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Abstract

Users express their opinions towards entities (e.g., restaurants) via online reviews which can be
in diverse forms such as text, ratings, and images. Modeling reviews are advantageous for user
behavior understanding which, in turn, supports various user-oriented tasks such as recommen-
dation, sentiment analysis, and review generation. In this paper, we propose MG-PriFair, a multi-
modal neural-based framework, which generates personalized reviews with privacy and fairness
awareness. Motivated by the fact that reviews might contain personal information and sentiment
bias, we propose a novel differentially private (dp)-embedding model for training privacy guar-
anteed embeddings and an evaluation approach for sentiment fairness in the food-review domain.
Experiments on our novel review dataset show that MG-PriFair is capable of generating plausibly
long reviews while controlling the amount of exploited user data and using the least sentiment-
biased word embeddings. To the best of our knowledge, we are the first to bring user privacy and
sentiment fairness into the review generation task. The dataset and source codes are available at
https://github.com/ReML-AI/MG-PriFair.

1 Introduction

Users generate digital footprints when “traveling” on the internet. Modeling this behavioral data is useful
to understand users’ preferences. For example, Amazon infers users’ preferences based on their views,
add-to-card, or purchase actions. Likewise, online reviews explicitly manifest how users opine about
business entities such as restaurants. Figure[I]shows an example of online reviews on Yelp.com, that ex-
presses user’s opinions about food and service of a sushi restaurant, along with images and rating score.
Containing invaluable information of personal opinions, online reviews become an essential data source
that is modeled in diverse tasks to comprehend users (Lackermair et al., 2013)), e.g., sentiment analysis or
review generation. In this paper, we study the task of review generation using multi modalities including
image, user and entity information while taking into account user privacy and sentiment fairness. Specif-
ically, we present a framework, namely MG-PriFair, which includes privacy and fairness controllers to
preprocess data and a neural-based generation model to generate personalized reviews.

Reviews are user-generated contents that may contain personal information leading to privacy con-
cerns. For example, the content and images of the review in Figure[I]signify sensitive information about
the reviewer, i.e., J. H. in Daly City has a son named Wah who might be born on 8§ May. This observes
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Figure 1: An example of Online reviews on Yelp with personal information.
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the problem of revealing personal information of an individual by observing outputs of the model trained
using user-generated data (i.e. reviews) (Rocher and de Montjoye, 2019). To address this problem,
we apply a privacy controller, which is a two-stage approach to minimize the use of personal infor-
mation. First, we propose dpSENTI, a novel approach to learn differentially private word embeddings
(dp-embedding), from which we infer user and entity representations (UERs). Next, we freeze these
representations during the training process, to avoid further use of personal information. There are two
levels of privacy protection in this task: individual privacy and model privacy. In the scope of this work,
we focus on the former one.

Fairness is “the absence of any bias” (Ninareh Mehrabi, 2019). With the rapidly increasing number
of machine learning applications in daily life, developing learning models that are fair with respect to
sensitive attributes (e.g., gender, race) of the training data has become important. In the context of writing
review, sentiment fairness is an issue raising at the individual level such as a restaurant, a product, or a
dish. Sentiment bias can come from training reviews or external data. For example, when we use word
embeddings trained using external data, some words describing a dish might be highly correlated to
negative words causing the model to generate negative-sentiment reviews for the dish. In this paper, we
focus on the bias causing by pretrained word embeddings models. Specifically, we propose an evaluation
approach to measure sentiment bias for the food-review domain, thus assisting to select the least bias
pretrained model.

Our contributions are three-fold. First, we propose a new dp-embedding (i.e., dpSENTI) approach for
training privacy guaranteed word embeddings for the task of review generation. Secondly, we propose
an evaluation approach for sentiment fairness in food-review domain. We also run the evaluation across
multiple pretrained language models to evaluate their sentiment fairness for the domain. Thirdly, to the
best of our knowledge, we are the first to introduce the notions of user privacy and sentiment fairness
for the task of review generation. We evaluate extensively and present insights on multiple tasks ranging
from dp-embeddings, sentiment fairness, to review generation. Additionally, the novel dataset is released
with initial benchmark results for this task.

2 Related Work

We conduct a literature review in text generation, review generation, user privacy and fairness topics.
Text Generation. The closest tasks to review generation are image captioning and review generation. In
image captioning, the objective is to automatically generate text to describe the content of an image via
learning the correlation between vision and textual features (Xu et al., 2015). Xia et al. (2017) tackle the
sequence generation problem, which applies neural machine translation and image captioning techniques
with a new target-target attention mechanism on target sequences. In order to generate personalized cap-
tions, (Chunseong Park et al. (2017) present Context Sequence Memory Network to take into account
users’ historical activities. Generally, review generation is different from image captioning since it re-
quires additional input (i.e., user and entity information), and the target is not only to capture what is
inside an image, but also to “express’ opinions toward the entity being reviewed.

Review generation recently has received more attention. [Nguyen et al. (2015) propose a graph-based
approach to identify representative review snippets supporting to construct a review. |Dong et al. (2017)
propose an encoder-decoder network architecture that takes user/product attributes and ratings as input
for personalized review generation. Ni and McAuley (2018) seek to learn aspect-aware user and item rep-
resentations to generate reviews based on short phrases as input. In comparison with our proposed model,
these reviewed works do not deal with visual input. [Truong and Lauw (2019) introduce a multimodal
review generation (MRG) to simultaneously predict ratings and generate reviews using information from
users, items, and images. Their objective is to learn user preferences through predicting ratings and gen-
erate short reviews, whereas, we aim at generating relatively longer reviews. We compare our proposed
model with MRG in Section
User Privacy. Preserving user privacy has been studied for decades. The techniques of anonymiza-
tion (Bayardo and Agrawal, 2005) and sanitization (Wang et al., 2009) have been widely applied. Dif-
ferential privacy later emerged as the key privacy guarantee by providing rigorous, statistical guarantees
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against any inference from an adversary (Cynthia, 2006). Differential privacy has been applied in many
research including text data (Abay et al., 2018). This motivates the use of differential privacy for review
generation task. We propose to decrease the use of user information to reduce privacy leakage risk. There
have been some works (McMahan et al., 2018 |Vu et al., 2019) in learning differentially private language
models. However, this paper aims at finding word representations for the review generation task, which
has to preserve good sentiment. Therefore, we propose a different neural model to learn differentially
private word embeddings for the sentiment classification task.

Fairness. There is an increasingly important concern as machine learning models are utilized to sup-
port decision making in high-stakes applications, e.g., mortgage lending, hiring, and prison sentencing
(R. K. E., 2019). Kleinberg et al. (2018) present an empirical example for college admissions that the
inclusion of variables (e.g., race) can increase both equity and efficiency. B Fish (2016) investigate algo-
rithmic fairness and maintained the high accuracy of three learning algorithms while reducing the degree
to reduce discrimination against individuals. ConceptNet Numberbatch 17.04 (Speer, 2017a) (hereafter
ConceptNet) has been well known for having good semantic representation while addressing several
word-embedding biases (e.g., gender bias and religious bias). However, it does not resolve sentiment
bias for the food domain (Section ). In this paper, we propose an evaluation approach that measures
sentiment bias for the food-review domain to select a “less-bias” pretrained word embeddings model for
the task of review generation. De-biasing sentiment bias is not in the scope of this work.

3 Multimodal Review Generation with Privacy and Fairness Awareness
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Figure 2: a) Architecture design of MG-PriFair which includes privacy and fairness controllers and a
generation model. b) Our proposed personalized review generation model (PRGen).

In this section, we present our proposed multimodal review generation with privacy and fairness aware-
ness framework, MG-PriFair. As shown in Figure 2h, MG-PriFair consists of three main components:
privacy controller, fairness controller, and personalized review generation model (PRGen). Privacy Con-
troller manages the use of personal information by injecting noise while learning differentially private
representations for users and entities. The fairness controller measures sentiment bias of different word
embeddings sets to select the least biased one. The preprocessed data is then passed to PRGen to train the
generation model (Figure[2b). We formulate the problem of multimodal review generation as follows.
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Problem definition. Let us denote the sets of users and entities as ¢/ and &, respectively. The dataset
X consists of tuples (m,y, u, ), where image m is associated with review document y written by user
u € U for entity e € £. Each review document is a set of review sentences. Given dataset X', the objective
is to build a model that learns to generate a review document given an image m and the associated
information of user v and entity e.

3.1 Privacy Controller

Privacy Controller controls the amount of user information that a learning algorithm can consume until
the privacy budget is reached. The more data the model can consume, there is a higher risk of privacy
leakage. To maintain the trade-off between user privacy and data utility for the review generation task,
we introduce a privacy controller, namely dpSENTI, to act as a gateway protecting user privacy. Here,
the controller is a differentially private neural model that learns to perform sentiment classification task
based on user ratings. We assign 3 labels of NEG (rating 1 and 2), NEU (rating 3), and POS (rating 4 and
5). The training data for this task is similar to the training set of the review generation task except we
have the labels of POS, NEU, NEG based on rating scores. We train a feed forward network consists of
an embedding layer (hereafter dp-embedding), a pooling layer, and two linear layers. This architecture is
simple yet efficient since it can capture semantic information of words in the dp-embedding layer for the
review generation task. At the same time, it is also optimized for the sentiment classification to preserve
sentiment for the review generation task. The whole model is trained with DP-SGD optimizer (Abadi et
al., 2016) to protect user privacy. The dp-embedding layer is then used to extract user and entity repre-
sentations for the text generation task. Intuitively, the dp-embedding layer is trained to prevent privacy
leakage by injecting noise to the word vectors based on the differential privacy mechanism (Cynthia,
2006; |Abadi et al., 2016). It is noted that, the dp-embedding layer is trained on the sentiment classifica-
tion task; therefore, it preserves both user privacy and sentiment information, which are the main signals
we need to feed into the review generation model. In fact, the dp-embedding layer is used to calculate
dp-embeddings for both users and entities.

From the above problem definition, given a fixed dictionary D, a user u € U, Ry, = {ruys ooy Tuy, |
denotes for the set of M reviews written by user u. A dp-embedding Emb, for a given user u is the
averaging of all the embeddings of words written by u, i.e., Emb, = ﬁ Zi‘i 1 Zweru. Emb,,, where
w € D, Emb,, is the word embedding of w. Since we use the Gausian mechanism ilmplemented in
DP-SGD of |Abadi et al. (2016) to learn dp-embeddings at word-level, the average of these embeddings
to constitute embeddings at user-level are also differentially private embeddings. Because the compo-
sition of a data-independent mapping f with an (e, d)- differentially private algorithm M is also (e, 6)-
differentially private (Dwork and Roth, 2014)).

3.2 Fairness Controller

Fairness Controller evaluates the sentiment bias (fairness) of word embeddings to be used in the genera-
tion model. Similar to [Speer (2017b), we base on binary sentiment classification to measure the fairness
of a pretrained word embedding set Embx (e.g., GloVe (Pennington et al., 2014))). First, we train a
binary sentiment classifier using two lists of positive (L) and negative (L2) words from Hu and Liu
(2004) as groundtruth, and Embx as features. We split each list to 90% for training, and the rest 10%
for testing. Using the trained classifier, we then test the sentiment bias of Embx by extracting feature
vectors for each testing word in a word list called Word Embedding Association Test (WEAT) (Caliskan
et al., 2017) and compute the bias score.

WEAT is a list of words to measure how bias each word embedding set is for a certain bias category
(e.g., ethnic and demographic). Due to the lack of WEAT list in sentiment-bias for food domain, we
built our own WEAT list, namely R-WEAT, to measure sentiment-bias in our word embedding sets. We
select 3 main food categories including (1) Common food (e.g., beef, chicken), (2) Asian food (e.g., rice,
noodles), and (3) Western food (e.g., pasta, pizza). These terms are selected based on two criteria: they
are either dish name or ingredients, and they must appear frequently in our dataset. In total, group (1),
(2), (3) have 19, 49, 35 words, respectively. Based on these selected words, the trained classifier is used to
predict sentiment. Then, we run a hypothesis testing using the Ordinary Least Squares (OLS) estimator
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implemented in (Seabold and Perktold, 2010) to get the F-statistic value (hereafter F-bias value) of the R-
WEAT list in the trained sentiment classifier. F-bias value is the ratio of the variation between categories
to the variation within categories. In other words, it represents the degree of sentiment fairness (the lower
the better) of each word embedding set regarding the R-WEAT list.

3.3 Personalized Review Generation Model (PRGen)

Figure|2b shows our proposed generation model. PRGen receives as input an image m, user v and entity
e, and outputs a review document y = {91, 2, ..., yc' }, where 3, € R, K is the vocabulary size and C
is the length of the review document. To capture sequential information, recurrent neural networks (e.g.,
long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), ppRNNs (Tran et al., 2018))), can
be applied. Here, LSTM is used to learn by generating one word at each time step. At time step ¢, the
output y; is computed based on the vision features and the current hidden state h;:

yr = Wo,ReLU(W,, (V,, @ hy)) (1)

where h; € R is the dj,-dimensional hidden state at time ¢, Vm € R% is the dj-dimensional vector
computed from vision features. ReLU is the Rectified Linear Unit function, & is the concatenation
operator. W, € Rdox(ds+dn) and W,, € RE*do are parameters to be learnt during training. The
probability of selecting word ¢ at time step ¢ is computed using the softmax function:

exp(y;)
> iex exp(y})

i

p(yt) = @)

where ! is the value of the i —element in vector y;. Vi, is defined as V,, = tanh(W,V,,,), where
Vi € R% is the vision features for image m that is extracted using a pretrained convolutional neural
network (CNN)-based model. W,, € R%xdv are parameters to be learnt during training.

The hidden state h; at time ¢ is updated follows the formulation in (Zaremba et al., 2014). LSTM’s
parameters, ©OpstmM, are learnable during training. The initial hidden state hg is computed based on the
features of the input image, user, and entity: hg = tanh(Wy(V;, ® P, ® Q.)). Here, P, = PII,,, € R%
and Q. = QVY,, € R% are the embeddings for user u and entity e respectively. 11, € RII and v, € RI€]
are one-hot vectors for v and e. P € Ru*Ul and Q € R%*I¢l are the embedding matrices for user
and entity, respectively. Embedding matrices P and () can be initialized randomly or by pretrained user
and entity embeddings, with/without fine-tuning. We compare the different strategies of using user and
entity embeddings in Section

Training PRGen. During training, PRGen takes as input a tuple (m, y,u, €) € Xyain, Where Xipain C
X is the train set, and generates a review document ¢j. The model is trained with teacher-forcing and the
objective is to minimize the cross entropy loss between the groundtruth y and the generated y:

lyl K
arg min — > > —yilogp(ii) (3)
SR o
where y; € R¥ is the corresponding one-hot vector for the word at position t™, p(7#) is computed using
Equation [2} and Q@ = {Orst™m, P, Q, Wy, W,,, W, , W, } are the trainable parameters which are learnt
during the training process.

Inference. During inference (testing), PRGen is given only an image and information of the corre-
sponding user and entity. The model generates one token at a time, starting with <SOR>(start-of-review)
token. The generated token at a step will be the input token for the next step. The model stops when
generating <EOR>(end-of-review) token or exceeding a predefined length constraint.

4 Experiments

4.1 Experimental Setup

Dataset. The task of multimodal review generation requires data of images with corresponding reviews,
users, and entities information. Although there are existing review datasets, such as Amazon product
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data and Yelp Dataset Challenge, none of them provides enough information for our task. They either
do not have review images or not provide enough information to map an image to its original review.
Therefore, we construct a new dataset from Yelp.com that contains restaurant reviews for seven different
English speaking cities. When posting a review on Yelp, users can choose to attach image(s) and opt
to write captions for the images. For this task, we only keep the reviews that have images containing
captions. Data from the cities are combined and used as a whole. Eventually, there are about 154K
reviews, 69K users, 6K entities, and 237K images.

In order to form the groundtruth review documents for an image, we first remove all the irrelevant
sentences in the corresponding review and group n consecutive relevant-sentences as a groundtruth re-
view document (n = 3). We assume that a sentence is relevant to an image if it is similar to the image’s
caption. The task of finding relevant sentences for an image becomes text matching problem. To cap-
ture the semantic similarity, we use Spacy (spacy.io) with pretrained word embeddings to calculate the
similarity between an image caption and a review sentence. A threshold of 0.01 is used to determine
relevant sentences. After matching images to review documents, the dataset collectively has more than
one million groundtruth data tuples of (image, review document, user, entity). We split the dataset into
train, validation, and test sets. We keep about ten thousand images each for validation and test sets; the
rest are used for training. On average, each image has about five groundtruth review documents.

Vision. Vision features of images are extracted using Inception-v3 (Szegedy et al., 2016) with weights
pretrained on ImageNet with the include_top parameter is set to False. Therefore, input size for this
model is 299x299. Output vision dimension is 2048.

User and entity representations. Users have their own writing styles, and each entity normally
receives a few major groups of opinions. This information is contained in the prior knowledge, i.e.,
the reviews they have written (users) or received (entities). We adopt DocumentPoolEmbeddings im-
plemented in Flair toolkit (Akbik et al., 2018) to pretrain user and entity representations using prior
knowledge in which, each user (or entity) is represented by the reviews that the user (or entity) has. To
have enough training signal, we only learn embeddings for users and entities that have at least 10 reviews
in the train set. We have 20,228 such users which covers 83.05%, 76.46% and 75.43% of data tuples in
train, validation, and test sets respectively. For entity, the number is 5,126 covering more than 99% of
data tuples for all the three sets. The rest of the users and entities will be treated as unknown users and
entities, respectively.

Settings. We select the top 10,000 frequent tokens for the vocabulary. We use Adam optimizer with
initial learning rate of le™*, decay rate of 0.9 after every 20 epochs, starting from epoch 30. LSTM
hidden dimension is 256. Only reviews having length between 5 and 50 words are used for training. We
use beam search (width = 3) to generate reviews during inference.

4.2 Evaluating the Generation Model
4.2.1 Ablation experiments

Settings. We evaluate different variations of PRGen, including: (1) Vision-only model (RGen); and (2)
with personalized settings called PRGen. RGen has the same structure as PRGen (Figure[2b) but removed
user and entity embedding layers. This is to evaluate the effect of using user and entity information for
the task. PRGen with different manners of utilizing user and entity representations (UERs) where UERs
are randomly initialized and finetune during training (PRGen-RY), or UERSs are pretrained using prior
knowledge (Sectiond.1) and are fixed (PRGen-PN) or finetuned (PRGen-PY) during training.

For each variation, we report the results testing with three pretrained word embeddings models includ-

ing GloVe (Pennington et al., 2014) (dim=300), BERT (Devlin et al., 2019) (dim=768), and RoBERTa
(Liu et al., 2019) (dim=768). Since BERT and RoBERTa are contextual embeddings, for each word, we
average all tokens of a word to get its vector.
Evaluation metrics. To evaluate the generation models, we use standard metrics for the text generation
task, including Bleu (Papineni et al., 2002), METEOR (Denkowski and Lavie, 2014), ROUGE-L (Lin
and Och, 2004)), and CIDEr (Vedantam et al., 2015). We use COCO evaluator (Chen et al., 2015) to
compute these metrics. The results using these metrics are reported in percentage (except for CIDEr).
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Table 1: Ablation experiment results showing the impact of user and entity representations and prior
knowledge on the task of review generation. Subscripts G, B, R denote for GloVe, BERT, and RoBERTa,
respectively. The metric annotations B, MET, ROU, CID stand for Bleu, METEOR, ROUGE-L, and
CIDEr, respectively. N/A stands for not applicable.

Method User/Entity Representations | p | g5 | g3 | B4 | MET | ROU | CID
Initialized with | Finetune
RGeng 3583 | 15.26 | 6.73 | 3.02 | 7.56 | 1831 | 1.96
RGenp N/A N/A | 3647 | 1584 | 7.09 | 3.09 | 7.58 | 18.49 | 1.92
RGeng 34.16 | 14.88 | 6.53 | 2.90 | 7.39 | 18.46 | 1.76
PRGeng-RY 3733 | 1625 | 752 | 3.55 | 7.94 | 19.16 | 3.00
PRGeng-RY |  Random Yes | 36.82 | 1647 | 7.62 | 3.64 | 7.81 | 18.81 | 2.44
PRGenp-RY 3736 | 17.12 | 8.11 | 3.83 | 7.80 | 19.42 | 2.71
PRGenc-PN 3740 | 1658 | 7.67 | 3.58 | 7.84 | 1904 | 2.42
PRGeng-PN |  Pretrained No | 37.69 | 1691 | 7.93 | 3.75| 7.87 | 1939 | 2.66
PRGen -PN 36.86 | 16.86 | 8.05 | 3.89 | 7.70 | 19.68 | 2.76
PRGeng-PY 3848 | 1747 | 822 | 3.90 | 8.09 | 1961 | 3.16
PRGeng-PY | Pretrained Yes | 39.03 | 17.96 | 8.53 | 4.16 | 8.29 | 19.59 | 3.26
PRGen p-PY 3822 | 17.85 | 8.95 | 4.83 | 823 | 19.65 | 3.88

Results. Table[I|shows that UERs are useful for review generation since all the variances of PRGen out-
perform RGen regarding all the evaluation metrics. Even when the UERs are only initialized randomly
and finetuned during training (PRGen-RY), the model seems to be able to encode useful user and entity
information for the generation task. We further investigate the impact of prior knowledge on generating
reviews. As shown in Table |1, UERSs pretrained using prior knowledge are useful even when they are
not finetuned. PRGen-PN are comparable to the one optimized for the generation task, i.e., PRGen-RY.
The results are further improved when the pretrained UERs are finetuned during training the generation
models. PRGen-PY outperforms PRGen-RY and PRGen-PN for different settings of word embeddings
regarding almost all the metrics (except for ROUGE-L). PRGeng-PY performs the best in Bleu-1, Bleu-
2, and METEOR. For Bleu-3, Bleu-4, and CIDEr, using RoBERTa achieves the best. The results clearly
show that prior knowledge contributes useful information for the review generation task.

4.2.2 Evaluating against text generation baselines

Baselines. We compare PRGen against text generation baselines in both image captioning and review
generation: (1) ShowNTell (Vinyals et al., 2015)): a well-known approach for the image captioning task
that consists of a vision CNN-based followed by a language generator LSTM; and (2) MRG (Truong and
Lauw, 2019): a multimodal review generation that simultaneously predict ratings and generate reviews.
Settings. To have fair comparison, all the models use GloVe embeddings. Our model uses the PRGeng-
PY setting. ShowNTell and MRG requires a lot of memory that could not feed our full training set to
GPU, we only use 40% of the training set to train the models (including ours).

Evaluation metrics. We evaluate the models regarding the capability of generating reviews. A review
should contain sentiment (subjectivity) and does not necessarily always describe only the content of an
image. Therefore, in addition to Bleu-4, we also measure the readability of generated reviews including
sentences’ average length (number of words in a sentence), sentiment polarity, the subjectivity and the
number of grammar errors. We use TextBlob (Loria, 2018]) to analyse sentiment polarity and subjectivity
of generated reviews. To measure the grammatical quality of generated reviews, we use LanguageTool
(Naber, 2007). We ignore typographical and miscellaneous errors such as capitalization and white space
before the full stop, due to the manner the reviews was constructed.

Results. Table 2| clearly shows that our model outperforms the baselines in terms of Blue_4, sentiment
polarity and subjectivity. Among the three models, our model has the most capability of generating sub-
jective reviews (with the lowest number of Zeros polarity and subjectivity). When it comes to sentence
length, MRG tends to generate long sentences (on average of 50 words per sentence). ShowNTell gener-
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Table 2: Comparison between our model (PRGeng-PY) and the baselines in image caption (ShowN-
Tell) and review generation (MRG) in terms of Bleu-4, sentiment polarity, subjectivity, grammar errors
(GramErr) and sentences’ length (AvglLen). The superscript * marks the metrics in which the lower value
the better. POS, NEG, Avg and GT stand for positive, negative, average and groundtruth, respectively.

Polarity Subjectivity . | Avglen
Model Bleu-4 POS | NEG* | #Zeros* | Avg | #Zeros* GramErr (G"l%: 15)
ShowNTell 258 | 044 | -0.22 1302 | 0.51 1157 3.86 31
MRG 1.07 | 041 | -0.29 910 | 0.65 760 0.46 50
PRGeng-PY 2.77 | 0.55 | -0.21 424 | 0.65 362 0.94 10

Table 3: Different settings of dpSENTTI and the performances on a downstream task of sentiment classi-
fication on|Hu and Liu (2004)’s dataset. DET denotes the use of a fixed 2% of training data.

Setting (e, 6)-dp seqlen | vocab_size | emb_dim | F-value bias | Sentiment Accuracy
DET-64 | (4.97,1e — 05) | 256 10K 64 0.171 68.53
DET-300 | (4.11,1e — 05) | 200 5K 300 1.293 70.44

ates shorter sentences (i.e., on average, 31 words per sentence) but still double that of groundtruth (i.e.,
15 words per sentence). Our model generates reasonable-length sentences with 10 words per sentence,
compared to that of the groundtruth sentences. Regarding grammatical test, ShowNTell has the most
serious problem with the average count of 3.86 grammatical errors per review while in PRGeng-PY and
MRG, the values are less than 1.

4.3 Evaluating Privacy and Fairness Controllers
4.3.1 Privacy Controller

We design two settings of dpSENTI for training the word embedding layer in a deterministic way called
DET-64 and DET-300. For both settings, a fixed number of 2% of training samples are selected for the
training process. For DET-64, the word embedding layer has 64 dimensions, while the DET-300 has 300
dimensions. details experimental results. It clearly shows that the DET-300 is a better option for
the review generation task since it has higher sentiment accuracy and consumes less user privacy (i.e.,
the € value is smaller). The F-bias value of DET-64 is smaller suggesting that it contains less sentiment
information (i.e., lower sentiment accuracy) and hence, it posses less sentiment bias.

4.3.2 Fairness Controller

In this section, we examine the sentiment-bias (fairness) of different pretrained word embeddings mod-
els. In addition to GloVe, BERT, RoBERTa, and dpSENTI, we also include ConceptNet (Speer et al.,
2017) and Word2Vec (Mikolov et al., 2013)). The former is widely used since its word embeddings can
capture both semantic relationship between words while possessing less biases for such as gender and
ethnic. Therefore, ConceptNET is a potential out-of-the-box solution for sentiment fairness. Regard-
ing Word2Vec, it is one of the most popular methods to learn word embeddings using shallow neural
network. Here, we include Word2Vec to compare to other similar learning methods such as GloVe.
shows the sentiment predictions of each word embeddings model for the words in R-WEAT
list. The sentiment score for a word is the subtraction of log probability of positive and negative predic-
tions. F-bias value (F) and classification accuracy (A) for each word embeddings model are reported on
the corresponding sub-figure in the form of F/A. ConceptNet achieves the best classification accuracy
but its F-bias has the highest value of 14.61 (i.e., most biased). As mentioned in (Speer, 2017a), they
apply the de-bias algorithm to protect pre-defined biases. Hence, it is reasonable that ConceptNet has
a high fairness issue (i.e., high F-bias value) on our “unseen” R-WEAT list. Therefore, out-of-the-box
solution is not easy to achieve sentiment fairness in this case. BERT, however, achieves the best fairness
score even though it is not intended to deal with sentiment bias. |Cummings et al. (2019) show that it is
not easy to have both privacy-fairness guarantee with differential privacy but they can be adjusted. We
find that the later point is valid in the food domain as dpSENTTI achieves the runner up fairness result.
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Figure 3: Fairness evaluation based on R-WEAT list for different word embeddings models. F-bias
value (F) and classification accuracy (A) for each word embeddings model are reported in the form of
F/A. Visualization method was inspired by |Speer (2017b).

Table 4: Performance trade-off when taking into account fairness (Fair) and privacy (Priv) awareness.
MG-PriFair uses BERT for word embeddings and dpSENTI for user and entity representations, which
were fixed during the training process.

Method Fair | Priv | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE_L | CIDEr
PRGeng-PY | No | No 38.22 17.85 8.95 4.83 8.23 19.65 3.88
PRGenc-PY | No | No 39.99 | 18.54 8.80 4.18 8.30 19.94 3.37
PRGeng-PY | Yes | No 39.03 17.96 8.53 4.16 8.29 19.59 3.26
MG-PriFair | Yes | Yes 37.85 16.86 7.37 3.05 7.75 20.45 1.64

4.3.3 Evaluate our proposed framework: MG-PriFair

The main goal of our proposed framework, MG-PriFair, is to generate reviews with privacy and fairness
awareness. We explore different word embedding sets regarding privacy and fairness criteria for the
goal. Among the tested embedding sets, BERT achieves the best trade-off between model’s performance
and fairness. As shown in BERT achieves the best fairness score (lowest F-bias value) while
obtaining the best Bleu-1, Bleu-2 and METEOR on the review generation task among GloVe, BERT,
and RoBERTa as shown in Table [I} To further taking privacy into account, we use our newly trained
dpSENTI embeddings to obtain the pretrained user and entity representations.

To evaluate the trade-off, we compare the models having different levels of controlling fairness and
privacy: (1) without Fairness and Privacy (using RoBERTa (PRGeng-PY) and ConceptNet (PRGenc-
PY)); (2) with Fairness, without Privacy (using BERT (PRGeng-PY)); and (3) with Fairness and Privacy:
MG-PriFair which uses BERT for word embeddings and dpSENTI for user and entity representations
which are fixed at training time. Table [] shows the trade-off of the performances when dealing with
fairness and privacy. The models without fairness and privacy achieve the best performances in all
the metrics. The performance slightly decreases when having fairness and continues decreasing when
adding privacy control. These results are expected as more constraints are applied to deal with fairness
and privacy, making it difficult to train generation model. Nevertheless, MG-PriFair’s performance is
comparable to the others’ given the fact that user and entity representations are trained on a completely
different task and are fixed during training the generation model.

4.4 Qualitative Results

To qualitatively evaluate the reviews generated by our proposed models, we conduct a user study shown
in All the models use BERT embeddings. The images are randomly selected from the fest set.
For selecting groundtruth, we purposely choose reviews that have the length between 5 to 50 tokens (to
be the same as the generated reviews’ constraint). We recruited five participants for this study. Figure 4b|
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Review Text: the food was delicious we
ordered the mushroom pizza and the
margherita pizza . the pizza was delicious and
the crust was crispy and chewy . .
Predicted Result
Jack, is the review written by human Human Machine
or machine?
O @ tre O i Actual | Human 62% 38%
[[Previus Review || et Reviw | Result ‘ Machine 499, 51%
(a) Graphic User Interface for User Study (b) Voting results

Figure 4: Qualitative evaluations design and results of generated reviews by different approaches. Here
we have 100 images and reviews, in which half of reviews generated by our personalized review genera-
tion model. Each participant votes all images, to justify if a review was written by human or machine.

show the voting results, where the overall accuracy is 56%. On average, 49% of the machine-generated
reviews were voted as human-generated. Moreover, only 62% of human-generated reviews were cor-
rectly voted. In addition, the average correlation among the participants is only 0.11. In other words,
voting a review as human or machine generated is arguable among the participants. All the clues imply
that differentiating our generated reviews from human-generated reviews is difficult.

5 Comparing with Text Generation Baselines

Figure [5] shows examples of reviews generated by our model (PRGenp-PY) and the two baselines.
ShowNTell has grammatical issues affecting the readability of the generated reviews and the contents
are also not relevant to the input images. MRG is able to generate grammatically correct reviews, but
tend to generate similar contents for different images. Our model, however, is able to generate relevant
and grammatically correct reviews. Sometimes, generated reviews describe other aspects instead of only
describing the image, e.g. the 1% image. With these results, our proposed review generation model
demonstrates the efficiency on generating reviews with quality and readability.

PRGeng-PY ShowNTell MRG
i[i 've been here for a few times to there have you for forfor and spicy tuna roll was in the
and i have never been personi can order on which crab |world i 'm not sure what they 're
\.|disappointed . the service was ), they ordered tuna shrimp in but the chicken was tender
great and the food was great . soup it yum and the sauce was just a little bit
salty .

my husband and i went here for a [was a good night i was n't you and spicy tuna sandwich in
late night and it was a great food was n't to be a i was a year |vegas loved the atmosphere
experience . we ordered the minutefor i ! ! is i i food was good [great the service was very
margherita pizza and it was good it i, were open to open friendly and attentive .

s |delicious . the pizza was good but|store , but i can see if you 're in
3 [the crust was thin and chewy . for

i 've been wanting to try this place |was very pictures order of to had |and spicy tuna i 'm hoping it

for a while i 'm in vegas . i have to|than to was i was good good to |would be more but i 'm not sure
say this place is a great place to |other places i 've had other if it 's a dish however the taste
eat . restaurants restaurants mac was |buds were the same thing but i
very a highlight of meal of just say it was n't bad .

lobster meat opinion

Figure 5: Reviews generated by our model (PRGeng-PY) and the baselines (ShowNTell and MRG).

6 Conclusion

This paper proposed MG-PriFair, a multimodal neural-based framework, to automatically generate per-
sonalized reviews to understand user behaviors. MG-PriFair is aware of user privacy and sentiment
fairness. Our extensive empirical experiments show the efficiency of the proposed framework in gen-
erating plausible reviews while taking into account user privacy and sentiment fairness. To the best of
our knowledge, we are the first to raise the concerns of user privacy and sentiment bias for the review
generation task. As a future work, the privacy of images can be concerned. For example, a taken photo of
a restaurant may capture human faces. One potential solution to protect image-level privacy is to detect
regions in images having sensitive-personal information and exclude those before sending to the model.
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