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Abstract

Existing end-to-end task-oriented dialog systems struggle to dynamically model long dialog
context for interactions and effectively incorporate knowledge base (KB) information into dialog
generation. To conquer these limitations, we propose a Dual Dynamic Memory Network (DDMN)
for multi-turn dialog generation, which maintains two core components: dialog memory manager
and KB memory manager. The dialog memory manager dynamically expands the dialog memory
turn by turn and keeps track of dialog history with an updating mechanism, which encourages
the model to filter irrelevant dialog history and memorize important newly coming information.
The KB memory manager shares the structural KB triples throughout the whole conversation,
and dynamically extracts KB information with a memory pointer at each turn. Experimental
results on three benchmark datasets demonstrate that DDMN significantly outperforms the strong
baselines in terms of both automatic evaluation and human evaluation. Our code is available at
https://github.com/siat-nlp/DDMN.

1 Introduction

Task-oriented dialog systems are designed to help users achieve specific goals with natural language, such
as weather inquiry or restaurant reservation. Compared with traditional pipeline methods (Williams and
Young, 2007; Young et al., 2013), end-to-end approaches recently have gained much attention (Zhao et al.,
2017; Eric and Manning, 2017; Madotto et al., 2018), since they free the task-oriented dialog systems
from the manually designed pipeline modules and can be automatically scaled up to new domains.

Recently, sequence-to-sequence (Seq2Seq) models have dominated the study of end-to-end task-
oriented dialog systems (Bordes et al., 2017). Different from typical Seq2Seq models for open-domain
dialog systems, the successful conversations for task-oriented dialog systems heavily rely on both dialog
history and domain-specific knowledge base (KB). To effectively incorporate KB information and perform
knowledge-based reasoning, memory augmented models have been proposed (Madotto et al., 2018; Wu et
al., 2019), which model the dialog history and the KB knowledge as a bag of words in a flat memory.

Despite the remarkable progress of previous studies, current memory based models for multi-turn task-
oriented dialog systems still suffer from the following limitations. First, existing methods concatenate
dialog utterances of current turn and previous turns as a whole, which ignore previous reasoning process
performed by the model and are incapable of dynamically tracking long-term dialog states. These methods
introduce much noise since previous utterances as the context is lengthy and redundant (Zhang et al.,
2018). Taking the dialog in Table 1 as an example, when answering the user question in 6-th turn, it is
difficult for the model to infer that the name of the restaurant is “cocum” from a long concatenated dialog
context. Therefore, previous models struggle to work well in the situations that require many rounds of
interactions to complete a specific task. Second, previous studies tend to confound dialog history with KB
knowledge, and store them into a flat memory (Sukhbaatar et al., 2015; Eric and Manning, 2017; Madotto
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Subject Area Address Food Price
cocum west 71 castle street city centre indian expensive

rice boat west 37 newnham road newham indian expensive
la tasca centre 14-16 bridge street spanish moderate

... ... ... ... ...

Role Turn Utterance
User 1 hello, i am looking for a scottish restaurant on the west side of town.

System 1 i can help you with that. it looks like there are not any restaurants like that in my database.
can i help you find a different restaurant?

User 2 is there a restaurant that serves indian food in the west part of town?

System 2 i found several indian restaurants in the west part of town. were you looking for an expensive
or moderately priced restaurant?

User 3 expensive.
System 3 i found several in the expensive price range in the west part of town, can i help you with

anything else?
User 4 can you please give me that phone number?
System 4 cocum is the first expensive indian restaurant in the west part of town on the database. the

phone number for cocum is 01223 366668.
User 5 what is the food type they serve?
System 5 they serve indian food.
User 6 can you please give me the address?
System 6 cocum is located at 71 castle street city centre. is there anything else i can help you with?
User 7 no, thank you, that is all i need. goodbye!
System 7 thank you. good day!

Table 1: A restaurant reservation example based on the CamRest dataset along with the KB information.

et al., 2018). The shared memory suffers from encoding the dialog context and KB information using a
single strategy, which makes it hard to efficiently reason over the two different types of data, especially
when the memory is large.

To alleviate the aforementioned limitations, we propose a Dual Dynamic Memory Network (DDMN),
which keeps track of the long-term dialog history and KB knowledge with separate memories. Specifically,
we leverage a dialog memory manager to effectively maintain history utterances with a dialog history
memory and a dialog state memory. The dialog history memory keeps fixed to store the representation of
dialog context throughout the whole conversation, and the dialog state memory keeps updated at each turn
to track the flow of history information and capture proper information of current turn for generation. We
leverage a KB memory manager containing a KB memory and a KB memory pointer to effectively track
KB knowledge. The KB memory stores the KB triples using an end-to-end memory network (Sukhbaatar
et al., 2015) and is shared across the entire conversation. The KB memory pointer softly attends to the KB
memory at each turn, and guides the model to select appropriate KB entries in decoding.

Our main contributions can be summarized as follows.

• We propose a Dual Dynamic Memory Network (DDMN) for task-oriented dialog systems, which
dynamically keeps track of long dialog context for multi-turn interactions and effectively incorporates
KB knowledge into generation.

• We employ separate memories to model dialog context and KB triples. The iterative interactions
between the two kinds of memories make the decoder focus on relevant dialog context and KB facts
for generating coherent and human-like dialogs.

• The experimental results on three public datasets show that DDMN achieves impressive results
compared to the existing methods. More importantly, our model is able to maintain more sustained
conversations than the compared methods with the increase of dialog turns.

2 Model Description

Let D = {di =< ui, si >}Mi=1 denote a set of dialogs, and M is the number of dialog turns. ui and
si denote the user utterances and system responses, respectively. Given a context X with utterances
{dj}m−1

j=1 and um, a sequence of KB triples B = {b1, b2, . . . , bl}, where m denotes the turn of current
dialog, l is the number of KB triples, each triple is composed of 〈subject, relation, object〉. The objective
of task-oriented dialog generation is to generate a proper response Y = {y1, y2, . . . , yn} word by word.

As shown in Figure 1, our proposed DDMN architecture consists of four components: a dialog encoder,
a dialog memory manager, a KB memory manager, and a decoder. We elaborate on the proposed model in
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Figure 1: Overview of the Dual Dynamic Memory Network (DDMN) architecture.

detail as below.

2.1 Dialog Encoder

To overcome the challenge of modeling long dialog context in multi-turn conversations, the dialog encoder
encodes dialog history utterances turn by turn. Specifically, for the first turn, the input to the encoder is
u1. For j-th (j > 1) turn, the input is {sj−1, uj}, which is the concatenation of system response of the
previous turn and user utterance of the current turn. Concretely, the input of dialog encoder at each turn
are a sequence of tokens x = (x1, x2, . . . , xn), where n is the number of tokens. We first convert each
token into a word vector through a randomly initialized trainable embedding matrix, and then employ a
bidirectional gated recurrent unit (BiGRU) (Chung et al., 2014) to encode the input into hidden states:

ht = BiGRU(e(xt),ht−1) (1)
where e(xt) is the embedding of the token xt. We take the concatenation of the forward and backward
hidden states as the the output of the encoder, denoted as H = (h1, . . . ,hn), which is then passed into
the dialog memory manager for global management.

2.2 Dialog Memory Manager

The dialog memory manager maintains a dialog history memory and a dialog state memory, which are both
initialized with the encoder hidden states of the first turn. For j-th (j > 1) turn, both the dialog history
memory and the dialog state memory are “expanded” by concatenating the hidden states of j-th turn. The
two memories are maintained throughout the whole conversation, with the dialog history memory keeping
fixed to store the representation of dialog context of all previous turns. The dialog state memory keeps
updated at each turn, which aims to track the flow of history information and capture proper information
of current turn for response generation.

Generally, the decoder applies a GRU network to generate response word by word. At step t, the
decoder state st can be updated by:

st = GRU(st−1, e(yt−1)) (2)
where e(yt−1) is the embedding of the previous word yt−1. Here, st is regarded as a “query” vector qt,
which is used to attend to the dialog state memory and obtain the weighted context representation ct by
reading from the dialog history memory. Then the dialog state memory will be updated with qt and ct
by R rounds. Formally, let K ∈ RN×d and V ∈ RN×d be the dialog state memory and dialog history
memory respectively, where N is the number of the memory slots and d is the dimension of vector in
each slot, the detailed memory updating operations at round r(r ∈ [1, R]) are introduced as below.

Dialog State Memory Addressing The addressing operation aims to specify the normalized weights
assigned to memory slots in K(r−1) (the dialog state memory at r − 1-th round), which formulates an
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attention vector ã(r)t at time step t. The j-th value of ã(r)t is given by:

ã
(r)
t,j = softmax(et,j), et,j = v(r)

a

T
tanh(W(r)

a qt +U(r)
a k

(r−1)
t,j ) (3)

where v
(r)
a , W(r)

a and U
(r)
a are learnable parameters, k(r−1)

t,j is the j-th slot in K(r−1) at time step t.

Dialog History Memory Reading The reading operation reads from the dialog history memory V

to get the context representation c̃
(r)
t with the guidance of ã

(r)
t . The output of reading is given by

c̃
(r)
t =

∑N
j=1 ã

(r)
t,j vj , where vj is the j-th memory slot in V.

Dialog State Memory Updating Inspired by the read-write operations (Meng et al., 2016; Meng et
al., 2018), we define two types of operations for updating the dialog state memory: FORGET and ADD.
FORGET is analogous to the forget gate in GRU, which determines the information to be removed from
memory slots. Similarly, ADD operation decides how much current information should be written to the
dialog state memory as the added content.

Specifically, we first deploy another GRU network to imitate the decoder at round r, and obtain the
“intermediate” hidden state s̃

(r)
t with reading output:

s̃
(r)
t = GRU(qt, c̃

(r)
t ) (4)

where s̃
(r)
t is used to update the dialog state memory. Then, the “intermediate” dialog state memory after

FORGET operation is given by:

k̃
(r)
t,i = k

(r−1)
t,i (1− a(r)t,i · F

(r)
t ), F

(r)
t = Sigmoid(W(r)

F , s̃
(r)
t ) (5)

where the computation of a(r)t,i is similar to that of ã(r)t,j defined in Eq.(3), W(r)
F ∈ Rd×d is a learnable

parameter. The dialog state memory after ADD operation is given by:

k
(r)
t,i = k̃

(r)
t,i + a

(r)
t,i ·A

(r)
t , A

(r)
t = Sigmoid(W(r)

A , s̃
(r)
t ) (6)

where W
(r)
A ∈ Rd×d is a learnable parameter.

After R rounds of updating, the dialog state memory is modified with FORGET and ADD operations.
Due to the “expansion” of dialog state/history memory along with the increase of the dialog turns, the
dialog memory manager is able to dynamically keep track of long-term dialog state.

2.3 KB Memory Manager
To incorporate external knowledge effectively, the KB memory manager adopts end-to-end multi-
hop memory networks (MemNN) (Sukhbaatar et al., 2015) for encoding structural KB information.
Given the KB triples B = {b1, b2, . . . , bl}, each entry bi ∈ B is represented in the format of a triple
〈subject, relation, object〉. The KB memory is then represented as a set of trainable embedding matrices
C = (C1, . . . ,CK+1) and Ck ∈ RV×d using MemNN, where K is the number of memory hops and
V is the vocabulary size of the KB. It is noteworthy that our KB memory is shared across the entire
conversation. Formally, an initial query vector q1 is used as the reading head, and it loops over K hops
and computes the attention weights at each hop k as:

pki = softmax((qk)T cki ) (7)
where cki = Ck(bi) ∈ Rd is the memory content in i-th position. Note that pk ∈ Rl is a soft memory
attention that decides the memory relevance with respect to the query vector. Then the KB memory
manager reads the memory ok by the weighted sum over ck+1 and update the query vector qk+1 as:

ok =
∑
i

pki c
k+1
i , qk+1 = qk + ok. (8)

To further strengthen the ability of selecting correct KB entries, we introduce a KB memory pointer
Ptrkb, inspired by Wu et al. (2019). Note that the proposed pointer Ptrkb is passed to the decoder turn by
turn. Suppose Ptrkb is denoted as a sequence of pointers (σ1, σ2, . . . , σl), each pointer is formulated by:

σi = Sigmoid((qK)T cKi ) (9)
where qK and cKi are the query vector and the memory content at the last hop, respectively. We
add an auxiliary classification task to train Ptrkb . We first define the corresponding label Ptr label =
(g1, g2, . . . , gl) by checking whether the object words in the KB memory exist in the expected system



4104

response Y , where gi = 1 if object(bi) ∈ Y , otherwise gi = 0. Then the KB memory pointer is trained
using binary cross-entropy loss:

Lossp = −
l∑

i=1

gi log σi + (1− gi) log (1− σi) (10)

2.4 Decoder
The decoder generates a response word by word. In particular, a word at time step t is either generated
from the vocabulary or copied from one of the two memories (dialog history memory or KB memory).
First, the decoder employs a GRU network defined in Eq. (2) for generation. The generation distribution
over vocabulary Pg(yt) can be obtained by feeding the decoder state st and ct (the reading output of
dialog history memory at the last round) into a softmax layer, which is given by

Pg(yt) = softmax(W1[st; ct]) (11)
where W1 is a trainable parameter.

Second, following the copy mechanism (Gulcehre et al., 2016) that the attention scores are viewed as
the probability to form the copy distribution, we adopt the addressing result of dialog state memory at the
last round as the attention score at,j , thus the copy distribution over the dialog history memory is given by
Pc(yt = w) =

∑
tj:wtj=w at,j .

Third, we use the KB memory pointer Ptrkb to dynamically access the KB memory, and then employ
the decoder state st defined in Eq. (2) to attend over the KB memory:

βt,j = softmax(αtj), αtj = vT
b tanh(Wbst +Ubc̃

K
j ), c̃Kj = cKj × σj , j ∈ [1, l] (12)

where vb,Wb, Ub are parameters to be learned, cKj is the KB memory content in j-th position at the last
hop. Therefore, the copy distribution over the KB memory is given by Pkb(yt = w) =

∑
tj:wtj=w βt,j .

Note that we copy the object word once a KB memory position (i.e., a KB triple 〈subject, relation, object〉)
is pointed to.

We use a soft gate g1 to control whether a word is generated from vocabulary or copied from dialog
history memory by combining Pg(yt) and Pc(yt):

g1 = Sigmoid(W2[st; ct] + b2), Pcon(yt) = g1Pg(yt) + (1− g1)Pc(yt) (13)
Moreover, we use another gate g2 to obtain the final output distribution P (yt) by leveraging Pkb(yt) and
Pcon(yt):

g2 = Sigmoid(W3[st; ct] + b3), P (yt) = g2Pkb(yt) + (1− g2)Pcon(yt) (14)
Therefore, the decoder loss is the cross-entropy between the output distribution P (yt) and the reference
distribution pt, denoted as Lossd = −

∑
pt log(P (yt)).

2.5 Training
We train our model by minimizing the weighted-sum of the two losses:

Loss = Lossd + γLossp (15)
where γ is a hyper-parameter controlling the impact of Lossp. Since minimizing cross-entropy loss does
not always produce the best results due to the exposure bias (Ranzato et al., 2015), we further adopt the
self-critical sequence training (SCST) algorithm (Rennie et al., 2017), which is a reinforcement learning
process with the reward obtained by the current model.

Specifically, we produce two separate output sequences at each training iteration: (1) the sampling
output ys, which is obtained by sampling from the output distribution P (yt) at each decoding time step,
and (2) the baseline output ŷ, which is obtained by maximizing the output distribution with a greedy
search. We define r(y) as the reward function, which is computed by comparing an output sequence y
with the ground truth sequence using the evaluation metric of our choice. The SCST loss is given by

Lossrl = −(r(ys)− r(ŷ))
T∑
t=1

log(P (yt)) (16)

Thus, minimizing Lossrl is equivalent to maximizing the conditional likelihood of sampled sequence ys

if it obtains a higher reward than the baseline ŷ, which improves the reward expectation of our model.
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3 Experimental Setup

3.1 Datasets

We perform experiments on three public multi-turn task-oriented dialog datasets: In-Car Assistant (Eric
and Manning, 2017), CamRest (Wen et al., 2016) and Multi-WOZ 2.1 (Qin et al., 2020).

In-Car Assistant dataset consists of 3,031 multi-turn dialogs in three distinct domains: schedule (Sch.),
weather (Wea.), and navigation (Nav.). This dataset has an average of 2.6 turns, and the KB information
is complicated, which has an average of 62.3 triples for every dialog. Following the data processing in
Madotto et al. (2018), we obtain 2,425/302/304 dialogs for training/validation/test respectively.

CamRest dataset consists of 676 conversations in the restaurant reservation domain with 5.1 turns on
average. It has an average of 22.5 KB triples for every dialog. Following the data processing in Raghu et
al. (2019), we divide the dataset into training/validation/test sets with 406/135/135 dialogs respectively.

Multi-WOZ 2.1 dataset extends the Multi-WOZ (Budzianowski et al., 2018) by equipping the corre-
sponding KB to every dialog, making it directly applicable for end-to-end generation. Following the data
processing in Qin et al. (2020), we obtain 1,839/117/141 dialogs for training/validation/test respectively.
It contains three distinct domains, including restaurant (Res.), attraction (Att.), and hotel (Hot.). These
dialogs have 5.6 turns on average, with an average of 54.4 KB triples for every dialog.

3.2 Implementation Details

Our model is trained in an end-to-end manner using Adam optimizer (Kingma and Ba, 2014) with an
initial learning rate of 5× 10−4. The shared size of embedding and the hidden units of GRU are sampled
from {128, 256}. Both the number of rounds R and the number of hops K are set to 3. The dropout rate
is set between [0.1, 0.4] and the hyper-parameter γ in the loss function is set to 1. The hyper-parameters
are tuned with grid-search over the validation set using BLEU score as metric. We select the model with
best BLEU score as an initialization for SCST training, and use the weighted sum of BLEU and entity F1
score as our reward metric. During the decoding stage, we use beam-search strategy with the beam size
sampling from {1, 2, 4}.

3.3 Baselines

We compare our model with several existing end-to-end task-oriented dialog systems: (1) Seq2Seq/+Attn
that employs standard seq2seq with and without attention over the input context (Luong et al., 2015); (2)
Ptr-Unk that employs a seq2seq model with a copy mechanism to copy unknown words during generation
(Gulcehre et al., 2016); (3) Mem2Seq that employs a memory network based approach with multi-hop
attention for attending over dialog history and KB triples (Madotto et al., 2018); (4) BossNet that employs
a bag-of-sequences memory network for disentangling language model from KB incorporation in task-
oriented dialogs (Raghu et al., 2019); (5) MLM that employs a multi-level memory network for modeling
dialog context and KB results separately (Reddy et al., 2019); (6) GLMP that employs a memory network
with a global memory pointer and a local memory pointer to strengthen the copy ability (Wu et al., 2019).

3.4 Evaluation Metrics

Following previous works (Madotto et al., 2018; Wu et al., 2019), we evaluate our model and other
baselines on two automatic evaluation metrics: BLEU (Papineni et al., 2002) and Entity F1. BLEU
calculates n-gram overlaps between the generated response and the gold response. Entity F1 is computed
by micro-averaging the precision and recall over KB entities in the entire set of system responses, which
evaluates the performance of the model to generate relevant entities to achieve specific tasks from the
provided KBs. It is noteworthy that entity F1 indicates the task-completion ability of the model, since KB
entities are the key towards the dialog task.
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In-Car Assistant Multi-WOZ 2.1 CamRest

Model BLEU F1 Sch.
F1

Wea.
F1

Nav.
F1 BLEU F1 Res.

F1
Att.
F1

Hot.
F1 BLEU F1

Seq2Seq 8.4 10.3 9.7 14.1 7.0 4.3 9.2 10.5 8.7 8.2 7.9 17.6
Seq2Seq+Attn 9.3 19.9 23.4 25.6 10.8 4.5 11.6 11.9 10.8 11.1 7.7 21.4

Ptr-Unk 8.3 22.7 26.9 26.7 14.9 4.8 17.4 19.6 16.6 15.5 5.1 16.4
Mem2Seq 12.6 33.4 49.3 32.8 20.0 6.6 21.6 22.4 22.0 21.0 13.5 33.6
BossNet 8.3 35.9 50.2 34.5 21.6 5.7 25.3 26.2 24.8 23.4 15.2 43.1
MLM 15.6 55.5 67.4 54.8 45.1 9.2 27.8 29.8 27.4 25.2 16.1 55.2
GLMP 14.8 59.9 69.6 62.5 53.0 6.9 32.4 38.4 24.4 28.1 16.7 52.3

DDMN (Ours) 17.7 55.6 65.0 58.7 47.2 12.4 31.4 30.6 32.9 30.6 19.3 58.9
DDMN+SCST (Ours) 15.8 60.7 69.3 64.7 53.2 11.5 34.2 38.5 34.1 31.1 18.7 59.1

Table 2: Evaluation results on different datasets.
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Figure 2: Comparison between DDMN and baselines on CamRest by varying the number of dialog turns.

4 Experimental Results

4.1 Quantitative Results

Automatic Evaluation Table 2 shows the evaluation results on different datasets, we can observe that
our framework achieves the state-of-the-art performance in terms of BLEU and overall entity F1 on all
datasets. On In-Car Assistant dataset, BossNet obtains better entity F1 than Mem2Seq but with a much
lower BLEU score. By analyzing the responses generated by BossNet, we reveal that BossNet tends to
copy necessary entity words from the KB but many entity words are out of order compared with the gold
response. MLM achieves a much higher BLEU score than previous models, which is due to its separate
memories for modeling dialog context and KB results. GLMP has achieved a strong improvement on
BLEU and entity F1, which is mainly benefited from its global and local memory pointers to guide the
KB attention and response generation. Our models perform even better than GLMP, which verifies the
effectiveness of our models in generating natural and appropriate responses. We observe similar trend
on Multi-WOZ 2.1 dataset. In particular, our model achieves significant higher BLEU score than other
methods. It is because the conversations in Multi-WOZ 2.1 require long-turn interactions, which further
shows the effectiveness of our framework in generating correct responses.

On CamRest dataset, our models substantially and consistently outperform the baseline methods by a
noticeable margin. It is noteworthy that DDMN achieves significant improvement with a highest BLEU
of 19.3 and promising entity F1 score of 58.9%, while DDMN with SCST obtains the best entity F1
score of 59.1% but has a lower BLEU score. This may be because that optimizing the combined discrete
reward metrics in SCST does not guarantee an increase in quality of the output, since BLEU measures the
n-gram overlap while entity F1 score captures the entity words without considering the order of words.
Furthermore, Figure 2 shows the changes of average BLEU scores of DDMN and several baselines along
with the increase of dialog turns on CamRest dataset. The BLEU scores of the baseline models decrease
sharply as the dialog turns increase while DDMN achieves much more stable performance, suggesting
that certain dialog and KB modeling strategy devised in DDMN to keep track of the dialog context, KB
knowledge, and previous inference process is effective.
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Model Turn-level Dialog-level
Appr. Humanlike. Goal. Coherence

Mem2Seq 3.15 3.24 2.49 2.62
BossNet 3.32 3.78 3.25 3.04
GLMP 4.07 3.85 3.92 3.12
DDMN 4.12 4.13 4.17 3.65

Table 3: Human evaluation results at the level of turns and dialogs.

Restaurant Area Address Food Price Phone Postcode
ask centre 12 bridge street city centre italian cheap 01223 364917 cb21uf

da vinci pizzeria north 20 milton road chesterton italian cheap 01223 351707 cb41jy
... ... ... ... ... ... ...

Role Turn Utterance
User 1 hello, i am looking for a cheap restaurant that serves eritrean food.

System 1 there is not a restaurant serving eritrean food listed. would you like something else?
Mem2Seq 1 ask is a cheap restaurant in the in the cheap price range.

GLMP 1 la margherita is a cheap restaurant in the eritrean part of town.
DDMN 1 there are no eritrean restaurants in the centre of town. would you like to try something else?

User 2 yes, are there any restaurants that serve italian food?
System 2 there are five cheap restaurants that serve italian food. what area would you like to search?

Mem2Seq 2 ask is a cheap restaurant in the cheap price range and in the cheap price range.
GLMP 2 da vinci pizzeria serves italian food in the cheap part of town and the centre price range.
DDMN 2 there is an cheap italian restaurant in the north part of town. would you like the address and phone number?

User 3 i do not have a preference.
System 3 ask is a cheap italian restaurant located in the centre part of town.

Mem2Seq 3 ask is a cheap restaurant in the cheap price range and in the cheap price range. .
GLMP 3 ask is in the cheap part of town the centre part of town.
DDMN 3 there are two italian restaurants in the centre of town.

User 4 i need their address and phone number please.
System 4 the phone number for ask is 01223 364917, and they are located at 12 bridge street city centre.

Mem2Seq 4 their address is is 15 magdalene street city centre and their phone number is 01223 315232. .
GLMP 4 ask is located at 15 magdalene street city centre and their phone number is 01223 315232.
DDMN 4 their address is 12 bridge street city centre and their phone number is 01223 364917.

Table 4: Case study of generated responses by DDMN and baselines on CamRest test set. The gold
entities in each response are highlighted in bold.

Human Evaluation We randomly select 100 dialogs from the test data of different datasets for human
evaluation. Following Wu et al. (2019), we adopt the appropriateness (Appr.) and human-likeness
(Humanlike.) to judge the quality of the generated responses at the turn level. We also adopt the goal
completion (Goal.) and coherence to judge the completion of overall dialog task and the overall fluency
of the whole dialog at the dialog level. Three annotators are invited to independently assign the score
scaled from 0 to 5 for each generated output. We report the average rating scores from all annotators and
the results are shown in Table 3. The agreement ratio computed with Fless’ kappa (Fleiss, 1971) is 0.57,
showing moderate agreement. As shown in Table 3, DDMN outperforms the baseline methods on both
turn level and dialog level, which is consistent with the automatic evaluation. In particular, DDMN obtains
significant higher goal completion score and coherence score than compared methods, demonstrating the
effectiveness of DDMN in modeling multi-turn interactions in task-oriented dialog generation.

4.2 Case Study

As an intuitive way to show the performance of task-oriented dialog systems, Table 4 reports some
responses generated by DDMN and baseline models. We observe that Mem2Seq tends to generate
repeated or inappropriate responses. For example, the responses in the first three turns generated by
MemSeq are very similar in both content and sentence structure. GLMP performs much better than
Mem2Seq, while its performance deteriorate with the increase of dialog turns, e.g., GLMP fails to extract
correct key entities in the third and fourth turns. Compared with GLMP, DDMN is able to generate more
proper and natural responses even in the last few turns during the conversation. This verifies that DDMN
is capable of memorizing the key information from previous turns.

4.3 Model Ablation

To investigate the effectiveness of each module proposed in our framework, we conduct ablation test from
four aspects, the results are reported in Table 5. First, we remove the dialog state memory updating (w/o
DSMU), resulting in significant performance degradation on both In-Car Assistant and CamRest datasets.
This suggests that updating dialog context turn by turn is a necessary step to distill important information
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Model In-Car Assistant CamRest
BLEU F1 BLEU F1

DDMN 17.7 55.6 19.3 58.9
w/o DSMU 15.2 48.2 16.1 49.0

w/o g1 16.5 49.2 18.3 50.1
w/o g2 16.3 45.1 17.8 48.1

w/o Ptrkb 17.1 50.3 18.8 52.2
Table 5: Ablation results of DDMN on two datasets.

for response generation. Second, we remove the two gates g1 and g2 in decoder separately, where g1
controls a word generated from the vocabulary or copied from the dialog history memory, and g2 controls
whether a word should be copied from the KB memory. The results show that g2 contributes more to the
performance of DDMN than g1,since entity words can not be copied efficiently without g2. Finally, we
remove the KB memory pointer (w/o Ptrkb) during training, the performance drops slightly over both
BLEU and entity F1 score.

4.4 Error Analysis

To better understand the limitations of the proposed model, we carry out an analysis of the errors made by
DDMN. Specifically, we randomly select 100 responses generated by DDMN that achieve low human
evaluation scores in the test set of In-Car Assistant. We reveal several reasons of the low evaluation
scores, which can be divided into four categories. (1) KB entries in generated responses are incorrect
(33%), which occurs especially when the given KB triples are large, and it is difficult for the model to
attend accurately over the KB memory. (2) Generated responses incorrectly achieve user goals (30%)
since our model can not capture user intent well sometimes. (3) The sentence structure of generated
responses are not appropriate (21%), which occurs when the model directly returns KB entries, even if
more information should be asked. (4) Miscellaneous errors (16%), e.g., the generated responses are
grammatically incorrect or conflict with the user input.

5 Related Work

End-to-end methods have shown promising results recently and attracted increasing attention since they
are easily adapted to a new domain. Some approaches view the dialog history as a sequence using
recurrent neural networks (Eric and Manning, 2017; Gulcehre et al., 2016), which also force the KB
triples with the same pattern and make it hard to perform reasoning over them. To better handle KB triples
in task-oriented dialogs, the memory network based architecture (Bordes et al., 2017) and its variants (Wu
et al., 2017; Wu et al., 2018) have been proposed and shown promising results. Mem2Seq (Madotto et
al., 2018) and GLMP (Wu et al., 2019) further augmented memory based methods by incorporating copy
mechanism (Gulcehre et al., 2016), which enable the models copy words from past dialog utterances or
from KB. These methods use a shared memory for the KB triples and the dialog utterances, making it
difficult to reason over the memory and distinguish between the two forms of data.

Recently, there have been several works employing separate memories for modeling the dialog context
and KB triples (Raghu et al., 2019; Reddy et al., 2019; Chen et al., 2019). For example, BossNet (Raghu
et al., 2019) implicitly disentangled the language model from knowledge incorporation and thus enhance
the ability of copying unseen KB entries. Multi-level memory model (Reddy et al., 2019) represented
the KB results with a multi-level memory instead of the form of triples. WMM2Seq (Chen et al., 2019)
adopted a working memory to interact with a dialog context memory and a KB memory. Nevertheless,
existing methods still ignore the flow of history information during conversations, making it struggle to
perform well in long-turn interactions. Different from the aforementioned methods, we propose a dialog
memory manager and a KB memory manager to dynamically track the dialog context and KB triples,
respectively.

6 Conclusion

In this paper, we propose a novel Dual Dynamic Memory Network (DDMN) with a dialog memory
manager and a KB memory manager for multi-turn end-to-end task-oriented dialog systems. DDMN
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encodes dialog context turn by turn and the dialog memory manager dynamically tracks the dialog history.
The KB memory manager shares the KB information throughout the whole conversation with a KB
memory pointer to softly distill relevant KB entries at each turn. In addition, we leverage self-critical
sequence training to boost the performance of DDMN. Extensive experiments on three public dialog
datasets demonstrate the superior performance of our model in both automatic and human evaluation.
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