. (2017) and assess our proposed techniques on eight low-resource language pairs having diverse
morphological variations taken from the Asian Language Treebank (Riza et al., 2016). Our hypothesis
is empirically validated showing the fruitfulness of the relevance checking mechanisms in low-resource
scenario. We achieve up to 3.09 BLEU points gain over the standard baseline models of Sennrich and
Haddow (2016) and Vaswani et al. (2017). In the next section, the related works are briefly described.

2 Related Works

Incorporating morphological information for NMT is a challenging area of research. A significant num-
ber of works involve dependency structure at the source side (Eriguchi et al., 2016; Shi et al., 2016;
Bastings et al., 2017; Chen et al., 2017; Hashimoto and Tsuruoka, 2017; Li et al., 2017; Wu et al., 2018;
Zhang et al., 2019). Eriguchi et al. (2016) proposed a syntax-aware encoding mechanism that encodes the
source sentence maintaining the hierarchy of its dependency tree. A Long-Short-Term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997) is used to encode the constituent phrases recursively in
bottom-up direction. On the contrary, Shi et al. (2016) claimed that an RNN encoder can capture the
inherent syntactic properties automatically from a source sentence as a by-product of training. They
used a multi-layer LSTM and found that its different layers represent different types of syntax. This
work gives the intuition that using linguistic prior at the source side may be redundant for translation.
Following Eriguchi et al. (2016), Chen et al. (2017) presented a bidirectional tree encoder which builds
the sentence representation considering both top-down and bottom-up directions of the dependency tree.
A different approach was taken by Bastings et al. (2017) to propose a syntactic graph-convolutional
network for encoding source sentences. Hashimoto and Tsuruoka (2017) came up with a model that
learns the latent graph structure of a source sentence optimized by the translation objective. In the study
by Li et al. (2017), the parse tree of the source sentence are linearized to label sequence. Next, three
different encoding strategies using RNN namely parallel, hierarchical and mixed, are tried to integrate
the dependency information. Wu et al. (2018) used dependency information of both the source and the
target languages. As their model needs multiple encoders and decoders, so it is not worthy for use
under low-resource condition. In the work of Zhang et al. (2019), the authors employed a supervised
encoder-decoder dependency parser and used the outputs from the encoder as a syntax-aware represen-
tations of words, which in turn, are concatenated to the input embeddings of the translation model. Most
recently, Bugliarello and Okazaki (2020) proposed dependency-aware self-attention in the Transformer
that needs no extra parameter. For a pivot word, its self-attention scores with other words are weighted
considering their distances from the dependency parent of the pivot word.

Apart from the above works, there are some studies which use the factors in the target side (Burlot et
al., 2017; Garcia-Martinez et al., 2016a; Garcia-Martinez et al., 2016b). In general, their approach is to
predict the roots and other morphological tags of the target words instead of producing the surface forms.
Additionally, a morphological analyzer is applied for the reinflection task.
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3 NMT Architecture

We employ the Transformer architecture for execution of our experiments. It is a specific type of encoder-
decoder neural model that can be applied for sequence modelling tasks. Unlike RNN, the working policy
of the Transformer does not rely on recurrence and hence, is much more parallelizable. As in general
encoding-decoding framework, the learned embeddings of the source sentence s = (s1, ..., S;,) are
mapped by the encoder to continuous representations z = (z1, ..., 2z, ). Each representation z; contains
the contextual information about its surrounding tokens. To keep track of the order of the sequence,
positional encodings are added to the input embeddings.

The encoder comprises a stack of identical layers each having two sub-layers - multi-head self-
attention and position-wise fully connected feed-forward network. For each position in the source sen-
tence, the self-attention block calculates a probability distribution over all positions. This distribution
is then used to make a new representation of the reference position. Multi-head self-attention repeats
the process a number of times resulting multiple representations in different subspaces. Finally, all of
them are concatenated and the output is passed to the fully connected feed-forward network which con-
tains two linear layers with ReLU activation function in between. As no recurrence is involved, so the
encoding process can be parallelized during both training and inference phases.

The decoder is also made of a stack of identical layers having multi-head self-attention and feed-
forward networks with the addition of an extra computation called multi-head encoder-decoder attention
over the output of the encoder stack. Here, the self-attention sub-layer is masked so that at a particular
position it would not be able to consider the subsequent positions. This must be enforced for preserving
the auto-regressive property. All sub-layers in the encoder and the decoder stacks have residual connec-
tions followed by layer normalization.

3.1 Generalized Source Embedding for Input Features

Sennrich and Haddow (2016) incorporated arbitrary morphological features through a generalized source
embedding. Formally, let each token in the source language sentences be annotated with K number of
features . For the k'" feature, V}, and F}, denote the vocabulary and the feature embedding matrix respec-
tively. E;, € R%*IVkl where d}, is the dimension of the feature embedding. Finally, the embeddings of
all features are concatenated to form the generalized embedding of a source token. For the source token
S;, its embedding e; is formulated as follows.

eik = Ersiy

ei = |[1_ e

Where s;; denotes the k" feature of s; and e;;, denotes the vector embedding of the feature s;i. || is the
vector concatenation operation. Hence, the dimension of the resultant vector e; is Zle dy,. Finally, e;
is given as input to the encoder.

3.2 The Proposed Relevance Checking Methods

Our hypothesis is that only including the features through separate embedding matrices and then, com-
bining all together by concatenation does not exploit the features completely. It would be beneficial to
weight the feature vectors according to their relevance in translation. Now, the challenge is how to esti-
mate the relevance of each feature component in order to improve the translation quality. To address this
issue, we propose two empirical methods - self relevance and word-based relevance, which are described
below.

3.2.1 Self Relevance

Let among K feature components of the source token s; = (S;1,...,S;k), the first component s;;
denotes the corresponding word! and the rest of them from s;5 to s;x denote various morphological

properties of s;;. The corresponding vector embeddings are e;1,...,e;x. The self relevance of each

'In case of subword-NMT, the corresponding subword is the main component of a source token.
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Figure 2: Word-based relevance of a feature.

component (including the word and its all morphological features) of the source token s; is evaluated as
follows. For k € {1,...,K},

mask;i, = sigmoid(Wie;)

ey, = masky, © e,

Where W), € R%*% is the weight matrix for the k*" feature, and © is the element-wise multiplication
operation between two vectors. The feature embedding e;;, is given input to a linear layer with output
dimension same as that of e;;, followed by sigmoid activation function. The output is a mask vector
with values in the range between 0 to 1, which signifies the self relevance of e;;. Next, the element-
wise multiplication operation between the input embedding and the output mask produces the modified
feature embedding e, . Finally, all modified feature embeddings €}, . .., €] are concatenated to make
the resultant embedding e, which is given as input to the Transformer encoder. In this way the features
can determine their own impact on the final word representation. The process is depicted in Figure 1.

K
62 = ||k:16§k

3.2.2 Word-based Relevance

This strategy evaluates the relevance of a morphological feature with respect to its corresponding word.
Fork € {2,3,..., K}, the word-based relevance of the embedding e;;, is measured with respect to e;;.
Formally,

mask;, = sigmoid(Wi(e|eix))
el = mask, © e

Where W, € R%*(d1+dk) jg the weight matrix. While the self relevance measures the importance of a
feature with respect to itself, in contrast the word-based relevance gives priority to the word component.
The final embedding €] of the source token s; is obtained by concatenating €}, .. ., €}, with e;;. We
present the word-based relevance checking mechanism in Figure 2.

¢; = ealleipll - - lleir
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Original sentence: there is no show without winners !

Subwords: there is no show  without win@@ ners !
Lemmas: there be no show  without winner winner !
Subword tags: S S S S S B E S
POS: EX VBZ DT NN IN NNS NNS

Dep: expl root det nsubj prep pobj pobj punct

Table 1: Annotation of a sample source sentence.

4 Experiments

Datasets and Preprocessing: As mentioned in section 1, we carry out our experimentation on eight
language pairs under low-resource scenario. For all of them, the source side is fixed to English (en) and
the target sides are Bengali (bg), Filipino (fi), Hindi (hi), Indonesian (id), Khmer (khm), Malay (ms),
Myanmar (my), and Vietnamese (vi). The datasets are taken from the multi-lingual, multi-parallel Asian
Language Treebank (Riza et al., 2016)2. We use the official train/dev/test split of the datasets having
18,088/1,000/1, 018 parallel sentences respectively. The following preprocessing operations are done
on the data. Out of the eight reference Asian languages, the Khmer data is unsegmented. So we use the
nova annotation system for Khmer segmentation (Ding et al., 2018) and tokenization. The remaining
languages are tokenized to separate the delimiters and the punctuation symbols.

Linguistic Features Used: We use three linguistic features of the source language in our experiments.
They are - (i) lemma, (77) POS tag and (7i7) dependency label. For morphologically rich languages where
roots have multiple variants, there tagging the raw text with these three features helps to disambiguate
homonymy and polysemy. In particular, if experiments are done at subword-level, then annotating each
subword with the word-level features is expected to feed into the model’s performance. As the source
side is fixed to English, we annotate the English data using Stanford CoreNLP (Manning et al., 2014)
toolkit. The vocabulary sizes of the three features are 26, 414; 43 and 45 respectively.

Subword Tags: All experiments are done at subword-level to reduce the out-of-vocabulary cases during
inference. We segment the datasets into subword units using byte-pair encoding (BPE) (Sennrich et al.,
2016) technique keeping the number of merge operations to be 10, 000. Note that in BPE segmentation
there is no explicit word boundary and a symbol may form either of the beginning/inside/end/whole of
a word. Hence, following Sennrich and Haddow (2016), we add an extra feature to each subword in the
source side in addition to the three linguistic features stated above. Every subword is annotated with
one of the four markers - B (beginning), I (inside), E (end), S (single). The annotation is done with the
help of the script provided in the corresponding url®>. Table 1 depicts the structure of a sample source
sentence.

Baselines: We compare our proposed self relevance and word-based relevance methods with the follow-
ing baselines.

o Transformer-base: It is the base configuration as proposed in (Vaswani et al., 2017). The experi-
ments are done at subword-level without using external linguistic knowledge.

e Concat: This is the technique proposed by Sennrich and Haddow (2016). The embeddings of a
subword and its supporting features are concatenated. Sennrich and Haddow (2016) reported the
results on the RNN model. Whereas, we apply the same strategy on the Transformer.

e Add: Subword and feature embeddings are added to form the resultant embedding i.e. e; =
Zszl Cik-

e Linear: The embeddings are passed through a linear transformation followed by a ReLU activation.
Here, e; =ReLU(W (||_, e;x)) where W is the weight matrix.

http://www2.nict.go.jp/astrec—att/member/mutiyama/ALT/
*https://github.com/rsennrich/wmtl6-scripts/blob/master/preprocess/conll_to_
factors.py
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Subword Lemma Subwordtag POS Dep

Base 512 - -
Concat 250 250 6 15 15
Add 512 512 512 512 512
Linear 250 250 6 15 15
Self-rel 250 250 6 15 15
Word-rel 250 250 6 15 15

Table 2: Embedding dimensions of the components.

en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi
Base 497 2559 18.54 2793 2288 3240 1393 2499
Concat 5.56 2375 20.69 27.99 23.53 3292 1492  26.50
Add 4.66 2202 1545 2478 21.65 3045 11.86 22.78
Linear 489 2426 20.65 27.17 2342 32.64 1379 2536
Self-rel | 6.10 2626 21.27 3041 24.76 3471 16.53 27.74
Word-rel | 6.25  26.01 21.63 2653 25.13 33.20 15.62 27.66

Baseline models

Proposed models

Table 3: BLEU scores of the models for all reference language pairs.

Hyperparameters: We use the OpenNMT PyTorch implementation (Klein et al., 2017) to build our
models and mostly follow the Transformer-base hyperparameter setting mentioned there*. There are 6
layers in each of the encoder and the decoder stacks. The number of multi-heads used is 8. The dimension
of the fully-connected-feed-forward network is 2, 048. Total number of training steps is set to 200, 000
and after each 10,000 steps validation checking is performed. We use the early-stopping strategy in
training. If the validation accuracy does not improve for 5 consecutive validation checking steps, then
training stops. Following (Sennrich and Haddow, 2016), we keep the dimension of the final embedding
which is fed to the Transformer, comparable across the models without and with using features so that
the number of model parameters does not influence the performance. In Table 2 we list the embedding
dimensions of the subword and its features for all experimental settings. Inference is done keeping beam
size equal to 5. We carry out our experiments using single GPU with the specification of 32 GB Tesla
V100-SXM2.

4.1 Results

BLEU Scores: We present the BLEU scores® (Papineni et al., 2002) of our proposed methods and
the baselines in Table 3. The scores are computed after undoing the BPE segmentation of the trans-
lations. For en-fi, en-id, en-ms, en-my and en-vi, the self relevance checking strategy yields the best
results (26.26, 30.41, 34.71, 16.53 and 27.74 respectively). For en-bg, en-hi and en-khm, the word-
based relevance method outperforms others (6.25, 21.63 and 25.13 respectively). Compared to the base
configuration, maximum improvement is obtained for en-hi (18.54 — 21.63) and minimum for en-fi
(25.59 — 26.26). Compared to (Sennrich and Haddow, 2016) i.e. the concat combination, we get max-
imum BLEU points gain for en-fi (23.75 — 26.26) and minimum for en-bg (5.56 — 6.25). We also
check the significance test® and found that these improvements are statistically significant with p-value
< 0.05. Overall, the two methods proposed in this work come out to be the top two performers for seven
out of the eight language pairs except en-id. These results unquestionably prove the effectiveness of the
self relevance and the word-based relevance checking strategies.

Comparison of Model Parameters: Table 4 provides the number of model parameters in each con-
figuration. The base model and the addition combination require the lowest and the highest number of
parameters respectively. The remaining configurations (linear, concat, self relevance and word-based
relevance) use comparable number of parameters. Larger models in low-resource settings like ours often
overfit leading to low translation quality. Thus, trivially increasing the number of parameters should not

‘nttps://opennmt.net/OpenNMT-py/FAQ.html
SWe calculate BLEU scores using the script multi-bleu.perl obtained from Moses.
SSignificance test is done using the script bootstrap-hypothesis-difference-significance.pl obtained from Moses.
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en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi
Base 59.45 59.42 5934 59.25 58.98 59.20 59.12  59.02
Concat 66.94 6691 66.83 66.73 66.40 66.67 66.59 6649
Add 73.02 7299 7292 7282 7251 72777 T72.69 7259
Linear 67.23 67.20 67.11 67.02 66.69 66.95 66.88 66.78
Self-rel | 67.07 67.04 67.04 66.86 66.53 66.79 66.72  66.62
Word-rel | 67.08 67.05 67.05 66.87 66.54 66.80 66.73 66.63
Table 4: Number of model parameters (in million) for all configurations.
en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi
Base 410.33 34.62 7444 30.13 46.21 23.18 13240 36.23
Concat 287.32 36.44 6456 31.10 45.62 2120 103.8 36.71
Add 367.07 45.63 92.06 37.90 55091 25.27 157.25 4197
Linear 34991 43.06 79.22 36.01 52.36 23.24 131.80 39.97
Self-rel | 274.51 34.60 60.09 29.80 43.95 19.15 9791 35.12
Word-rel | 268.32 3592 6091 28.52 44.18 20.13 97.63 33.84

Table 5: Best validation set perplexity for all reference language pairs.

be the reason behind any improvements in translation quality. Despite the increase in the number of
parameters, our methods show strong improvements in BLEU scores. Therefore, we can say that the
performance gain is due to our proposed methods and not because of the excess parameters.
Best Validation Set Perplexity: We report the best validation set perplexity of the models in addition to
BLEU scores. Table 5 shows the results. Perplexity of a translation model indicates that given a source
sentence, how good the model is at predicting the reference translation. So, we assess all models in terms
of perplexity to test whether our proposed methods are really effective or not. As the lower perplexity
suggests the better model, hence Table 5 shows that the self relevance gives the best scores for en-fi, en-
hi, en-khm and en-ms. For the rest of the language pairs, the word-based relevance outperforms others.
Overall, these two methods are the top two performers for all language-pairs except en-fi.
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Table 6: Training time vs. validation set perplexity plot.

To ensure that the best validation set perplexity obtained is not just due to randomness, we plot the
training time (number of batches processed) vs. perplexity on the validation set for initial 10, 000 batches
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of training with the interval of 100 batches. The experiments are done taking the best models in terms of
BLEU score obtained for every individual language pair (self relevance model for en-fi, en-id, en-ms, en-
my, en-vi and word-based relevance model en-bg, en-hi, en-khm as shown in Table 3) and we compare
their performances with the base and the concat configurations. The plots are given in Tables 6 and 7.
During initial 2,000 — 2, 500 batches all models exhibit nearly the equal perplexity for each language
pair. After that the differences are prominent showing that the relevance-based models yield the lowest
perplexity. This is clearly seen in the plots of en-bg, en-hi, en-ms, en-my and en-vi. For en-fi, en-id
and en-khm, though the baseline systems are sometimes better but overall, our proposed methods are
superior.
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Table 7: Training time vs. validation set perplexity plot.

Impact of Individual Linguistic Features: Further we conduct the experiments taking linguistic fea-
tures (lemma, POS and dependency labels) in isolation i.e. only one feature is used at a time. The goal
is to check their potential exclusively. For each feature we execute our proposed methods as well as the
base and the concat baselines. The results are reported in Table 8. In comparison with Table 3, combi-
nation of the three features proves to yield the best results. Table 8 shows that use of any of the features
in isolation cannot beat the base configuration for en-fi (BLEU 25.59). For the remaining language pairs
the best results are produced by either of the two proposed methods. Out of the three features, lemma and
dependency labels prove to be most effective. Because, using the dependency labels gives the maximum

en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi

Base 497 25,59 18.54 2793 2228 3240 1393 2499

g Concat 532 2449 1834 26772 23.08 31.77 1351 2649
g | Self-rel | 531 2544 19.81 28.89 23.15 3220 14.81 24.88
3 | Word-rel | 526 2532 19.64 27.69 23.14 32.62 1471 26.83
. Concat 5.11 2373 18.80 2523 2199 29.83  13.69 22.63
8 Self-rel | 5.66 2424 19.61 28.80 22.84 31.87 1494 24.86
Word-rel | 5.74 24.61 19.73 26.81 23.26 29.81 1394 23.06

o Concat 524 2451 20.14 2550 2294 31.17 1395 23.26
A Self-rel | 5.78 2378 20.40 26.27 23.40 31.19 1495 24.13
Word-rel | 530 22.20 19.78 2637 23.48 3242 1436  24.17

Table 8: BLEU scores of the models using features separately.
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BLEU scores for en-bg, en-hi, en-khm and en-my. Whereas, the use of lemma gives the best results for
en-id, en-ms and en-vi.
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Table 9: Visualization of the sigmoid activation of feature embeddings in self relevance method.

Visualization of Sigmoid Outputs: To investigate the effectiveness of checking feature relevance, we
plot the sigmoid outputs of some features from the test data and analyze them. In case of the self
relevance, the features get fixed sigmoid outputs. For example, we plot the values for 12 primary POS
categories - NN, NNP, NNS, JJ, PRP, CC, RB, VB, VBD, VBN, VBZ, SYM (noun, proper noun, plural
noun, adjective, pronoun, conjunction, adverb, base verb, verb past form, verb past participle, verb third
person singular and symbol). The plots are shown in Table 9. The x-axis denotes the dimensions of the
vector (from 1% to 15" as the POS embedding size is 15 given in table 2) and the y-axis denotes the
sigmoid output. In contrast to the model of Sennrich and Haddow (2016), where feature vectors are just
appended to the word vector, the proposed relevance methods customize the features according to their
importance in the translation task, which is empirically proved to be beneficial for translation.
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Table 10: Visualization of the sigmoid activation of feature embeddings in word-based relevance method.

In case of the word-based relevance method, the sigmoid output of a particular feature follows specific
pattern depending on the semantics of the associated word. For example, we take the part-of-speech
NNP (proper noun) and show its sigmoid activation for two different categories of named entities. The
first category is the days in a week i.e. from Sunday to Saturday. The other category is the names of
different countries. These proper nouns are chosen as they have not been divided into subwords by BPE
in our experiments. The plots are shown in Table 10. In the left graph, the similarities among the plots
are clearly seen as all curves have the global minima at the 7*" dimension and the local minimas at
the 1°¢, 9" and 11** dimensions. The maximas are found at the dimensions 4** and 15", In the right
graph, there are local minimas at the dimensions 15, 7" and 12" and the maximas are at the 2"¢, 37
and 15" dimensions. It gives the justification of why the word-based relevance checking is effective
as the features are weighted similarly for semantically close words leading to more compact embedding
representation of a source token.

Results Using RNN Models: Further we explore the effect of feature relevance on attention-based RNN
model. To do the experiments, we choose a LSTM network with the encoder composed of a stack of
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en-bg en-fi en-hi en-id en-khm en-ms en-my en-vi
Base 552 2410 1837 25.73 22.60 3029 1342 24.64
Concat 6.85 2543 20.72 2743 2294 3225 15.69 26.12
Self-rel | 5.69 2457 19.61 26.62 23.18 32.18 5.16 26.08
Word-rel | 6.26  25.23 20.83 27.01 23.96 3262 1394 2538

Table 11: BLEU scores obtained for different feature configurations on RNN.

2 bidirectional layers and a single layer unidirectional decoder. We apply Luong-attention (Luong et
al., 2015) in our model. Four different configurations have been tested. They are - (i) no feature used
(7i) concat (ii1) self relevance (iv) word-based relevance. We use the same feature set as used for the
Transformer. The BLEU scores obtained are presented in Table 11. Contrast to the results in Table 3, the
relevance checking mechanisms do not perform significantly well when applied for RNN models. Out of
the 8 language pairs, the word-based relevance method produces the best results for en-hi, en-khm and
en-ms. For the remaining language pairs, the concat configuration outperforms others. Compared to the
Transformer model, we get the highest BLEU score in en-bg (6.25 in Table 3 vs 6.85 in Table 11) using
RNN. For the rest of the experiments, the Transformer produces the best results. These results disclose
an important finding that although our objective is to enrich the source word representation by masking
feature embeddings with attention, the proposed relevance methods are not model-agnostic. Rather, their
efficacy is influenced by the network architecture where they favor the Transformer architecture.

5 Conclusion

In this article we revisit the ways to incorporate linguistic features in NMT. We argue that it is important
to check the relevance of the features instead of just plugging them into the model. To establish our claim
two novel methods are proposed and evaluated under extremely low-resource condition on eight language
pairs. We design word-dependent as well as word-agnostic relevance checking mechanisms and show
that by controlling the effects of features we can obtain substantial improvement in translation quality.
Our models yield significantly higher BLEU scores compared to the baselines with a modest increase
in the number of model parameters. Additionally we observe lower validation perplexity that shows
applying feature relevance helps to reduce prediction uncertainty. The methods are further analyzed by
visualization of the relevance weights. In case of the word-based relevance, the feature embeddings are
tuned similarly based on the semantics of the corresponding word. It indicates that the proposed models
actually pay attention to morphological features leading to enriched word representation. Moreover, we
assess the proposed relevance methods on RNN model with attention. The results are not as satisfactory
as obtained for the Transformer model, which requires further investigation. One notable issue in the
present work is that the source language has been annotated by a robust and highly accurate parser
which is unlikely to exist for a low-resource language. Checking the effectiveness of relevance methods
is necessary when the annotation is noisy. The future extension of the present work will also focus to
exploit the features under high resource scenario. In a resource rich setting usually features are redundant
as the model learns from a large variety of context. Hence, using them effectively in that case will be
beneficial for NMT research.
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