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Abstract

Long Short-Term Memory recurrent neural network (LSTM) is widely used and known to capture
informative long-term syntactic dependencies. However, how such information are reflected in
its internal vectors for natural text has not yet been sufficiently investigated. We analyze them
by learning a language model where syntactic structures are implicitly given. We empirically
show that the context update vectors, i.e. outputs of internal gates, are approximately quantized
to binary or ternary values to help the language model to count the depth of nesting accurately,
as Suzgun et al. (2019) recently showed for synthetic Dyck languages. For some dimensions in
the context vector, we show that their activations are highly correlated with the depth of phrase
structures, such as VP and NP. Moreover, with an L1 regularization, we also found that it can be
accurately predicted whether a word is inside a phrase structure or not from a small number of
components of the context vector. Even for the case of learning from raw text, context vectors
are still shown to correlate well with the phrase structures. Finally, we show that natural clusters
of the functional words and the parts of speech that trigger phrases are represented in a small but
principal subspace of the context-update vector of LSTM.

1 Introduction

LSTM (Hochreiter and Schmidhuber, 1997) is one of the most fundamental architectures that support
recent developments of natural language processing. It is widely used for building accurate language
models by controlling the flow of gradients and tracking informative long-distance dependencies in var-
ious tasks such as machine translation, summarization and text generation (Wu et al., 2016; See et al.,
2017; Fukui et al., 2016). While attention-based models such as Transformer (Vaswani et al., 2017) and
BERT (Devlin et al., 2019) and their extensions are known to encode syntactic information (Clark et
al., 2019), some studies show that LSTMs are still theoretically superior in terms of ability to capture
syntactic dependency (Hahn, 2019; Dai et al., 2019). Tang et al. (2018) and Mahalunkar and Kelleher
(2019) also empirically demonstrate that Transformers do not outperform LSTM with respect to tasks to
capture syntactic information.

Recent empirical studies attempt to explain deep neural network models and to answer the questions
such as how RNNs capture the long-distance dependencies, and how abstract or syntactic information is
embedded inside deep neural network models (Kuncoro et al., 2018; Karpathy et al., 2016; Blevins et
al., 2018). They mainly discuss the extent to which the RNN acquires syntax by comparing experimental
accuracy on some syntactic structures, such as number agreements (see Section 7 for details). Some
studies also investigate in which vector spaces and layers a specific syntactic information is captured
(Liu et al., 2018; Liu et al., 2019). Lately, Suzgun et al. (2019) trained LSTM on Dyck-{1,2} formal
languages, and showed that it can emulate counter machines. However, no studies have shed light on the
inherent mechanisms of LSTM and their relevance to its internal representation in actual text.

Weiss et al. (2018b) theoretically showed that under a realistic condition, the computational power
of RNNs are much more limited than previously envisaged, despite of the fact that RNNs are Turing
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Figure 1: Structure of LSTM with distributions of elements of the context vector and the surrounding
internal vectors. (a) elements of forget vector f are nearly binarized to {0, 1}. (b) context-update vector
u is ternarized to {−1, 0, 1}. (c) context vector c has several peaks on integers. (d) output vector h has
peaks at around {0,±0.75,±1}.

complete (Chen et al., 2018). On the other hand, they also showed that LSTM is stronger than the sim-
ple RNN (SRNN) and GRU owing to the counting mechanism LSTM is argued to possess. Following
these results, Merrill (2019) introduces an inverse temperature θ into the sigmoid and tanh functions
and taking limits as θ → ∞, and thus assumes that all gates of LSTM are asymptotically quantized:
e.g. limθ→∞ σ(θx) ∈ {0, 1} and limθ→∞ σ(θx) tanh(θy) ∈ {−1, 0, 1}. Under the above assumption,
it shows LSTMs work like counter machines, or more precisely, the expressiveness of LSTMs is asymp-
totically equivalent to that of some subclass of counter machines. While those results are significant and
giving us theoretical clues to understand how LSTMs acquire syntactic representations as their hidden
vectors, it is not yet known whether or not similar phenomena occur in models learned from real-world
data. Regarding this point, we show that those quantization actually often happens in real situations
and bridge a gap between theories and practical models through statistical analysis of internal vectors of
LSTM that are trained from both raw texts and texts augmented by implicit syntactical symbols.

We first explore the behaviors of LSTM language models (LSTM-LMs) and the representation of
the syntactic structures by giving linearized syntax trees implicitly. Then, we show that LSTM also
acquires a representation of syntactic information in their internal vectors even from a raw text, by
statistically analyzing the internal vectors corresponding to syntactic functions. We empirically show
that the representations of parts of speech such as NP and VP and syntactic functions that specific words
have, both of which often act as syntactic triggers, are acquired in the space of context-update vectors,
as well as syntactic dependencies are accumulated in the space of context vectors.

2 Statistics of Internal Vectors of LSTM

2.1 LSTM Language Model

In this study, we consider language models based on one-layer LSTM because our aim is to clarify how
LSTM captures syntactic structures. For a sentence w1w2 · · ·wn, as shown in Figure 1, let ht denote the
output vector of an LSTM after feeding the t-th word wt, ct denote the context vector, and −→wt denote the
embedding of the word wt. Let LSTM(c,h,−→w ,Θ) be a function of c, h and −→w to determine the next
output and context vectors:

(ct,ht) = LSTM (ct−1,ht−1,
−→wt,Θ), (1)
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where Θ represents the set of parameters to be optimized. The language model maximizes the probability
of the next word wt+1 given the word sequence up to t, w1:t:

p(wt+1|w1:t) = p(wt+1|wt, ct,ht) = s(Wht+1 + b). (2)

s() is the softmax function, and W and b are a weight matrix and a bias vector, respectively. As shown
in the equation (2), the history of words up to t−1 does not appear explicitly in the conditional part of
the probability. The contextual information is represented in some form in the context vector ct and the
output vector ht. The following standard version is used as the target LSTM architecture among multiple
variations (Greff et al., 2017):

ft = σ(Axt) (3)

ut = σ(Bxt)� tanh(Cxt) (4)

ct = ft � ct−1 + ut (5)

ht = tanh(ct)� σ(Dxt) (6)

Here, � is an Hadamard (element-wise) product, and xt is the concatenated vector of −→wt, ct−1, ht−1,
and 1. A,B,C,D are weight matrices representing affine transformation. In this paper, u and f , which
are derived from x by equations (3) and (4) to directly affect c, are also analyzed in addition to c and h.
u and f are called context-update vector and forget vector hereinafter.

2.2 Internal Vectors are Naturally Quantized
h c u θ(u)

my his his his
his mother my my
mother playing the the
husband mind its its
mind husband our your
wife matters your their
their party their ’s

Table 1: Most similar words with
“her”, based on different internal vec-
tors in LSTM. θ() is a discretization by
thresholds ±0.9.

The fundamental focus of this study is a natural semi-
quantization of f , c, u, and h, as the result of learning. First,
each element of u is approximately quantized, or ternarized,
to {−1, 0, 1} as shown in Figure 1(c). This discretization is a
consequence of equation (4): the distribution of the first term
is almost concentrated on 0 and 1, and that of the second term
is concentrated on ±1. We experimentally confirmed that
even if each element of u is strictly ternarized by thresholds,
it does not lose important information. For example, Table 1
lists the most similar words with the word “her” measured by
the internal vectors (see Section 6.2 for details). θ(u), which
is obtained by thresholding u by ±0.9, collects syntactically
similar words as appropriately as u does.

Each element of f is also approximately binarized to {0, 1} as seen in Figure 1(a). Context-update
vector u is added to c and accumulated as long as the value of f is close to 1. Owning to the effects
of such quantization and accumulation, Figure 1(b) shows that the distribution of each element of c will
have peaks on integers.

As we discuss in Section 5.2, this quantization enables the accurate counting of the number of words
with syntactic features such as the nesting of parenthesis. Note that Figure 1 shows the results of learning
from the raw text of Penn Treebank WSJ corpus (Taylor et al., 2003), and the characteristics described
above do not change even if the parameters such as datasets and the dimensionality of the vectors have
been changed.

3 Hypotheses and Outline of Analyses

To understand the behavior of LSTM further, we try to answer two kinds of questions: (a) what informa-
tion is relevant with the syntax, and (b) how this information is correlated with the syntactic behavior. In
particular, we will examine: (1) which of the internal vectors (i.e. h, c, and u) of LSTM highly correlates
with the prediction of the phrase structure and its nesting (Sections 5.1 and 5.2), and (2) how well these
internal vectors or some subsets of their dimensions can predict the syntactic structures (Section 5.3).
Since recognition of syntax inevitably requires recognition of the part-of-speech for each word, we also
investigate: (3) how the contextual part-of-speech is represented in the internal vectors of the LSTM, and
how the differences between them can be captured using PCA (Section 6).
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Figure 2: Confusion matrices of next word prediction on test data. Figure (a)–(c) correspond to the
datasets Paren+W, Tag, and Tag+W; dashed lines show the groups of tokens. The number within a
cell shows the precision as a percentage. Only frequent words are shown and infrequent words are
collectively denoted by ‘*’.

4 Target Datasets and Learned Models

4.1 Configuration of Datasets
We use sentences with syntax trees in Peen Treebank Wall Street Journal (PTB-WSJ) corpus (Marcus
et al., 1994; Taylor et al., 2003) as data for training and testing. We randomly chose 10% of data for
testing. Phrase structures are linearized and inserted into, or replaced with, sentences as auxiliary tokens
in several manners as follows:

Paren consists of only ‘(’ and ‘)’ without words,
Paren+W consists of ‘(’ and ‘)’ and words,
Tag consists of ‘(T’ and ‘T)’ without words, where T represents a tag in Penn Treebank,
Tag+W consists of ‘(T’ and ‘T)’ and words,
Words is just a set of raw words.

For example, a sentence in the original data “(NP (DT a) (JJ nonexecutive) (NN director))” is converted
to “(() () ())” in Paren and “(NP (DT DT) (JJ JJ) (NN NN) NP)” in Tag. The latter needs some attention;
here, each space-separated token such as “(”, “(NP”, or “JJ)” is considered as a single word. The size
of the vocabulary in Paren and Tag is 2 and 140, respectively. For Paren+W and Tag+W, less frequent
words were replaced by their parts of speech so that the total number of words was less than 10,000.
Additionally, we also included a small experiment using Lisp programs: in particular, we used slib
standard library of scheme and conducted experiments under the scenarios Paren and Tag to show
that LSTM also works similarly for other “languages” other than WSJ. Note that in the all scenarios
above, LSTM does not know the correspondence between “(T” and “T)” for each tag T in advance,
because these auxiliary “words” are simply converted to integers like any other words and fed to LSTM.
Therefore, syntactic supervision in our experiments is not complete but only hinted.

4.2 Learning Models
The simplest architecture for LSTM language model is employed, which is composed of a single LSTM
layer with a word embedding and a softmax layer. The size of the word embedding vectors and the
internal vectors are determined according to the size of the vocabulary: 100 for Paren, 200 for Tag, and
1,000 for Paren+W, Tag+W, and Words because they include actual words. We used Adam (Kingma
and Ba, 2015) for optimization, where hyperparameters such as the step size are the same as (Kingma
and Ba, 2015). After 20 epochs of training, a model that has the best accuracy for test data among all
epochs is chosen for analysis. For the dataset Words, assuming the actual usage of LSTMs, we applied
dropout to the input vectors. The rates of Dropout are set to 0.2 and 0.5 for the embedding and output
vectors, respectively.
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4.3 Prediction Accuracies Dataset BOP EOP EOS Words
Paren 0.77 0.87 1.00 –
Paren+W 0.90 0.96 1.00 0.78
Tag 0.87 0.93 1.00 –
Tag+W 0.89 0.96 1.00 0.86
Words – – – 0.49

Table 2: Micro-averaged precision of predic-
tion for the beginnings of phrases (BOPs),
ends of phrases (EOPs), end of sentence
(EOS), and raw words.

We compare the accuracy of predicting the next word
among different datasets to phenomenologically con-
firm the acquisition of phrase structures. As shown
in Table 2, the end of sentence (EOS) is predicted by
LSTM almost perfectly in terms of both precision and
recall for all datasets except for Words. Because EOS
occurs in a sentence if and only if the numbers of ‘(T’
and ‘T)’ are equal for all T , we can conjecture that
the LSTM model accurately counts the balance and the
nesting of them.

In Figure 2, the groups of Beginning of Phrase (BOP, i.e. “(T” for a tag T) and End of Phrase (EOP,
i.e. “T)”) are separated by the dashed lines. We can see that BOP and EOP are correctly classified
across groups (Figure 2(b), 2(c)). Furthermore, each EOP is rarely misclassified to another EOP. This
implies that not only the balance of the numbers of ‘(T’and ‘T)’ is completely learned, but their order of
appearance is also learned quite accurately. Comparing Figure 2(c) to 2(b), we can see that the precisions
for BOP and EOP are improved by including intervening words. Similarly, the precisions for the words
are also improved by including BOP and EOP (Table 2). These are because the existence of words will
serve as a clue to predict phrase structures, and vice versa.

5 Representation of Syntactic Structures

After these investigations on LSTM, next we will examine how each tag of the phrase structure and the
depth of the nesting are embedded in its internal vectors.

5.1 Depth of Nested Phrases

We first examine the correlation coefficients between the depth of nesting and the value of each dimension
of the context vector c. Results are shown in the upper half of Figure 3(a) and 3(b) for Paren and
Paren+W, respectively. There are some dimensions whose correlation are very high; 0.9969, 0.9978,
and 0.9995 for Paren, Paren+W, and Lisp, respectively. Let ı̂ denote the dimension such that this
correlation is maximized. As Figure 3(a) and 3(b) show, we can see that the depth of the nesting linearly
correlates with cı̂ and almost equals to |cı̂| − α, with some constatnt α. In contrast, the values of hı̂ in
h are scattered; especially for Paren+W, |hı̂| does not converge to 1 and has a large variance between 0
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Figure 3: (a) and (b): (Upper) histogram of correlations with the nesting for each element of c. (Lower)
plots of the activations of c (red) and h (blue) for the dimension of highest correlation. (c) Value of cı̂
as a function of time in each sentence. Each trajectory represents a sentence in the test data. Trajectories
are colored so that each one is easily distinguished. (d) same as (c) on Lisp programs. We can see that a
mesh structure with the step height of approximately 1 emerges in spite of the continuous space of c.
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Figure 4: Relations between the depth of nesting of phrase structures and characteristic dimensions. ρ
denotes the maximum correlation. The target tags are: (a)–(b) NP for Tag and Tag+W, (c)–(d) VP for
Tag and Tag+W, (e) NN for Paren+W.

and 1. The first term in the right-hand side of equation (6) leads to this variance because the second term
is nearly 1 or −1 when the nesting is deep.

In Figure 3(c), we randomly choose dozens of sentences from the test data whose lengths are less than
100, and plot the values of cı̂ as time proceeds. We can see that a mesh structure is obtained with the step
height of nearly 1 in spite of the continuous space of c. This is because, as described in Section 2.2, the
context-update vectors u are approximately quantized so that uı̂ is almost binarized to ±1. In addition,
the end points of the graphs have values of approximately −2 for any sentence. This implies that the
EOS can be judged easily by whether a particular dimension of ct is approximately −2 or not.

During this study, Suzgun et al. (2019) independently discovered a similar diagram as Figure 3(c) and
3(d). However, their experiments are conducted only on a very simple formal language Dyck-{1,2} and
the number of dimensions are less than 10, as opposed to our experiments in empirical data and high
dimensionality of over 100 on the state vectors.

5.2 Prediction with a Single Component Dataset Tag Dataset Tag+W C
Acc #nnz ratio Acc #nnz ratio
0.996 82 41% 0.9996 134 13% 3×10−3

0.994 56 28% 0.9992 100 10% 1×10−3

0.991 34 17% 0.998 71 7% 3×10−4

0.98 21 11% 0.991 51 5% 1×10−4

0.96 8 4% 0.97 27 2.7% 3×10−5

0.91 5 2.5% 0.87 12 1.2% 1×10−5

Table 3: L1 logistic regression from c to de-
termine VP for Tag and Tag+W. We show the
number of nonzero elements (#nnz) and its ra-
tio for each regularization. The chance level
of prediction is around 0.7.

For Tag and Tag+W, there are no dimensions that com-
pletely correlate with the depth of the nesting unlike
Paren and Paren+W. We extract a dimension ı̂ that has
the largest correlation, and plot the relations between cı̂
and the depth of the nesting of NP and VP in Figure 4.
While the absolute value of cı̂ increases almost linearly
with the depth, its variance is not small except for NP
on Tag. Thus, we cannot say that a single element of c
purely encodes the depth of the nesting for a particular
tag.

Each of the right half of Figure 4 shows the two his-
tograms that correspond to cı̂. We can observe that each activation histogram has peaks at integer values.
This shows the effect of the natural quantization of c. We call the ratio of the overlap of the normalized
histograms as histogram overlap ratio. The closer the histogram overlap ratio is to 0, the higher discrim-
inative accuracy of the dimension. The minimum histogram overlap ratio of Tag+W are 0.28 for VP and
0.06 for NN. From the perspective of histogram overlap ratio, it is easy for NN and slightly difficult for
VP to classify whether a word is in that phrase by a single dimension.

For NN (common noun) tag, from Figure 4(e), it can be seen that there are no single dimension in c
that highly correlate with the depth of the nesting (ρ=0.31). On the other hand, the minimum histogram
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(a) Tag (b) Tag+W

(c) Words (d) Lisp

Figure 5: Lasso (L1) regression as a function of the nesting depth of VP for (a)-(c) and lambda for (d).
Linear regression and cı̂ with the highest correlation coefficient are also shown. The regression results
are scaled, and the depth plot is slid slightly shifted to the right for clarity.

overlap rate is 0.07, which is sufficiently low. The right histogram of the Figure 4(e) shows that the
occurrence of the token ‘(NN’ has an effect of resetting some dimension of c.

5.3 Representation by a Subspace

To find a clear representation of the depth of the nesting within c, we try to extract a subspace that
have high correlations with it. First, we adopt a linear regression to predict the depth of nesting from
c. Second, we examine the number of effective dimensions; the results of regression for VP are shown
in Figure 5(a)–(c). Compared with choosing the best single dimension, the correlation coefficients are
clearly improved and almost equals to 1; 0.983 for Tag, 0.995 for Tag+W. This also holds for the nesting
of lambda in Lisp programs where it is 0.940. We also empirically show that a few dimensions are
sufficient to classify whether a word is in VP or not. Table 3 shows the classification accuracies: for
Tag+W, we can keep the accuracy more than 0.99 while the ratio of non-zero dimensions decreases to
5%. For the case of Words, i.e. learning from raw text, the coefficients become smaller but still have
positively correlate with c, as shown in Figure 5(c); compared to u, c has the smallest prediction error. In
summary, the depth of the nesting of phrase structures can be represented by a sum of a relatively small
number of elements of the context vector c, and this relationship is approximately linear. The prediction
for Words is less accurate than the other datasets with implicitly-given syntax.

6 Internal Representation of Syntactic Functions

Finally, we investigate how syntactic functions, such as part-of-speech (POS) and functional words, are
represented in internal vectors when LSTM is trained for raw text. We also show that their syntactic
functions are naturally represented in the context-update vector u, rather than c.

6.1 Representation of a Part-of-Speech

We investigate whether the LSTM-LM automatically recognizes POS when learning from raw text, be-
cause it is difficult to acquire higher phrase structures without ever recognizing POS. For this purpose, we
employ a principal component analysis (PCA) to reduce the dimensionality of internal vectors of LSTM
to observe unsupervised clusters. In Figure 6-(a)(b), the vertical axis denotes the standard deviation of
each principal component over the observed data. The statistics over all the occurrences of words rep-
resented by the blue line shows that the variances are largely influenced by frequent words. Therefore,
next we computed the principal components over unique words, as represented by the red lines. For u,
the standard deviations for the main components decrease after this processing. This implies that the
variance within each frequent word significantly affects the result of the PCA.
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“her”
c sim. u sim.
his 0.70 his 0.39
mother 0.68 my 0.33
playing 0.67 the 0.28
mind 0.66 its 0.26
husband 0.65 our 0.26
matters 0.65 your 0.26
party 0.65 their 0.25

“his”
c sim. u sim.
the 0.74 the 0.43
’s 0.73 their 0.39
a 0.72 her 0.39
their 0.71 your 0.37
’ 0.71 its 0.37
her 0.70 a 0.36
its 0.70 ’s 0.36

“an”
c sim. u sim.
a 0.71 a 0.31
the 0.68 the 0.27
initial 0.68 its 0.26
enormous 0.67 another 0.25
opportunity 0.67 her 0.25
planned 0.67 any 0.25
military 0.66 his 0.22

“a”
c sim. u sim.
the 0.76 the 0.43
modest 0.76 another 0.36
’s 0.75 his 0.36
to 0.74 your 0.34
its 0.73 ’s 0.33
similar 0.73 every 0.33
and 0.73 its 0.33

Table 4: Similarities among internal vectors for several functional words. c and u are averaged over
occurrences of each word.

6.1.1 Cancelling Frequencies on PCA and Representation in u

Figure 6(a) shows the top 100 components of PCA. To enhance readability of both positive and negative
values, after the upper-half of the graph (x) is negatively copied to (−x), each value is filtered by exp(·)
and shown on the y-axis. Figure 6(b) shows the effect of cancelling the frequencies of the words. In
this analysis, after the number of dimensions is reduced by appling PCA to the internal vectors of all the
occurrences, it is applied again to the averaged vectors, each of which corresponds to each unique word
(we call this analysis as PCA-uq). We can see that POSs are clustered in u in an unsupervised fashion. In
particular, the result of PCA-uq shows there are some dimensions that clearly distinguish similar types
such as VB and VBZ, NN and NNS, and also between them. Furthermore, the distinction between verbs
and nouns is evident in the first principal component of PCA-uq, at the left panel of of Figure 7.

6.2 Representation of Functional Words

Because functional words play an important role in syntactic parsing, revealing their representation in
the internal vectors is important for understanding the mechanism of the syntax acquisition by LSTM. To
verify if u and other internal vectors represent syntactic role of functional words, we first take the average
of vectors for each word, and compute the cosine similarities between them. Table 4 lists words that
have the highest similarities to some instances of words. From the tables, it can be seen that the context-
update vector u captures their syntactic role more appropriately than the context vector c itself. Since
c possesses contextual information in a sentence, the co-occurrence of words will affect the similarity
through c. We also examined h and confirmed that its clustering ability is basically similar to c.

PCA-uq

(a) c

PCA-uq

(b) u

VB VBZ NN NNS CD
[Verb, base] [Verb, singular] [Noun] [Noun, plural] [Number]

0 200 400 600 800

0

20

40

60

80

(c) Primary components for u (PCA)

0 200 400 600 800

0

20

40

60

80

(d) Primary components for u (PCA-uq)

Figure 6: (a),(b): Distribution of values for each principal component on c and u. Vertical axis represents
a standard deviation. (c),(d): PCA and PCA-uq (see text) results of u vectors in learned LSTM. From left,
VB, VBZ, NN, NNS, and CD, respectively. Characteristic dimensions of each POS can be distinguished.
Note that LSTM is learned from raw text in this scenario.
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Figure 7: (Left): Result of PCA, PCA-uq, and t-SNE applied to the internal vectors: c (upper row) and
u (lower row). For PCA and PCA-uq, the first and second primary components are shown. (Right):
Representation of “that” in u for each usage in the corpus (t-SNE). Part of speech (not used in learning)
are marked with different colors.

6.3 Representation of Ambiguity with Functional Words
A word “that” is a representative ambiguous functional word that has multiple grammatical meanings:
it has three main meanings, each of which is syntactically similar to the word “if”, “this”, or “which”.
Figure 7 shows how these meanings are encoded in u, by mapping to two dimensions using t-SNE.
Although they are not completely separated, we can see that they are clustered according to their syntactic
behaviors in context.

7 Related Work

As research on how LSTM tracks long-term dependence, behaviors of LSTM with several dimensions
have been studied using artificial languages (Tomita, 1982; Prez-Ortiz et al., 2003; Schmidhuber, 2015).
With recent applications of LSTM to various tasks, studies are being conducted on how LSTM recog-
nizes syntax and long-term dependencies (Adi et al., 2017; Li et al., 2016). For instance, Linzen et
al. (2016) uses number agreement to determine whether a language model using LSTM truly captures it.
Khandelwal et al. (2018) evaluates how the distance between words affects the prediction in LSTM-LM.
Weiss et al. (2018a) utilize the learned LSTM to construct deterministic automata. Furthermore, Avcu et
al. (2017) control the complexity of long-range dependency using SP-k languages, and verify if LSTM
can track them. Several studies have attempted to theoretically understand the learning ability of lan-
guage models using RNNs, including LSTM and GRU (Cho et al., 2014; Chen et al., 2018; Weiss et al.,
2018b).

8 Conclusion

In this paper, we empirically investigated various behaviors of LSTM on natural text by looking into
its hidden state vectors. Contrary to previous work that deal with only artificial data, we clarified that
updates u of the context vectors c are approximately discretized and accumulated in a low-dimensional
subspace, leading to an approximate counter machines discussed in Section 4 and a clear representation
of syntactic functions as shown in Section 5, in spite of the high dimensionality of state vectors explored
in this study. Especially, we show that the representations of POS are acquired in the space of u rather
than c and h in an unsupervised manner. The fact that the first principal component of PCA-uq for u
encodes the difference between NP and VP is not only significant for understanding how LSTM-LM
acquires ayntax, but also seen as a result of extracting the most important syntactic factor using LSTM
with respect to the target language.
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