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Abstract

While lexico-semantic elements no doubt capture a large amount of linguistic information, it has
been argued that they do not capture all information contained in text. This assumption is central
to constructionist approaches to language which argue that language consists of constructions,
learned pairings of a form and a function or meaning that are either frequent or have a meaning
that cannot be predicted from its component parts. BERT’s training objectives give it access
to a tremendous amount of lexico-semantic information, and while BERTology has shown that
BERT captures certain important linguistic dimensions, there have been no studies exploring the
extent to which BERT might have access to constructional information. In this work we design
several probes and conduct extensive experiments to answer this question. Our results allow us
to conclude that BERT does indeed have access to a significant amount of information, much
of which linguists typically call constructional information. The impact of this observation is
potentially far-reaching as it provides insights into what deep learning methods learn from text,
while also showing that information contained in constructions is redundantly encoded in lexico-
semantics.

1 Introduction and Motivation

The introduction of pre-trained contextual word embeddings has had a tremendous impact on Natural
Language Processing (NLP), resulting in significant improvements on several tasks such as translation
and question answering, where the best automated systems are at par with or outperform humans (Hassan
et al., 2018). These models can broadly be classified based on the approach they use: the pre-training
approach and the feature-based approach. While methods that rely on features, such as ELMo (Peters
et al., 2018) require task specific architectures, those that rely on fine-tuning, such as Generative Pre-
trained Transformer (OpenAI GPT) (Radford et al., 2018), update all parameters during fine-tuning
thus transferring their learning to new tasks with minimal fine-tuning. While not the first pre-trained
model, BERT (Devlin et al., 2018) was the first extremely successful one, utilising a deep bidirectional
transformer model to provide significant improvements on the state-of-the-art of several tasks.

The success of BERT and its effectiveness in transfer learning, which is inherent to pre-trained models,
could imply that these models have an understanding of the underlying language. This has led several
researchers to focus on explaining what it is that these models understand about language. Despite
the inherent difficulty in understanding deep learning models, a new subfield of NLP, called BERTol-
ogy (Rogers et al., 2020), has evolved to better understand what BERT captures within its structure and
how it is able to so effectively transfer that knowledge to so many different tasks through relatively quick
fine-tuning. These efforts have shown that the BERT embeddings capture linguistic information such as
tense, parts of speech (Chrupała and Alishahi, 2019; Tenney et al., 2019b), entire parse trees (Hewitt and
Manning, 2019) in addition to encapsulating the NLP pipeline (Tenney et al., 2019a).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
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BERT is typically trained on two objectives: the Masked Language Model (MLM) pre-training ob-
jective (which involves randomly masking some tokens and setting the objective to predict the original
tokens), and Next Sentence Prediction (NSP) objective (which consists of predicting if, given two sen-
tences, one follows the other or not). These training objectives provide BERT with access to a tremendous
amount of lexico-semantic information.

While lexico-semantic elements no doubt capture a large amount of linguistic information, it has been
argued that they do not capture all information contained in text (Goldberg, 1995). This assumption is
central to the constructionist approach which does not adhere to a strict division between lexical and
grammatical elements, but rather argues that they form a continuum made up of constructions, which are
learned pairings of form and function or meaning. Constructions include partially or fully filled words,
idioms or general linguistic patterns (e.g. idiom, partially filled: believe <one’s> ears/eyes).
In order for a construction to be considered as such, its meaning must not be predictable from the sum of
its parts (for example, in the case of idioms), or alternatively, if this meaning is predictable then a pattern
is considered a construction if it occurs frequently (Goldberg, 2006). Constructions occur at multiple lev-
els of linguistic organisation (e.g., morphology, syntax) and at different levels of generalisation, starting
with low level constructions, such as cat + -s (i.e., cats), progressing to more complex constructions
such as Noun + -s (the plural construction) or The Xer the Yer (e.g., The more I think about it,
the less I like it), and finally the most abstract level which no longer contains any lexical elements such
as the ditransitive construction (e.g. She gave me a book; I emailed her the details).

Speakers of a language are capable of making generalisations based on their encounter with only a
few instances of a construction (Hilpert, 2014). The constructionist approach is based on theoretical
principles developed through the study of language learners: it encompasses both the study of construc-
tions (Construction Grammar: CxG, see Section 2) and the idea that language learners construct their
knowledge of language based on input (what people hear and read), subject to cognitive and practical
constraints (Goldberg, 2006).

While BERTology has shown that BERT captures certain important linguistic information, there have
been no studies exploring the extent to which BERT has access to constructional information. We hypoth-
esise that should BERT have access to constructional information, it should perform well on distinguish-
ing constructions from each other. However, the ability to do so is not sufficient to conclude that BERT
has constructional information as we must fine-tune BERT for it to perform this operation. Additionally,
BERT could be using other information to distinguish constructions. If BERT lacks constructional in-
formation, explicitly adding this information will significantly alter BERT’s ability to perform on down-
stream tasks or its ability to represent elements of language such as PoS or parse trees, especially given
the results of linguistic and cognitive linguistic experiments (Sections 2 and 3.1). On the other hand,
should BERT already contain constructional information, the addition of this information would have no
significant effect thus showing that BERT does contain constructional information, or information that is
functionally equivalent. Thus, this work focuses on answering the following questions:

(a) How does the addition of constructional information affect BERT?

(b) How effective is BERT in identifying constructions?

Answers to these questions will enable us to determine the extent to which BERT has access
to constructional information. It is crucial that we perform both these tests to rigorously test BERT’s
knowledge of constructions as positive results for only one could be a result of some other variable.

We make all of our code and experiment details including hyperparameters and pre-trained models
publicly available in the interest of reproducibility and so others might experiment with these models.1

2 Construction Grammar (CxG)

Construction Grammars are a set of linguistic theories that take constructions as their primary object of
study. A construction is a form-meaning pair (see Figure 1 for an illustration and Table 1 for examples).

1https://github.com/H-TayyarMadabushi/CxGBERT-BERT-meets-Construction-Grammar
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That is, it has a syntactic and phonological form which has a function or a meaning, albeit a (very)
schematic one. Constructions come in various shapes and sizes, from word forms to fully schematic
argument structures. The common denominator is that either they are frequently occurring or that their
meaning is not predictable from the sum of their parts. A famous example of this is the sentence She
sneezed the foam off the cappuccino, which is an instance of the caused-motion construction. The
verb sneeze on its own cannot be interpreted as a motion verb, nor is it usually used as a ditransitive verb,
i.e. it does not normally take any complements. It is the caused-motion construction that activates or
highlights the motion dimension of the verb “sneeze”. Other examples of the caused-motion construction
include She pushed the plate out of the way or They moved their business to Oklahoma. All these
constructions share a similar syntactic pattern (form) and a meaning of caused motion.

Figure 1: Constructions and symbolic pairing of meaning and form. Adapted from (Croft and Cruse,
2004).

Rather than looking at words as individual tokens ordered in a sentence on the basis of syntactic rules,
CxG assumes that syntax has meaning. According to CxG, linguistic knowledge is made up of chunks
(i.e. constructions) such as the partially filled idiom “drive someone X”, instances of which could be
“drive someone crazy/nuts/bananas” etc. which is in turn an instance of the resultative construction “X
MAKES Y Z” e.g Sarah hammered the metal flat. CxG assumes that speakers are able to recognise a
pattern after having encountered this pattern a certain number of times, with various lexical items. This
is similar to merging n-grams (or chunks) through levels of schematicity or abstraction. It is assumed
that speakers achieve this level of generalisation by abstracting over a number of similar instances. The
examples given in Table 1 illustrate a lower-level of generalisation where part of the construction is
lexically filled, with didn’t and how as fixed elements. The negative auxiliary didn’t is an instance of the
more schematic negative construction “AUX + not”, which is used with most verbs.

She didn’t understand how I could do so poorly.
Kiedis recalled of the situation: “He had such an outpouring of creativity while we were making that album that I think he
really didn’t know how to live life in tandem with that creativity.”
We didn’t know how or why.
One day she picked up a book and as she opened it, a white child took it away from her, saying she didn’t know how to
read.
In a 1978 interview, Dylan reflected on the period: “I didn’t know how to record the way other people were recording,
and I didn’t want to.
And it can be on my album, too, I just didn’t realize how it worked. . . At first when I got this, people didn’t know that I
was an artist, so it was, like, ‘Oh, this songwriter BC.’

Table 1: Examples of sentences containing the Construction Personal Pronoun + didn’t + V + how identified
using a modified version of Dunn’s (2017) work (see Section 3.2) with the pattern highlighted in bold.

For example, after encountering several sentences that are instances of the same construction as She
put a finger on that, children associate the word ‘put’ with the pattern “X (she) causes Y (finger) to move
to Z location (that)”, even when the verb ‘put’ itself is not present, as in the sentence He done boots on.
Similarly, Kaschak and Glenberg (2000) demonstrated that when people encounter words used in novel
ways, they rely on constructions to decode their meanings. She crutched him the ball, for example, is
interpreted to mean that she transferred the ball to him using the crutch, whereas she crutched him is
interpreted as she hit him with a crutch. This phenomenon explains the human ability to generate and
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understand the infinite creative potential offered by language (Chomsky, 1957) based on finite input.

3 Related Work

The study of how BERT works, what it captures and what it is capable of - called BERTology - has
been gaining momentum since the introduction of BERT (Rogers et al., 2020). Of particular relevance
to us is the work associated with probing. Probing is the use of a supervised model to establish if a
particular encoding of a sentence contains certain information (Conneau et al., 2018), such as say PoS
information (Belinkov et al., 2017) or sentence length (Adi et al., 2017). It has been used to establish
that BERT seems to capture more detailed information such as the entire classical NLP pipeline (Tenney
et al., 2019a) and measure BERT’s ability to reason (Zhou et al., 2020).

Probing techniques have also been used to understand the linguistic information captured by contex-
tual representations as in the recent work by Liu et al. (2019a). They have also been used to establish
that multilingual BERT learns representations of syntactic dependency labels which largely agree with
the Universal Dependencies taxonomy (Chi et al., 2020). Of particular interest to this work is a probing
technique called edge probing, which consists of tasks, inspired by traditional structured NLP, designed
to evaluate how models encode sentence structure across syntactic, semantic, local and long-range phe-
nomenon (Tenney et al., 2019b). Some of this work has extended prior work that similarly investigated
RNNs, such as whether RNNs can learn to predict subject-verb agreement (Gulordava et al., 2018; Linzen
et al., 2016).

3.1 Constructions and Semantic Relatedness

Stefanowitsch and Gries (2003) showed that certain verbs are preferentially used in certain constructions,
leading to the conclusion that sentences that are instances of the same construction share some semantic
relation. The verbs that prototypically occur in one construction are assumed to indicate that construc-
tion’s archetypal meaning. Examples for the ditransitive constructions would be give and tell, both of
which express the concept of transfer to some extent. Because of this shared meaning, a sentence con-
taining this construction will be interpreted accordingly. Consider the sentences: a) She sang me a song,
b) She threw me a bag and, c) She blew me a kiss. These sentences are all instances of the ditransitive
construction and share the semantic meaning of X gave Y Z or the idea of “transfer”. However, it is
important to note that out of this context sang, threw, blew are not semantically similar.

Constructions, like lexical items, are polysemous and can be associated with distinct but related senses,
and these constructions themselves have been shown to be interrelated (Goldberg, 1995). Although Gold-
berg has argued that there is more to gain by looking at various instances of the same construction, she
also acknowledged that speakers are aware of how “alternating” constructions are related (Goldberg,
2002). Additionally, Goldwater et al. (2011) showed that when people are “primed” with certain con-
structions, they tend to produce more sentences of those constructions.

From a computational linguistics perspective, Tsao and Wible (2013) used features from CxGs for
semantic similarity but were restricted by the availability of CxG information at the time.

3.2 Computational Learning of Construction Grammars

The computational generation of construction grammars using distributed semantics is a relatively new
area of research and there have been two major studies in this regard. The first is the work by Dunn
(2017) who presents an algorithm - the grammatical induction algorithm - for learning construction
grammar from a dataset. The second is work by Feng et al. (2020) who similarly extract a pattern
grammar (another grammar that aims to account for both the lexicon and syntax or semantics (Sinclair,
1987; Hunston and Francis, 2000)) from text. Pattern grammar differs from Construction Grammars in
that it remains agnostic as to the role played by these patterns in the acquisition and storage of linguistic
information in speakers. That is, it does not claim to be cognitively realistic, but is merely descriptive. In
this work we adapt Dunn’s (2017) system to identify the constructions that a given sentence instantiates.
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4 Experimental Set-up

We design two sets of experiments to answer each of our questions: a) How does the addition of con-
structional information affect BERT and, b) How effective is BERT in identifying constructions? Thus,
the first set of experiments (described in Section 4.1) are aimed at adding constructional information to
BERT, testing the resultant model using probing techniques and on downstream tasks and, the second
set, described in Section 4.2 consist of probing standard BERT models using a variety of probes to test
how effective BERT is at identifying constructions. Given the nature of our experiments, and the fact
that we use non-standard datasets, we establish baselines for each of our tasks and perform an ablation
study to better understand the relation between CxGs and BERT.

For use in both sets of experiments, we classify all sentences in the WikiText-103 corpus, which
consists of a subset of verified “Good” and “Featured articles” on Wikipedia (Merity et al., 2016) into
different “documents”. This classification is based on the constructions each sentence is an instances of
which is extracted using a modified version of Dunn’s (2017) work. Their system provides a list of over
22 thousand constructions and we use this pre-calculated list of constructions to classify sentences. It
should be noted that a single sentence can be classified as being an instance of several constructions. We
modify their system to vastly speed it up so as to process all sentences from WikiText-103, which consists
of 30,000 articles and approximately 4.6 million sentences. Examples of some sentences instantiating
one construction so processed are listed in Table 1.

This results in between 0 and over 50,000 sentences instantiating each of the constructions defined. We
call the collection of “documents”, each consisting of sentences from WikiText-103, that are instances of
a particular construction “CxG WikiText”. Some sentences may not be classified as an instance of any
construction so are discarded. Table 1 provides an illustration of one such “document”. Since construc-
tions that are instantiated by fewer sentences/are less frequent in our dataset are likely to constrain the
meaning enough (not too general) for them to be useful, we further divide constructions based on their
frequency (i.e. how many sentences are instances of each construction) in each of our experiments.

Both sets of experiments are designed based on the premise that there is significant linguistic informa-
tion encoded in the knowledge that two sentences are instances of the same construction. As discussed
in Section 3.1, there is significant theoretical and applied linguistic evidence to support this claim. This
reduces the problem of classifying sentences into over 22 thousand constructions into a binary classifi-
cation problem of whether or not two sentences are instances of the same construction.

4.1 CxGBERT: Encoding Constructions into BERT

The Next Sentence Prediction (NSP) objective that BERT is trained on, which requires the model to
predict if one sentence follows another or is from a different document, allows BERT to learn relation-
ships between sentences. To answer the first of our questions: How does the addition of constructional
information affect BERT, we make use of the NSP objective by replacing training documents, which
in the case of BERT are either Wikipedia articles or book sections from the Book Corpus, with the
CxG WikiText (Section 4) thus converting this pre-training objective to a “same CxG identification”
one. This BERT clone trained on CxG WikiText from scratch for half a million steps will be referred to
as“CxGBERT” (pronounced sig-BERT).

Since we train CxGBERT on a subset of WikiText-103, we must train another instance of BERT (which
we refer to as the BERT Base Clone) on the same data so as to have a comparable baseline. We do this
by using the original Wikipedia articles contained in WikiText-103. However, since some sentences are
not instances of any construction (as identified by our the model) and therefore not included in CxG
WikiText, we remove these from WikiText-103 while also creating an “article break” when dropping a
sentence. This ensures that consecutive sentences are true next sentences. Finally, sentences are often
instances of more than one construction. For example, the sentence She pushed the books out of the way
is an instance of the caused-motion construction ‘X move Y Z’ (where Z is the path), the
somewhat idiomatic construction out of the way, the plural constructions Noun-s (e.g., books). This
implies that these sentences appear in several of the ‘documents’ used for CxGBERT’s training data
requiring that we make multiple copies of BERT Base Clone’s training data so as to have exactly the
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same number of training sentences for CxGBERT and BERT Base Clone.
To ensure that any difference in performance between CxGBERT and BERT Base Clone is a result of

the “construction documents” and not some oddity of the training process, we train a third model on ex-
actly the same data as BERT Base Clone but with the sentences (including document breaks) randomised
- we call this BERT Random.

These three BERT models are therefore trained from scratch, using the BERT base architecture, on
exactly the same sentences. The only difference is what constitutes a “document” in the pre-training
data (either sentences clustered based on the CxG they are an instance of, in the case of CxGBERT
or a Wikipedia article, in the case of BERT Base Clone), the ordering of the sentences and how often
each sentence is repeated. All sentences are repeated an equal number of times in BERT Base Clone
and BERT Random, whereas in the case of CxGBERT, a sentence is repeated as often as the number of
constructions it is an instance of.

Additionally, as discussed in Section 4, the number of sentences that are instances of each construction
varies drastically between 2 and well over 50,000. To account for this, and to ensure homogeneity
amongst constructions, we split the constructions available into those whose frequency is between 2 and
10,000 instances (the Lower set) and those whose frequency is above 10,000 (the Upper set).

This results in six BERT clones: CxGBERT trained using sentences instantiating constructions that
have a frequency from 2 to 10,000 instances (which we call Lower CxGBERT) and its correspond-
ing BERT Base Clone and CxG Random models (which we call Lower BERT Base Clone and Lower
BERT Random). We also have a similar set of three BERT clones associated with constructions whose
frequency is above 10,000 instances: Upper CxGBERT, Upper BERT Base Clone and Upper BERT
Random.

Finally, we continue pre-training from the BERT Base pre-trained checkpoint, made available by
Devlin et al. (2018), with the Lower CxGBERT training data for 20 and a 100 thousand steps. This
attempts to make up for the significantly smaller dataset used in pre-training our BERT clones. We hope
that by pre-training from a checkpoint that has been training on all of Wikipedia and the Books Corpus
we can “infuse” CxG information into pre-training models thus making use of the larger training data
available to standard pre-trained models and constructional information available to CxGBERT. This
results in two additional BERT clones which we call BERT Plus CxG 20K and BERT Plus CxG 100K.

When pre-training the BERT clones described in this section, we use the same hyperparameters as
those set out by Devlin et al. (2018) with two changes so as to speed up training: we reduce the maximum
sequence length to 128 as suggested in the original work but do not perform additional pre-training (for
a smaller number of steps) using a sequence length of 512, and also reduce the number of pre-training
steps from 1 million to 500 thousand. While these changes (and the different data we use) mean that
we cannot compare our BERT clones to the original BERT, the BERT clones remain comparable to each
other. Each BERT clone is pre-trained once so we have one version of each clone pre-trained from one
random initialisation. Details of these training procedures are included in the associated program code
and experimental results we release.

All eight BERT clones are evaluated on a subset of The General Language Understanding Evaluation
(GLUE) tasks (Wang et al., 2018), and SQuAD 1.0 (Rajpurkar et al., 2016). See results in Section 5.1

4.1.1 Probing CxGBERT
We “probe” Lower CxG BERT and Lower BERT Base Clone using edge probing (Tenney et al., 2019b).
We use a subset of the sub-sentence tasks that are a part of edge probing to discover the differences in the
encoding of sentence structure captured by CxG BERT. This is aimed at evaluating how constructional
information alters BERT’s ability to capture sentence structure. See results in Section 5.1.1.

4.2 BERT’s Knowledge of Construction Grammar

To answer the question: “How effective is BERT in identifying constructions?”, we create a set of probes
that require BERT to predict if two sentences are instances of the same construction. It is important
to note that the version of BERT we use for these experiments is the standard BERT base trained on
Wikipedia and the Book Corpus, unadulterated by any constructional pre-training. We use the BERT
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Base Cased (cased L-12 H-768 A-12) for these experiments. Once again, due to the significant variance
in the frequency of each construction, we break up the constructions into sets based on their frequency:
2 to 50, 50 to 100, 100 to 10,000, above 10,000 and between 2 and 10,000.

We note that each of the sets of constructions (e.g. those with between 2 and 50 sentences) have a
different number of constructions. To ensure that we can compare between these sets, we pick exactly
2 positive and 2 negative pairs from each set for training and 1 positive and 1 negative pair each for the
development and test sets. The alternative would have been to pick the same number of training and test
samples from each set, but have a different number of examples from each construction.

An important element of probing is ensuring that the sentence representation provided by an encoder
is not fine-tuned (frozen) (Tenney et al., 2019b) during the training of the supervised model - this ensures
that information specific to the probe does not filter into the sentence representations, forcing the super-
vised model to learn the mapping between the representation of information pertaining to this probe (e.g.
PoS information) within the embedding and the probing task (e.g. PoS tagging).

However, in freezing BERT, we might not be capturing information contained within BERT’s internal
layers as it might not be explicitly expressed in the output vector we choose to use (such as the vector
representing [CLS] corresponding to the second last layer). Additionally, the internal attention weights
of BERT might also carry important information. To get around this, we adapt a variation of the probing
strategy proposed by (Richardson et al., 2020) who themselves adapt a version of inoculation by fine-
tuning (Liu et al., 2019b). Inoculation by fine-tuning was originally aimed at testing if challenge datasets
(i.e. datasets aimed at testing how brittle models trained on existing benchmarks are), were “difficult”
for a model because they truly capture phenomena that models cannot capture or because of limitations
of the training set. It consists of exposing the model to a “small” amount of training data from the new
dataset. Unlike Richardson et al. (2020), however, we do not fine-tune BERT on any task other than the
CxG task.

Given these restrictions we test BERT’s ability to distinguish between sentences belonging to the
same construction and those that do not (in a sense testing BERT’s knowledge of constructions) using
the following strategies: a) Without fine-tuning BERT whatsoever, b) by freezing the transformer layers
of BERT and using 7 fully connected layers on top (we establish this and other relevant hyperparameters
using an independent development set as described in the associated code and data), c) inoculating BERT
with 100, 500, 1000, and 5000 training examples and d) training it on the full training data (consisting
of 2 positive and 2 negative examples from each construction).

Since Dunn (2017) uses distributional semantics to find constructions, we must ensure that the resultant
constructions do not retain this information to an extent that can be captured by a simpler model. To this
end we add a final experiment that consists of measuring the effectiveness of a GloVe based biLSTM
model on the same CxG disambiguation task when trained on the entire training set.

Results of the experiments described in this section, using each of the above probes to test BERT’s
ability to distinguish constructions (and so its knowledge of constructions) are presented in Section 5.2.

5 Empirical Evaluation

This section details the results of the experiments described in Experimental Set-Up (Section 4). We do
not lowercase any of the input, either during evaluation, probing or fine-tuning and also use the upper
case version of BERT base when using pre-trained models. Additionally, the results are the maximum of
five runs to account for variation due to random initialisation except where otherwise stated.

5.1 CxG BERT: Encoding Constructions into BERT

We present the evaluation of the various BERT clones on the development sets of a subset of the Glue
tasks and SQuAD 1.0 along with their accuracy and loss on the Masked Language (ML) and Next Sen-
tence Prediction objectives (NSP) in Table 2.

Our results clearly show that how sentences are clustered into documents has a significant impact,
as can be seen by the low performance of both random baselines. The fact that the Upper BERT Base
Clone performs better than the Lower BERT Base Clone can be attributed to the fact that there are more



4027

Lower
BERT
Base
Clone

Lower
CxG
BERT

Lower
BERT
Ran-
dom

Upper
BERT
Base
Clone

Upper
CxG
BERT

Upper
BERT
Ran-
dom

BERT
Base

BERT
Plus
CxG
20K

BERT
Plus
CxG
100K

ML Acc 0.7751 0.7632 0.6957 0.7370 0.6953 0.6805 N/A 0.5971 0.6202
ML Loss 1.0065 1.0638 1.3717 1.1854 1.4242 1.4833 N/A 2.1308 1.9310
NSP Acc 1.0000 1.0000 0.9913 1.0000 0.9938 0.9700 N/A 0.7963 0.8488
NSP Loss 1.24E-5 4.88E-5 1.78E-2 8.08E-6 2.33E-2 9.33E-2 N/A 4.20E-1 3.11E-1

MRPC 83.1210 84.0391 80.9892 83.9428 81.8040 81.4241 87.7551 85.8553 86.0884
CoLA 36.3602 38.3863 30.8298 40.9991 34.3342 37.6885 57.7848 56.7550 59.5925
STS 80.9079 79.8130 28.1752 83.5393 65.2152 29.5565 88.5490 87.4546 86.9574
RTE 60.2888 56.6787 50.1805 64.2599 54.8736 55.5957 62.8159 64.6209 58.8448
SST 91.2844 89.9083 89.9083 91.2844 91.1697 90.5963 91.9725 92.3165 92.4312

SQuAD 1.0 77.8262 76.2176 73.2891 81.9994 75.9331 71.9489 85.3970 84.8543 84.7005

Table 2: Evaluation of BERT clones on the development sets of some Glue tasks and SQuAD 1.0 and
their performance on the ML and NSP objectives. We report F1 scores for MRPC, Spearman correla-
tions for STS-B, Matthews Correlation Coefficient for CoLA, and accuracy scores for the other tasks.
Maximum scores for each set are highlighted in bold along each row. All models are fine-tuned using
hyperparameters listed by Devlin et al. (2018).

sentences in the Upper training data, and indeed why we require two independent baselines. Upper
CxGBERT consistently fails to beat the Upper BERT Base Clone suggesting that there is possibly less
information contained in the constructions that are more frequent.

The largest gap between BERT Random and the other two models is in the Semantic Text Similarity
(STS) task which is aimed at testing if two sentences mean the same, suggesting that the NSP objective
helps in capturing semantic similarity regardless of whether sentences are clustered based on Wikipedia
articles or constructions. We note that corpora on which we improve upon BERT Base when it is fur-
ther pre-trained with CxG information, namely The Corpus of Linguistic Acceptability (CoLA) and the
Stanford Sentiment Treebank (SST), are both single sentence classification corpora, which is surprising
as we alter BERT’s NSP objective.

The relative close performance of CXGBERT and BERT Base Clone suggests that constructional in-
formation and topical information (as extracted from documents pertaining to a single Wikipedia article)
seem to be very similar as measured by performance on downstream tasks.

5.1.1 Edge Probing CxGBERT

Probe Lower BERT
Base Clone F1

Lower
CxGBERT F1 ∆ CxG Base ∆ BERT ELMo

PoS 0.807 0.807 0.0 0.0
NER 0.829 0.844 1.5 0.6
SRL 0.687 0.666 -2.1 1.2
SPR 0.786 0.784 -0.2 0.7
Non-terminal 0.609 0.600 -0.9 2.1
NER Task 0.7022 0.7004 -0.18 N/A

Table 3: Results of Edge Probing on the Lower BERT Base Clone and Lower CxGBERT. The probing
tasks are PoS, Named Entity Recognition (NER), Semantic role labelling (SRL), Semantic proto-role
(SPR), and non-terminal constituents. ∆ BERT ELMo represents BERT’s improvement over ELMo as
reported by Tenney et al. (2019b) provided here for reference. Since CxGBERT does better on the NER
probe, we include results on the CoNLL-2003 NER task in the row labelled “NER Task”.Edge probes
were run three (not five) times each with a different initialisation.

We present the results of edge probing Lower BERT Base Clone and Lower CxGBERT in Table 3. We
find that the two models are comparable, with CxGBERT performing better on one, BERT Base Clone
on one and the two performing close (albeit with BERT Base Clone performing better) on the other three
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probes. To test if we can translate CxGBERT’s improved performance on the Named Entity Recognition
probe into better performance on a downstream task, we test the two models on the CoNLL-2003 NER
task. Surprisingly CxGBERT performs worse on the task despite performing better on the probe. We
conclude that the two models’ ability to capture sentence structure is comparable.

5.2 BERT’s knowledge of Construction Grammar

The accuracy of BERT Base (with no additional pre-training) on the CxG disambiguation task is pre-
sented in Table 4. These results seem to suggest that BERT has a surprising amount of constructional
information, being able to predict if two sentences are instances of the same construction with an ac-
curacy of close to 90% after training on just 500 examples. More training data seems to result in less
local minima (as measured by the number of runs that reach “close” to the maximum accuracy). The
relatively low performance of the GloVe baseline seems to suggest that the constructions used are not
too semantically similar despite the use of distributional semantics in generating them. Finally, the gap
in performance between the frozen version of BERT and the inoculated versions seems to suggest that
BERT captures constructional information in its internal structure.

# of
CxGs Full

Training
Inoc
5000

Inoc
1000

Inoc
500

Inoc
100

Freeze No
Training

GloVe
biLSTM
Baseline

2-50 6384 95.0501 92.8571 90.8130 88.9333 72.5564 73.5119 63.9646 69.3163
50-100 2696 93.6573 92.7114 90.4488 88.9466 70.7901 70.8828 63.9651 62.1732

100-1000 8974 94.4451 91.8041 89.4974 86.5612 60.9594 68.2249 58.8478 53.9919
1000-10000 3266 89.7734 87.8292 83.2364 69.7336 57.7771 60.9461 57.7924 54.1405

<10000 21216 94.4075 90.1772 88.6619 85.7325 68.3352 69.3038 61.1708 60.8819
>10000 465 72.5498 72.5100 64.9004 54.9402 53.3865 54.7809 52.8685 52.1306

All 21681 93.4851 89.3409 87.1339 85.8009 64.1137 69.0905 60.1541 62.4242

Table 4: Evaluation of BERT Base (with no additional pre-training) on predicting if two sentences are
instances of the same construction. Freeze represents the results of BERT frozen, Inoc the number of
training samples used for inoculation (Section 4.2), and # of CxGs the number of constructions contained
in that set. Rows represents the count of sentences that are instances of constructions in that set.

6 Discussion

In an attempt to determine to what extent BERT has access to constructional information, we set out
to answer two questions, the first of which was: How does the addition of constructional information
affect BERT? Overall, our experiments show that the addition of constructional information has little
impact on BERT. The fact that neither CxGBERT nor BERT Base Clone comes out ahead shows that the
information available to both models is similar. However, it is interesting that the linguistic information
available to a generalisation engine (such as a neural network or person), regardless of whether the
input is a set of Wikipedia articles (as in the case of BERT Base Clone) or sentences instantiating the
same construction (as in the case of CxGBERT), is very similar. One need only study the diverse set
of sentences that can be instances of the same construction (Table 1) to see that this is a non-trivial
outcome. This outcome possibly results from the fact that similar concepts are expressed in similar
ways (as distributional analysis has shown) so when talking about a given topic, one is likely to be
using a limited set of words which trigger a limited set of constructions. Additionally, the fact that
BERT Random consistently performs poorly shows that the performance gain is indeed coming from the
clustering of sentences in the training data.

The second question we aimed to answer was: How effective is BERT in identifying constructions? We
find that the constructions that are most easily predicted by BERT (using the same CxG prediction task)
also tend to have a lower number of sentence instances. A manual inspection of these constructions re-
vealed that these constructions (that have fewer sentences as instances), such as Personal Pronoun
+ didn’t + V + how illustrated in Table 1 also constrain the meaning of the construction more.
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Those that have several sentences as instances, such as Noun -s, which BERT finds harder to predict,
tend to be so general that they are less useful. The extremely high accuracy on the set of constructions
that have less than 10,000 sentences as instances seems to suggest that BERT has a substantial amount
of information pertaining to semantically specific constructions and the fact that BERT, when frozen,
performs rather poorly seems to suggest that this information is contained within the internal layers of
BERT and not in its output. It is striking that these constructions can be predicted by BERT with an 85%
accuracy after training on just 500 training elements. This is particularly surprising given that there are
over 21 thousand constructions which are contained in this set - so 500 training elements are not even
enough to provide one sample from each construction.

The combination of these results allows us to conclude that BERT does indeed have access to a sig-
nificant amount of constructional information. This information, as with other information such as PoS
information or parse trees, is not explicitly available in the output layer, but can be accessed from within
the internal layers of BERT. The impact of this observation is potentially far reaching as it not only fur-
ther shows the capabilities of deep learning methods, but also shows that information that is typically
called constructional can be learned form exposure to lexico-semantic information. This is expected
given the redundancy inherent in language: words and constructions constrain each other mutually.

We note that this work is limited by the constructions that are available to us. A manual inspection
of the constructions seems to indicate that some constructions - even those that have few sentences as
instances - seem to be relatively short, even if the sentences that contain them are themselves long. For
example, one of the constructions extracted is MODAL + BE + Past-Participle and sentences
that are instances of this construction include a) These complexes, though their origins may be found
as early as the 19th century, snowballed considerably during the Cold War. and b) When the counter-
revolution became stronger Moreno called the Junta and, with support from Castelli and Paso, proposed
that the enemy leaders should be shot as soon as they were captured instead of brought to trial. How-
ever, we also note that verifying if a set of sentences are instances of a higher level construction is
cognitively demanding, and so it is possible that we were only able to identify the shorter, more obvious,
patterns. This might be contributing to BERT’s high accuracy in predicting them, yet does not fully ex-
plain BERT’s ability to predict similarity amongst over 21 thousand constructions using just 500 training
examples.

7 Conclusions and Future Work

In this work, we set out to explore the extent to which BERT might have access to constructional infor-
mation by use of several probes and extensive experimentation. Our results allow us to conclude that
BERT does indeed have access to a significant amount of information, much of which linguists typically
call constructional information. We hope that this work will inspire greater interaction between neural
network research and linguistics, as has been suggested before (Linzen, 2018).

An analysis of constructions that have several sentences as instances showed that they tend to contain
generic labels (such as “Preposition + his”) and do not constrain the meaning of the construction or its
slots much. It is doubtful whether such patterns would be considered constructions on a Construction
Grammar approach, since these patterns have form, but lack a clear mapping of that form to a specific
function or meaning. Dunn (2017) describes a method of filtering constructions that might address this
issue and we believe it to be an interesting future direction of work.

Finally, these results also suggest that BERT could be used by linguists for creating an inventory
of constructions. There have so far been some attempts at creating such an inventory, usually called
a constructicon (Jurafsky, 1992), but the tools used for these endeavours do not match CxGBERT’s
potential (Lyngfelt et al., 2018). For example, rather than a purely manual analysis, or a mere frequency
split, one could use BERT’s ability to disambiguate a construction as indicative of how “informative” it
is, yet another possible direction of future work.
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